浪涌保护器

浪涌保护器
浪涌保护器

浪涌保护器(SPD)的基本原理及应用

河北建设集团张海军

摘要:本文主要介绍SPD的基本原理、分类与应用。

关键词:SPD;基本原理:分类;应用

1 引言

电涌保护器(Surge Protective Device,SPD)又称浪涌保护器,是用于带电系统中限制瞬态过电压和导引泄放电涌电流的非线性防护器件,用以保护耐压水平低的电器或电子系统免遭雷击及雷击电磁脉冲或操作过电压的损害。近年来,电子信息系统(如电视、电话、通信、计算机网络等)发展迅猛,电子信息设备大量涌现和普及。这类系统和设备往往比较昂贵和重要,其工作电压、耐压水平很低,极易受到雷电电磁脉冲的危害,为此需采用SPD做过电压保护。

由于各国遵循的标准不一样,产品的规格没有统一,参数的标识也各自有侧重,远不如其他电气产品规范,这就给设计选型带来很大不便。在工程设计中,常见品牌按产地划分主要可分为国产产品、欧洲产品和美洲产品。国产产品参数设置较乱,规格多样,残压较高。规范产品的型号设置有的仿欧洲产品,有的遵循国标定参数,大部分产品都标注In与Imax。由于国产产品对应用场所要求较低,建筑物等级不高,设备耐压值大,所以一些参数要求可适当放松。

欧洲产品一般标注最大放电电流,产品型号也是根据这个参数设定的。例如欧洲某着名品牌XXX65、XXX40,其中数值65、40就

是Imax。但我国标准明确规定要用标称放电电流In来进行选型,这是目前在工程设计中遇到的一个尴尬情况。经查该产品资料,XX65的In值不超过20 kA,XX40的In值不超过15 kA。如果依照GB50343建议值,这两种产品只能用于设备末端三级保护,但在实际设计中,却装在了一、二级上,这明显与国家标准的选型参数不符,且残压较高,普通型号一般超过1 200 V,一旦接线环境不好,很容易突破设备耐压值。一般欧系产品Uc值较小,且投机取巧标注线电压,因此在选型时,较容易出现误导。

2 SPD概述

2.1 SPD的工作原理

电涌保护器适用于220/380V低压电源保护,是一种非线性元件,根据IEC标准规定,电涌保护器是主要抑制传导过来的线路过电压和过电流的装置。电涌保护器起到保护作用,基本要求是必须承受预期通过的雷电电流,并且通过电涌最大钳压,有效熄灭在雷电流通过后产生的工频续流,把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但至少包含一个非线性电压限制元件。常用电涌保护器有MOV(Metal Oxide Varistor)同气体放电管等。电涌包含强大的能量因此不能被阻止。基于这种原因,保护敏感电气设备免受电涌损坏的策略是把电涌从设备分流后流入大地。

浪涌保护器MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。当产生浪涌时MOV立即动作,响应时间为1~3毫微秒。MOV中的“V”是变阻器,在响应的一瞬间,MOV的电阻从最大值降到近乎零欧姆,过电流经MOV流入大地。被保护电气设备继续在正常工作电压下运行。其半导体元件具有随电压变化而改变电阻的性质。当电压低于某个特定值时,半导体中的电子运动产生高电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻降低接近零欧姆。电压正常,浪涌保护器MOV闲在一旁,不影响电力线路。

浪涌保护器MOV优劣的指标:(1)箝位电压:表示将导致MOV 接通地线的电压值。箝位电压越低,表示保护性能越好。(2)能量吸收/耗散能力:此标称值表示浪涌保护器在烧毁前能够吸收多少能量,单位为焦耳。其数值越高,保护性能就越好。(3)响应时间:浪涌保护器不会立刻断开,它们对电涌做出响应会有略微的延迟。

另一种常见的浪涌保护装置是气体放电管。这些气体放电管作用与MOV相同,它们将多余电流从火线移到地线,通过在两根电线之间使用惰性气体作为导体实现此功能。当电压处于某一特定范围时,该气体的组成决定了它是不良导体。如果电压出现浪涌并超过这一范围,电流的强度将足以使气体电离,从而使气体放电管成为非常良好的导体。它会将电流传导至地线,直到电压恢复正常水平,随后又会成为不良导体。

2.2 浪涌保护器的分类

SPD是电子设备雷电防护中不可缺少的一种装置,其作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击。

2.2.1 按工作原理分类

按其工作原理分类, SPD可以分为电压开关型、限压型及组合型。

(1)电压开关型SPD。在没有瞬时过电压时呈现高阻抗,一旦响应雷电瞬时过电压,其阻抗就突变为低阻抗,允许雷电流通过,也被称为“短路开关型SPD”。

(2)限压型SPD。当没有瞬时过电压时,为高阻抗,但随电涌电流和电压的增加,其阻抗会不断减小,其电流电压特性为强烈非线性,有时被称为“钳压型SPD”。

(3)组合型SPD。由电压开关型组件和限压型组件组合而成,可以显示为电压开关型或限压型或两者兼有的特性,这决定于所加电压的特性。

2.2.2 按用途分类

按其用途分类, SPD可以分为电源线路SPD和信号线路SPD 两种。

(1)电源线路SPD

由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。在直击雷非防护区(LPZ0A)或在直击雷

防护区(LPZ0B)与第一防护区(LPZ1)交界处,安装通过Ⅰ级分类试验的浪涌保护器或限压型浪涌保护器作为第一级保护,对直击雷电流进行泄放,或者当电源传输线路遭受直接雷击时,将传导的巨大能量进行泄放。在第一防护区之后的各分区(包含LPZ1区)交界处安装限压型浪涌保护器,作为二、三级或更高等级保护。第二级保护器是针对前级保护器的残余电压以及区内感应雷击的防护设备,在前级发生较大雷击能量吸收时,仍有一部分对设备或第三级保护器而言是相当巨大的能量,会传导过来,需要第二级保护器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射。当线路足够长时,感应雷的能量就变得足够大,需要第二级保护器进一步对雷击能量实施泄放。第三级保护器对通过第二级保护器的残余雷击能量进行保护。根据被保护设备的耐压等级,假如两级防雷就可以做到限制电压低于设备的耐压水平,就只需要做两级保护;假如设备的耐压水平较低,可能需要四级甚至更多级的保护。

