车辆动力学相关的软件及特点

车辆动力学相关的软件及特点
车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统

SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。

SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。

SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。

SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。

SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。

车辆动力学仿真carsim

CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。

CarSim软件的主要功能如下:

适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV;

可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性;

可以通过软件如MATLAB,Excel等进行绘图和分析;

可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠;

CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

先进的事件处理技术,实现复杂工况的仿真;

友好的图形用户界面,可快速方便实现建模仿真;

提供多种车型的建模数据库;

可实现用户自定义变量的仿真结果输出;

可实现与simulink的相互调用;

多种仿真工况的批运行功能;

中型到重型的卡车,客车和挂车动力学特性的仿真和分析,可以利用Trucksim软件包来进行,Trucksim与Carsim在操作上非常相近,但也有一些重要区别。与轿车相比,卡车和客车使用不同的转向系统,而且还会有双轮胎,多轴的布置形式,并有多种的拖车-挂车组合形式。Trucksim有两个大的类别,一种是刚性车体,另一种车架可扭转,而且带驾驶室悬置,每一个类别里都有12种基本的整车布置形式。扭转车架可供选择(需额外的费用),如可得到车架的数据,这种结构的模型便可得到更准确的预测结果。如客户需要,可以定制特殊的整车布置形式,且工作在Trucksim环境下。提供的车型种类几乎涵盖了世界上的大部分卡车和客车。

Trucksim是集成的建模,仿真,分析软件包

特点

1、使用方便软件的所有组成部分都由一个图形用户界面来控制。用户通过点击"RunMath Model"来进行仿真。通过点击"Animate"按钮可以以三维动画形式观察仿真的结果。点击"Plot"按钮可以察看仿真结果曲线。很短的时间内,你就可以掌握CarSim/Trucksim 的基本使用方法,完成一次简单仿真并观察仿真结果。

所要设置或调整的特性参数都可以在图形界面上完成。150多个图形窗口使用户能够访问车辆的所有属性,控制输入,路面的几何形状,绘图及仿真设置。利用CarSim/Trucksim 的数据库建立一个车辆模型并设置仿真工况,在很短的时间内即可完成。在数据库里有一系列的样例并允许用户建立各种组件、车辆及测试结果的库文件。这一功能使得用户能够迅速地在所做的不同仿真之间切换,对比仿真结果并作相应的修改。车辆及其参数是利用各种测试手段所得到的数据和表格,包括实验测试及悬架设计软件的仿真测试等。

CarSim/Trucksim为快速建立车辆模型提供了新的标准。

CarSim/Trucksim输出的数据可以导出并添加到报告、excel工作表格及PowerPoint

演示中。仿真的结果也可以很方便地导入到各种演示软件中。

CarSim将整车数学模型与计算速度很好地结合在一起,车辆模型在主频为3GHz的PC机上能以十倍于实时的速度运行。速度使得CarSim/Trucksim很容易支持硬件在环(HIL)

或软件在环(SIL)所进行的实时仿真。CarSim/Trucksim支持Applied DynamicsInternatinal(ADI), A&D, dSPACE, ETAS, Opal-RT及其它实时仿真系统。CarSim/Trucksim这一快速特性也使得它可以应用于优化及试验设计等。

CarSim/Trucksim建立在对车辆特性几十年的研究基础之上,通过数学模型来表现车辆的特性。每当加入新的内容时,都有相应的实验来验证。使用CarSim/Trucksim的汽车制造商及供应商提供了很多关于实验结果与CarSim /Trucksim仿真结果一致性的报告。5、标准化及可扩展性

CarSim/Trucksim可以在一般的Windows系统及便携式电脑上运行。CarSim /Trucksim 也可以在用于实时系统的计算机上运行。数学模型的运动关系式已经标准化并能和用户扩展的控制器,测试设备,及子系统协调工作。这些模型有以下三种形式:CarSim/Trucksim自带的内嵌模块嵌入模型的MATLAB/Simulink S-函数。具有为生成单独EXE文件的可扩展C代码的库文件

6、有效、稳定、可靠

CarSim/Trucksim包括了车辆动力学仿真及观察结果所需的所有工具。MSC利用先进的代码自动生成器来生成稳定可靠的仿真程序,这比传统的手工编码方式进行软件开发要快很多。

车辆动力学仿真trucksim

rucksim主要针对大吨位、大马力、高效率重型卡车这类高端产品的研发及评价。可建立整车动力学模型,结合操纵稳定性和ISO标准对重型卡车的整车性能进行了开、闭环仿真分析。

TruckSim软件是由美国机械仿真公司(Mechanical Simulation Corporation,简称MSC ,专门研究汽车动力学软件的专业公司)开发的专为卡车、客车和挂车动态仿真开发的工业仿真软件。TruckSim提供的车型种类几乎