(2)信号线路SPD

随着信息系统的广泛应用,由于网络线路多,电子设备的耐压水平低,雷击对信息系统的危害越来越大。雷电对信息系统的危害主要是雷击电磁脉冲造成的,包括沿线路传导的雷电过电压波、雷电流在接地线产生的高电位反击、雷击电磁场的静电感应和电磁感应。对电磁脉冲的防护措施有拦截、分流、等电位联结、屏蔽、接地、合理布线等。在信号线路上安装SPD是信息系统防电磁脉冲的

一个重要措施,它可以同时起到拦截、分流、等电位联结的作用。信号线路SPD应连接在被保护设备的信号端口上。其输出端与被保护设备的端口相连,有串接和并接之分,一般是串联安装在信号线路上。因此,在选择信号SPD时,应选用插入损耗较小的SPD。

2.3 SPD在防雷中的重要性

根据《建筑物防雷设计规范》GB50057-94(2000年版)的规定,在LPZ0B,LPZ1,LPZn+1防雷区建筑物应视情况采取防止感应雷、静电或电涌措施感应雷是由雷闪电流产生的强大电磁场变化(电磁脉冲感应或静电感应)在导体上感应出的过电压、过电流形成的雷击,对建筑物内的电气设备,尤其低压电子设备威胁巨大。建筑物内部设备防雷保护的重点是防止感应雷入侵。在感应雷的防护当中,电涌保护器(SPD)是不可缺少的装置,它能根据各种线路中出现的过电压过电流及时做出反应,泄放线路中的过电流或对线路上的过电压进行钳制,从而达到保护电气设备的目的。

静电、电涌和感应雷的性质一样,都可以通过电涌保护器(SPD)加以抑制。静电产生的另一种形式是由于摩擦或电子设备的高速运行,在人体和电子设备上产生大量静电电荷,人与物、物与物间易发生高压放电现象,放电后极易损坏精密的电子设备;电涌日常产生的面很广,如电源的开和关,电源的插拔,电梯、电闸门、电动机的启动和停止,电钻、电焊、电气设备损坏和电线短路等都会产生电涌。另外,电涌也常发生在电源系统内部,电源干线、支线、发电机、变配电装置、UPS、交直流电源、甚至电气设备终端都可

能发生。与雷电相比,虽然电涌的脉冲电压较低,但其脉冲宽、持续时间长,强度仍然不小,但足以干扰和损坏电气设备。

3 SPD在计算机信息系统中的应用

现代计算机信息系统大多由大规模集成电路组成,微电子器件的绝缘强度低,而这些敏感电子设备的工作电压却在不断降低,其数量和规模不断扩大,因而它们受过电压特别是雷电袭击而受到损害的可能性就大大增加,其后果可能使整个系统运行中断,并造成难以估量的经济损失。雷电和浪涌电压成为信息时代的一大公害。

3.1 电源系统的防雷设计

(1)主配电屏。三相线上加装3只MC50-B模块,并分别加上空气开关,在N线和地线之间加装MC125-B/NPE模块。

(2)UPS保护。在每个相线与中线之间加装V20-C模块,并在每个模块前加装空气开关,在N线与地线之间加装V20-C/NPE模块。

(3)需要保护的重要设备端。使用CNS32D对其电源线加以保护。

(4)弱电设备的电源保护。使用V20-C防雷模块或VF系列电源精细保护模块。

电源防雷器示意图如图1所示,其中MC50-B/3+NPE为3个高能石墨间隙防雷器和1个MC125-B/NPE模块的组合,V20-C/3+NPE/AS为增强型带声光功能的防雷器。防雷器及空气开关分别安装于相应的MCCB旁。

图1 电源防雷器示意图

3.2 计算机网络的防雷设计

在进出机房的百兆双绞线两端都加装RJ45S-E100/4-F网络防雷器;光纤线不需加装防雷器,但其加强芯应在入户处接地处理。在网络交换机出线端口处也安装RJ45S-E100/4-F网络防雷器,从而形成多级保护。

4 SPD应用中的几个问题

4.1 SPD的连接线和接地线导体的截面积

SPD的连接线和接地线一般采用多股铜线,其接地线截面积应大于连接线的截面积,并按与SPD连接的等电位联结排主接地线截面的50%确定。安装在电气装置电源进线端或靠近进线处的Ⅱ级分类试验的SPD,其接地线应为不小于4 mm2的多股铜线。对于防直击雷的Ⅰ级分类试验的SPD,其接地线宜为不小于16 mm2的多股铜线。当采用其他材质导线时,其截面积应与上述铜导线截面等效。SPD两端引线应短而直,避免形成过大环路。

4.2 SPD的附件

现有大部分电源系统SPD产品都像微型断路器一样采用模块化导轨安装形式,有单极和一体化的多极产品,有固定式和芯体可插拔更换的插拔式两种安装形式。为了监视SPD的老化和运行状态,采用金属氧化物电阻元件的限压型SPD,带有老化显示及过载热分断装置和失效指示功能。根据系统运行需要还可装设工作状态监视报警模块或远程监控辅助触头。间隙型SPD可选用运行状态指示器和雷击计数器的产品。

4.3 SPD的过流保护

SPD安装线路上应有过电流保护器件,并参照制造商的建议配置。当采用断路器时,应采用具有C型脱扣曲线的延时型脱扣器,其额定电流第一级不小于50 A(可选63 A),以后各级不小于20 A(可选32 A)。当采用熔断器时,其配置原则与断路器相同。当SPD 装于剩余电流保护装置(RCD)的负荷侧时,为防止电涌电流通过时,RCD误动作,可采用带延时的S型剩余电流保护器。对特别重要的负荷设备可采用对大气过电压不敏感的SI型剩余电流保护器,且应具有不小于3 kA(8/20μs)的电涌电流抗干扰能力。

5 结论

电涌保护器(SPD)是综合防雷系统的重要组成部分,有着不可替代的作用。电涌保护器(SPD)的连接电路根据不同需要,有不同的形式,在做好屏蔽(线路、机房、设备)、等电位连接和建立联合共同接地系统后,将其保护认真做深、做细、做好,筑起一道雷电、静电和电涌无法逾越的防线,才能真正保障信息系统和电

气设备的安全。

浪涌保护器的选型及使用

浪涌保护器的选型及使用 由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。 风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。业主对浪涌保护器的需求越来越普遍。这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规范。 应用指南 该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。该标准也说明了选择过电压保护设备的各种问题。标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。下图是评估中最重要问题的概览:

选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT 系统等)。浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。 仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。所以设计该系统时,记得连接电缆要包含火线和接地线。

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 1、根据被保护线路制式,例如:单相220V、三相220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 50343-5 4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一 级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 50057-里的分流计算,计算线路所需的泄放电流强度,选择合 适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现 在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理 在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地 线连接在一起。 MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电 源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时, 电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的 电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌

《接至低压电力配电系统的浪涌保护器》IEC61643-1-1

IEC61643-1-1998:《接至低压电力配电系统的浪涌保护器》通信行业标准 通信局(站)低压配电系统用电涌保护器技术要求 Performance requirements for Surge Protective Devices Connected to Low-voltage Distribution Systems of Telecommunication Stations/Sites YD/T 1235.1-2002 2002-11-08 发布2002-11-08 实施 中华人民共和国信息产业部发布 目次

前言 1 范围 2 规范性引用文件 3 术语和定义 4 使用环境条件 4.1 供电条件 4.2 气候条件 5 分类 5.1 按冲击测试电流等级分类 5.2 按用途分类 5.3 按端口分类 5.4 按构成分类 6 技术要求 6.1 标称额定值 6.1.1 优选值 6.1.2 SPD分类的冲击测试电流等级规定6.2 整体要求 6.2.1 外观质量 6.2.2 保护模式 6.2.3 分离装置 6.2.4 告警功能

6.2.5 接线端子连接导线的能力 6.3 电涌防护性能 6.3.1 最大持续运行电压 6.3.2 等级限制电压 6.3.3 电压保护水平 6.3.4 动作负载试验 6.4 安全性能 6.4.1 电气间隙和爬电距离 6.4.2 外壳防护等级 6.4.3 保护接地 6.4.4 着火危险性(灼热丝试验) 6.4.5 暂时过电压失效安全性 6.4.6 暂时过电压耐受特性 6.4.7 热稳定性 6.5 二端口SPD及带独立输入/输出端子的一端口SPD 的附加要求6.5.1 电压降 6.5.2 负载侧电涌耐受能力 6.5.3 负载侧短路耐受能力 6.6 环境适用性 6.6.1 耐振动性能 6.6.2 耐高温性能 6.6.3 耐低温性能

浪涌保护器ULC0521C系列型号参数规格书

Features ● Ultra low leakage: nA level ● Operating voltage: 5V ● Low clamping voltage ● Complies with following standards: – IEC 61000-4-2 (ESD) immunity test Air discharge: ±25kV Contact discharge: ±17kV – IEC61000-4-4 (EFT) 40A (5/50ns) – IEC61000-4-5 (Lightning) 4A (8/20μs) ● RoHS Compliant Applications ● USB 2.0 power and data line ● Set-top box and digital TV ● Digital video interface (DVI) ● Notebook Computers ● SIM Ports ● 10/100 Ethernet Dimensions DFN0603 Pin Configuration Mechanical Characteristics ● Package: DFN0603 ● Lead Finish: Lead Free ● UL Flammability Classification Rating 94V-0 ● Quantity Per Reel:15,000pcs ● Reel Size:7 inch Absolute Maximum Ratings (Tamb=25°C unless otherwise specified)

(完整word版)ITE1-6章考试答案讲解

RAID 适配器有何用途? 提供增强的音频和图形功能 以便使用采用较早的PCI 技术的扩展槽 将外围设备连接到PC 以提高性能 连接多台存储设备以提供冗余或提高速度 哪个Windows 硬盘分区通常被称为C: 驱动器? 第一个逻辑分区 第一个扩展分区 第一个主分区 第一个卷分区 技术人员可采取什么措施来帮助防范无线网络设备受到RFI 影响? 从该区域拿走无绳电话。 将设备放在防静电垫上。 一直将设备插在浪涌保护器中。 降低湿度水平。 技术人员想要在额外添加的新硬盘驱动器上创建新分区。应该使用下列哪种工具? 磁盘管理 Chkdsk 设备管理器 磁盘碎片整理程序 磁盘扫描 用户投诉说无法连接到无线网络。下列哪两项措施应该属于排除无线连接故障的一部分两项。) 尝试将笔记本电脑移到不同的地方,看看能否检测到信号。 检查笔记本电脑软件能否检测到任何无线网络。 重新配置笔记本电脑上的TCP/IP 设置。 重新插紧笔记本电脑的电池。 确认笔记本电脑已插在电源插座中。 Windows 7 全新安装过程中使用的默认文件系统是什么?

NTFS HPFS FAT32 FAT16 BIOS 使用硬盘中的哪个位置来搜索操作系统指令以便启动PC? Windows 分区 逻辑驱动器 活动分区 扩展分区 技术人员在哪里将PC 配置为从CD-ROM 启动? 设备管理器 开始菜单 我的电脑 控制面板 BIOS 设置 在启动过程中,用户按哪个按键或组合键可以使用最近一次的正确配置启动Windows Windows 键 F12 F1 F8 Alt-Z 下列哪两种连接器是DVI 连接器?(因图不好复制,答案选那两个最 大的) 某台计算机开机后,无法启动Windows 7。技术人员应该使用什么初始步骤来处理此故 在启动过程中按F12键并以安全模式启动计算机。 访问“控制面板”并从“系统和安全”菜单中选择从备份还原文件。 创建系统修复光盘并恢复映像。 从Windows 7 安装介质启动并访问系统还原实用程序。

浪涌保护器的设计选型(新)

(1)考察建筑物所处地理位置及供电进线方式 首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。 推荐选择第一级浪涌保护器的最大通流量应大于以下标准值: 高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs) 郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs) 城市内(埋地进线):40KA(8/20μs) 第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs); 第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。 (2)检查建筑物内供电系统的类别 ?单相、三相及直流供电系统 在220V单相供电系统中,只需选用两片保护模块组合。如FRD-20-2A,FRD-40-2A。在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。 其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。 下面是防雷器的几个重要参数: (1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 (2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。 (3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 (4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

防雷器主要技术参数

防雷器主要技术参数 链接:https://www.360docs.net/doc/451568004.html,/tech/12839.html 防雷器主要技术参数 信息时代的今天,电脑网络和通讯设备越来越精密,其工作环境的要求也越来越高,而雷电以及大型电气设备的瞬间过电压会越来越频繁的通过电源、天线、无线电信号收发设备等线路侵入室内电气设备和网络设备,造成设备或元器件损坏,人员伤亡,传输或储存的数据受到干扰或丢失,甚至使电子设备产生误动作或暂时瘫痪、系统停顿,数据传输中断,局域网乃至广域网遭到破坏。其危害触目惊心,间接损失一般远远大于直接经济损失。防雷器就是通过现代电学以及其它技术来防止被雷击中的设备。 防雷器又称等电位连接器、过电压保护器、浪涌抑制器、突波吸收器、防雷保安器等,用于电源线防护的防雷器称为电源防雷器。 防雷器的一些主要技术参数:额定工作电压、额定工作电流,特批串并式电源防雷器的载流量。通流能力,防雷器转移雷电流的能力,以千安为单位,与波开开式有关。防雷器在功能上可分为可防直击雷的防雷器和防感应雷的防雷器。可防直击雷的防雷器通常用于可能被直击雷击中的线路保护,如LPZOA区与LPZ1区交界处的保护。用10/35μs电流波形测试与表示其通流能力。防感应雷的防雷器通常用于不可能被直击雷击中的线路保护,如LPZOB区与LPX1区、LPZ1区交界处的保护。用8/20μs电流波形测试与表示其通流能力响应时间,防雷器对瞬态现象起控制作用所需的时间,与波形性质有关。残压,防雷器对瞬态现象的电压限制能力,与雷电流幅值及波形性质有关。 防雷器的主要技术参数说明: 1.标称电压Un 与被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 2.额定电压Uc 能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。 3.额定放电电流Isn 给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。4.最大放电电流Imax 给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。5.电压保护级别Up 保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 6.响应时间tA 主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。7.数据传输速率Vs 表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。 8.插入损耗Ae 在给定频率下保护器插入前和插入后的电压比率。 9.回波损耗Ar 表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数 原文地址:https://www.360docs.net/doc/451568004.html,/tech/12839.html 页面 1 / 1

避雷器与浪涌保护器

避雷器和电涌保护器运用说明

目录 一、定义 二、防雷器与浪涌保护器的比较 三、线路避雷器运用及其说明 四、浪涌保护器设计原理、特性、运用范畴 五、参考依据与文献

一、定义 1.避雷器 避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。 2.浪涌保护器 也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

?从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。 二、避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

浪涌保护器的原理及参数介绍

浪涌保护器的原理及参数介绍 浪涌保护器原理 浪涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为"避雷器"或"过电压保护器"英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏.电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件.用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 汇骐防雷商城提示您浪涌保护器的参数介绍 1、最大持续运行电压Uc 在220/380V三相系统中选择SPD时,其最大持续运行电压Uc应根据不同的接地系统形式来选择. (1)当电源采用TN系统时,从建筑物内总配电盘(箱)开始引出的配电线路和分支线路必须采用TN-S系统; (2)在下列场所应视具体情况对氧化锌压敏电阻SPD提高上述规定的Uc值: ①供电电压偏差超过所规定的10%的场所; ②谐波使电压幅值加大的场所. 2、冲击电流Iimp 规定包括幅值电流Ipeak和电荷Q. 3、标称放电电流In 流过SPD、8/20μs电流波的峰值电流,用于对SPD做Ⅱ级分类试验,也用于对SPD做Ⅰ级和Ⅱ级分类试验的预处理.对Ⅰ级分类试验In不宜小于15kA,对Ⅱ级分类试验In不宜小于5kA. 4、电压保护水平Up 即在标称放电电流In下的残压,或浪涌保护器的最大钳压. 为使被保护设备免受过电压的侵害,SPD的电压保护水平Up应始终小于被保护设备的冲击耐受电压Uchoc,并应大于根据接地类型得出的电网最高运行电压Usmax,即要求UsmaxIn.

浪涌保护器参数含义

防雷击保护的选用,分为4个等级,IEC61312-1规定:10/350μs是首次雷击波型,用于电源的第一级(A级)保护,值得注意的是这只是雷击波的测试波型,而不是雷电的实际波型;8/20μs是用在首次后的B级、C级、D级雷击保护,二者在本质上是没有区别,只是反映了保护器件能分流雷电流能量大小而已! TDS(TDX)浪涌保护器 浪涌保护器作为低压配电系统的元件之一,所涉及到很多的参数指标都与其他的空气开关是相同的。但是每一种空气开关都有其不同于其他空气开关的参数与指标。当然,并不是所有的空气开关都如此。只是一些特殊作用的空气开关才会涉及到很多不同的参数。例如双电源自动转换开关、浪涌保护器和隔离开关等。 以下是浪涌保护器的各种参数含义的解析; 1.最大放电电流Imax:给浪涌保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 2.额定放电电流Isn:给浪涌保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 3.标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

4.电压保护级别Up:浪涌保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 5.额定电压Uc:能长久施加在浪涌保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。 6.数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用浪涌保护器的参考值,浪涌保护器的数据传输速率取决于系统的传输方式。 7.最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,浪涌保护器所耐受的最大冲击电流峰值。 8.漏电流:指在75或80标称电压Un下流经浪涌保护器的直流电流。 9.最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,浪涌保护器所耐受的最大冲击电流峰值。 10.峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。 11.响应时间tA:主要反应在浪涌保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。 12.在线阻抗:指在标称电压Un下流经浪涌保护器的回路阻抗和感抗的和。通常称为“系统阻抗”。

防雷名词解释题库

防雷业务汇总题库-名词解释 一、名词解释 1、防雷减灾:指防御和减轻雷电灾害的活动,包括雷电和雷电灾害的研究、监测、预警、防护以及雷电灾害的调查、鉴定和评估等。 2、防雷装置:接闪器、引下线、接地装置、浪涌(电涌)保护器及其它连接导体的总合,或外部和内部雷电防护装置的统称。 3、综合防雷系统:建筑物采用外部和内部防雷措施构成的防雷系统。 4、外部防雷装置:由接闪器、引下线、接地装置组成,主要用以防直击雷的防护装置。 5、内部防雷装置:由等电位连接系统、共用接地系统、屏蔽系统、合理布线系统、浪涌保护器等组成,主要用于减小和防止雷电流在需防空间内所产生的电磁效应。 6、接闪器:直接接受雷击的避雷针、避雷带(线)、避雷网以及用作接闪的金属屋面和金属构件等。 7、引下线:连接接闪器与接地装置的金属导体,用于将雷电流从接闪器传导至接地装置的这部分防雷装置。 8、接地装置:接地体和接地线的总和,用于将雷电流传导并将其散入大地的这部分防雷装置。 9、接地体:埋入土壤或混凝土基础中作为散流用的导体。 10、接地线:从引下线断接卡或换线处至接地体的连接导体;或从接地端子、等电位连接带至接地装置的连接导体。 11、自然接地体装置:具有兼作接地功能的但是不是为此目的而专门设置的各种金属构件、钢筋混凝土中的钢筋、埋地金属管道和设备等的统称。 12、人工接地装置:具有接地功能而专门为此设置的各种金属构件的统称,分为人工垂直接地体和人工水平接地体。 13、独立接地装置:系统间相互独立的直流地、交流工作地、安全保护地、防雷接地和供电系统地等接地装置。 14、共用接地系统:将各部分防雷装置、建筑物金属构件、低压配电保护线、等电位连接带、设备保护地、屏蔽接地、防静电接地及接地装置等连接在一起的接地系统。

浪涌保护器

浪涌保护器(SPD)的基本原理及应用 河北建设集团张海军 摘要:本文主要介绍SPD的基本原理、分类与应用。 关键词:SPD;基本原理:分类;应用 1 引言 电涌保护器(Surge Protective Device,SPD)又称浪涌保护器,是用于带电系统中限制瞬态过电压和导引泄放电涌电流的非线性防护器件,用以保护耐压水平低的电器或电子系统免遭雷击及雷击电磁脉冲或操作过电压的损害。近年来,电子信息系统(如电视、电话、通信、计算机网络等)发展迅猛,电子信息设备大量涌现和普及。这类系统和设备往往比较昂贵和重要,其工作电压、耐压水平很低,极易受到雷电电磁脉冲的危害,为此需采用SPD做过电压保护。 由于各国遵循的标准不一样,产品的规格没有统一,参数的标识也各自有侧重,远不如其他电气产品规范,这就给设计选型带来很大不便。在工程设计中,常见品牌按产地划分主要可分为国产产品、欧洲产品和美洲产品。国产产品参数设置较乱,规格多样,残压较高。规范产品的型号设置有的仿欧洲产品,有的遵循国标定参数,大部分产品都标注In与Imax。由于国产产品对应用场所要求较低,建筑物等级不高,设备耐压值大,所以一些参数要求可适当放松。 欧洲产品一般标注最大放电电流,产品型号也是根据这个参数设定的。例如欧洲某着名品牌XXX65、XXX40,其中数值65、40就

是Imax。但我国标准明确规定要用标称放电电流In来进行选型,这是目前在工程设计中遇到的一个尴尬情况。经查该产品资料,XX65的In值不超过20 kA,XX40的In值不超过15 kA。如果依照GB50343建议值,这两种产品只能用于设备末端三级保护,但在实际设计中,却装在了一、二级上,这明显与国家标准的选型参数不符,且残压较高,普通型号一般超过1 200 V,一旦接线环境不好,很容易突破设备耐压值。一般欧系产品Uc值较小,且投机取巧标注线电压,因此在选型时,较容易出现误导。 2 SPD概述 2.1 SPD的工作原理 电涌保护器适用于220/380V低压电源保护,是一种非线性元件,根据IEC标准规定,电涌保护器是主要抑制传导过来的线路过电压和过电流的装置。电涌保护器起到保护作用,基本要求是必须承受预期通过的雷电电流,并且通过电涌最大钳压,有效熄灭在雷电流通过后产生的工频续流,把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但至少包含一个非线性电压限制元件。常用电涌保护器有MOV(Metal Oxide Varistor)同气体放电管等。电涌包含强大的能量因此不能被阻止。基于这种原因,保护敏感电气设备免受电涌损坏的策略是把电涌从设备分流后流入大地。

防雷区域定义

防雷分类、分区、分级 一、建筑物防雷分类 1、雷击保护系统(LPS):是对建筑物或屋内防雷击保护的全部系统的统称,包括外部防雷系统和内部防雷系统。 2、雷击保护分区(LPZ):通过对雷击电磁环境的定义,进行区域划分。 二、防雷分区的目的 相对于不同的要求,根据安装位置、保护级别和冲击流通容量,浪涌保护器分为B、C、D三级(式按IEC分类方法,顺次序对应为Ⅰ、Ⅱ及Ⅲ级)。分级的目的是提供有选择的浪涌保护,保证一个高的能量吸收能力和尽可能最低的保护水平。 这个分类符合DIN VDE 0675 第六部分(草案11.98)A1和A2的要求。这个标准提出了应用于额定电压最大不超过1000V、额定频率在50Hz到60Hz之间的交流电网的浪涌抑制器的设计的指导方针、要求和测试方法。 三、分级防护:使过电压减小至无害的水平 在国际标准IEC 61312-1中描述的分区防雷的观念已被证实是合理的、有效的。这个理论的基本思想是在过电压到达终端设备造成损害之前,逐级地减少它至无害的水平。为了达到这个目的,建筑物的整个保护空间被分到了几个防雷分区(LPZs)。在线路由一个分区进入到另一个分区的地方安装浪涌抑制器,按照不同分区的具体要求安装相应等级的浪涌抑制器。 分区防雷理论的主要优点: 包含高能量的有害的雷电流在导线进入建筑物处直接被转向泄入大地,使得进入到其他系统的过电压值最小化。避免由于磁场的干扰对于新建、扩建和改造的建筑物都可以通过一个单独的防护理念来设计。 由外到内,防雷分区(LPZs)被定义如下: LPZ 0A:在建筑物外部,不受外部保护装置保护的区域。可能遭受直击雷,对雷电磁脉冲没有任何屏蔽防护。 LPZ 0B:在建筑物外部受外部防雷装置保护的区域。对雷电磁脉冲没有任何屏蔽防护。 LPZ 1:建筑物内部区域。有小部分雷电能量进入的可能性。 LPZ 2:建筑物内部区域。有低的浪涌过电压进入的可能性。 LPZ 3:建筑物(也可能是设备的金属外壳)内部区域。没有雷电磁脉冲产生的干扰,也没有浪涌过电压。 分区防雷理论的必要条件是正确安装的等电位连接系统,然后在各分区之间安装电涌保护器作为补充,因而对于防雷来说,建立等电位连接系统同样重要。 防雷技术名词解释 1、等电位连接: 将电器设备与外部导体作出连接,以达到相同或相近电位的电气连接器件。电涌保护器为保护带电导体的其中一大类。 2、故障分类 1)电涌:电涌在导线与导线之间或导线与地之间发生一个瞬态的过电压,时间少于1ms,该电压远远超过设备的最高允工作电压峰值,但它并无工作频率。电涌的成因为雷击或者开关误操作(如空气开关过流跳闸)而引起的操作过电压。2)瞬时过电压:瞬时过电压是在某地区的波动,时间相对来说比较长,可视为

好天气公司C2 K-2766(说明书)浪涌保护器安全巡检仪说明书

电涌保护器安全巡检测试仪 K-2766 使用说明书 介绍 谢谢您选购了K-2766电涌保护器安全巡检仪。为了从此产品中获得最大收益,请在使用前先阅读此手册,并将其放在易于找到的地方,以便未来参照使用。 检查 当您收到产品后,仔细检查一下仪表,以确保在运输过程中没有任何损坏,特别要检查配件、面板开关及连接器。如果有损坏或者根据说明仪表也无法使用,请及时与销售商联系。 配置 K-2766电涌保护器安全巡检仪1部 测量电缆1对(黑:1.5m,红:1.5m);表笔1对(黑红各1只);转接电缆1对(黑:10cm,红:10cm);鳄鱼夹1对(黑红各1只);专用充电器1套; 使用说明书1册; 套装配置:感应数字式测电笔1只;防静电手套1副; (可选)SPD运行温度测试仪1部;漏电流钳形表1部; 专用仪表便携箱1个 安全提示 本手册包括此产品安全操作和在安全运行条件下维护的必要的信息和警告,在使用此产品前要仔细阅读下面安全提示。

△!提醒 ●在给电涌保护器安巡仪通电前,务必检查并确认连接于测量端 子的测试线无短路。 ●在测试过程中,可能有最大值为2100V的电压存在于测量端子 之间,注意采取适当的预防措施防止电击。 ●在没有确认可靠连接测试元件前,请不要进行测试键操作。 △!警告 ●为防止电击,不要把产品弄湿,以及手湿的时候不要使用此产 品。在使用户外元件时,要格外小心。 ●此仪表不要在腐蚀剂或易燃气体的环境中使用,否则仪表会损 坏或引起爆炸。 ●除了电池,不要将元件接电以阻止损坏或电击的危险。 △!小心 ●当仪表处于直接光照、高温、潮湿、结霜时,不要贮存或使用。 在这些条件下,可能造成绝缘损坏,使仪表不再满足指标。 ●此仪表并不完全防尘或防水,为了防止可能的损坏,避免在潮 湿或灰尘的环境中使用。 ●在使用仪表前,要确保测量电缆的绝缘没有损坏并且没有裸露 的导体暴露出来。在这种条件下使用仪表可能导致电击。 ●为了避免仪表损坏,在运输和操作中防止仪表撞击或震动,特 别小心不要坠落。 第一部分概要 1.1产品的概要 随着各种电源避雷器(SPD)的大量安装和在线运行,电源避雷器(SPD)的在线安全状态(即安全有效的在线运行状态)会直接影

电源系统防雷设计讲解

电源系统防雷设计 A、外来导体的布置: 外来导体包括:金属水管、通讯电缆线及电力电缆铠装外皮或电缆金属管等。 所有的水管和电缆应埋地进入机房,水管和电缆铠装外皮和保护金属管应在进入机房时接地,电缆应选用铠装电缆或穿金属管埋地进入机房电缆相线和中线应通过电涌保护器接地。 B、外电源线的电涌保护器的布置和选择: 1)、电涌保护器的布置原理 如下图所示: a)该布置是依据GB 50057-94(2000版)和IEC 61312的标准布置。 在LPZ0和LPZ1区交界:U2 =U1-I2R2 可以看出:U2

行。 d)SPD4必须尽量靠近设备,这是因为GB 50057-94(2000版)和IEC 61312表明电涌保护器距被保护设备的距离过大会由于雷电波的反射效应而在被保护设备上引起高频振荡,使得设备上的电压超过电涌保护器上的残压而损坏设备。这个距离应小于10米。 2)、电涌保护器的选择: a)、动作电压的选择: 变压器低压侧的电涌保护器其三相电压为动作电压;U0 = 400V b)、电涌保护器的通信容量选择: 首级电涌保护器标称放电电流的计算: GB 50057-94(2000版)和IEC 61312指出:二类保护要求,应按总雷电流150KA(10×350μS 波)来考虑电涌保护器选择,按照其建议的雷电流分配方式其中50%即75KA是通过接地系统(水管、铠装电缆外皮或导线的我属保护管等)直接入地;另外50%通过安装在相线和中线上的电涌保护器入地。 依据以上标准考虑到50%雷电流分配到电源系统的最恶劣环境,按照GB 50057-94(2000版)标准表6.1提供的雷电流参数电涌保护器每相上的雷电流约为: 当线路无屏蔽时,In =[150 KA×50%]÷4 =18.75KA 当线路有屏蔽时,In =[150 KA×30%]÷4 =11.25KA 对于本系统采用的铠装电缆线路,按《建筑物防雷设计规范》第六章:第四节:第6.4.7条要求每线标称放电电流不宜小于15KA的要求。首级电涌保护器的每相标称放电电流应大于15KA(10/350μS)。

浪涌保护器内部原理图【浪涌保护器工作原理】

浪涌保护器内部原理图【浪涌保护器工作原理】 1、在配置计算机系统时,您可能购买的一个标准元件将是浪涌 保护器。浪涌保护器的大部分设计都能提供一个非常明显的功能——允许多个元件共用一个电源插座。因为计算机系统是由各种不同 的元件组成的,所以浪涌保护器确实是一个非常有用的装置。 但是带有浪涌保护器的电源板的另一个功能——保护计算机中电子设备免受电源浪涌的损害——要重要得多。在本文中,我们将了 解浪涌保护器(也称为浪涌抑制器),揭示其作用、适用情况和工 作效果。此外,我们还将介绍它能提供何种水平的保护,为什么即 使您使用了优质浪涌保护器,也可能得不到需要的所有保护。 2、浪涌基本知识 浪涌保护器系统的主要作用是保护电子设备免受“浪涌”的损害。因此,如果您想知道浪涌保护器的作用,就需要弄清楚两个问题: 什么是浪涌?电子设备为什么需要它们的保护? 电涌或瞬变电压是指电压在电能流动的过程中大幅超过其额定水平。在美国,一般家庭和办公环境配线的标准电压是120伏。如果 电压超过了120伏,就会产生问题,而浪涌保护器有助于防止该问 题损坏计算机。 为了澄清这一问题,了解一些有关电压的知识会很有帮助。电压是一种表示电势能差额的度量单位。电流能够从一点流到另一点, 是因为电线一端的电势能比另一端的电势能大。这与水在压力下流 出水管的原理相似——水管一端的高压推动着水流向压力较低的区域。因此,您可以将电压看作是电压力的度量单位。 我们稍后将了解到,有各种因素可以引起电压的短暂上升。 当电压增加持续三毫微秒(十亿分之一秒)或更长时间时,被称为浪涌。当电压增加仅持续一毫微秒或两毫微秒时,被称为尖峰。

浪涌保护器介绍

深圳市安普迅通信技术有限公司是专业的浪涌保护器(防雷器)生产厂商,主要的浪涌保护器(防雷器)系列有:AX电源防雷箱,AM电源防雷模块、AS信号浪涌保护器、AR天馈浪涌保护器、AJ监控系统三合一(二合一)集成浪涌保护器、防雷插座(排插),千兆网浪涌保护器,POE以太网供电浪涌保护器,并对外提供OEM等。 安普迅系列浪涌保护器技术力量雄厚、生产能力较强,产品经过严格检测把关,价格优惠,受到广大客户的信,安普迅人将再接再励,将安普迅至高的防雷技术和防雷精神推向世界! 为了更全面的开拓市场,我公司长期诚征各地代理商、经销商,同时寻各地系统集成商、监控工程商及开关电源生产商合作。望有此意向的企业和个人与我们联系,我们将提供给您优质的产品和服务! ·2004年安普迅通过深圳市科技局高新技术企业认定; ·2007年公司通过ISO9001:2000版质量体系认证。公司本着“精于技术,优于质量”的原则。始终把产品的质量放在首位,在研发、试验、试制、生产、检验、销售等阶段,严格按照标准进行质量控制; 售后服务: ·防雷产品通过信息产业部通信产品防雷性能质量监督检测中心的严格检测; ·公司配备了完备的售后服务体系,秉承“售前技术优,售后服务优”的服务宗旨,坚持提供优质服务。 ·安普迅旗下防雷和监控产品均办理了太平洋责任保险,防雷产品提供五年质保期,为出售

的产品和相关系统提供更全面、有力的保障。 复合型电源防雷箱~ 复合型电源防雷箱适用范围 防雷箱配备电源指示、防雷指示、劣化报警及指示、雷击计数器、防雷熔断丝等,SPD模块采用电压开关型模块和电压限制型模块(或一体化MOV)组成。主要安装在配电房、配电柜、交流配电屏、开关箱和其它重要设备、容易遭受雷击设备的电源进线处,以保护设备免遭沿电源线路侵入的雷击过电压造成的损害;可广泛应用于通信、电力、交通、金融、铁路、民航等系统的主电源防护。 ·复合型电源防雷箱广泛应用于通信、电力、厂矿、金融、民航、铁路等系统的主电源防雷击及过电压保护; ·建筑物总配电屏,配电柜,配电箱,须安装第一级防雷设施的环境; ·无人执守但须安装第一级带遥信指示的防雷设备的环境;需要有第一级防雷失效指示及报警指示及雷电泄放记录环境; ·小面积但要求两级电涌保护的环境 命名规则

箱变浪涌保护器技术要求.

第2章技术参数与性能要求 1.技术标准 投标人所提供的箱式变电站应符合下列国家标准的最新版本,并满足本技术规范的要求。 DL/T 403 6-35kV箱式变电站订货技术条件 DL/T 537 高压/低压预装箱式变电站选用导则 GB7251 低压成套开关设备国家标准 GB4208 外壳防护等级(IP代码) DL404 户内交流高压开关柜订货技术条件 GB1094.1~1094.5 电力变压器 GB6451.1 三相油浸式电力变压器技术参数和要求 GB3906 3~35kV交流金属封闭开关设备 GB3309 高压开关设备常温下的机械试验 GB16926 交流高压负荷开关-熔断器组合电器 SDGJ14 导体和电器选择设计技术规定 GB772 高压绝缘子瓷件技术条件 SDJS 高压配电装置设计技术规定 GB/T l5166 交流高压熔断器 GB 3804 3~63kV 交流高压负荷开关 GB4109 高压套管技术条件 GB/T16927.1~2 高电压试验技术 2.箱式变额定参数 2.1 电压 高压侧额定电压:11kV 低压侧额定电压: 0.69kV

2.2 额定频率: 50Hz 2.3 额定热稳定电流及耐受时间 高压侧: ≥12.5kA,2s 低压侧: 42kA,3s 2.4 额定动稳定电流值 高压侧: ≥31.5kA 低压侧: 121kA 2.5 额定绝缘水平 高压侧:对地及相间隔离断口间 工频耐压:42kV 49kV 冲击峰值耐压:75kV 85kV 低压侧工频耐压:2500V 2.6 相数:三相 2.7 10kV系统中性点接地方式:不接地 2.8 柜体防护等级:IP33,室门打开后 IP2X 2.9 变压器降容小于5% 3.箱式变元件技术要求 所有的元件应符合各自相应的标准,其中: ―变压器,应符合GB 1094.1; ―高压开关设备和控制设备,应符合GB 3906和IEC 466; ―低压开关设备和控制设备,应符合GB/T 14048系列标准和GB 7251.1; 3.1 变压器 3.1.1 技术标准 变压器应符合GB1094.1~1094.5《电力变压器》和GB6451.1《三相油浸式电力变压器技术参数和要求》及本技术条件要求。 3.1.2 变压器型式 全封闭、三相、铜质、双绕组、油浸、无载调压、低损耗、全密闭、免维护电力变压器。

清网华电涌保护器说明书(完整版)资料

电涌保护器说明书 一、概述 (2) 二、依据标准 (2) 三、电涌保护器说明 (2) 1. TSP150E-400 (3) 2. TSP100EG-600 (4) 3. TSP40-400 (5) 4. TSP30G-600 (6) 5. TSP180TA (7) 6. TSP180-24D3A (8) 7. TSP09-NW/MF (9)

一、概述 清网华公司TSP系列电涌保护器是采用法国西岱尔先进的防雷技术,并专为5T、AEI系统特殊定制的电涌保护产品,可广泛地运用于5T 及AEI各系统电源、信号及射频同轴线路的防护,全部产品均符合国际、国内标准及行业技术要求。 二、依据标准 《低压配电系统的电涌保护器(SPD)第一部分:性能要求和试验方法》GB18802.1-2002 《建筑物防雷设计规范》 GB50057-94(2000版) 《铁路电子设备用防雷保安器》TB/T 2311-2002 《铁路电力设计规范》 TB 10008-99 《铁路信号设计规范》 TB 10008-99 《铁道信号设备雷电电磁脉冲防护技术条件》 TB/T 3074-2003 三、电涌保护器说明 1.TSP150E-400 2.TSP100EG-600 3.TSP40-400 4.TSP30G-600 5.TSP180T A 6.TSP180-24D3 A 7.TSP09-NW/MF

1.TSP150E-400 TSP150E-400电源电涌保护器是专门为保护低压网络免受直击雷和感应雷的侵袭而设计的,特别适用于重雷区和直雷风险较高的地区。它可用于保护单相网络,也可以用于保护三相网络。 TSP150E-400可承受峰值为15kA的10/350μs脉冲波、直击雷波形。产品采用“无间隙”技术,更好的保证了低压网络的运行可靠性(无跟随电流)。 产品内置三极热脱扣装置,并具有故障显示和遥信告警功能,满足相关国际及国家标准。 ●目前容量较大的压敏型高能防雷器,用于I 级保护 ●最大放电电流:140kA(8/20μs波形) ●最大放电电流:15kA(10/350μs波形) ●内置热脱口机构,故障显示,遥信告警 型号TSP150E-400 产地法国 技术规格 网络类型230/400V 零线类型TT-TN-IT 额定电压 Un 220V rms 最大工作电压 Uc 400V rms 漏电流(Uc时)Ic ≤20μA 跟随电流 If 无 额定放电电流In (15个8/20μs脉冲) 60kA 最大放电电流Imax (1个8/20μs脉冲) 140kA 最大放电电流Iimp (1个10/350μs脉冲) 15kA 限制电压 U1(In=60kA) 2.5kV 相关保护 设备 热脱扣机构内置 熔断器GL型125A 接地故障断路器“D”型或延迟型 机械特性 尺寸如图 接线方式螺纹连接,2.5-50mm2 失效显示三机械指示 遥信连接内置接头 安装方式35mm对称导轨 工作温度-40/+85℃ 保护级别IP20 外壳材料聚碳酸酯(PC)UL94-5VA

相关文档
最新文档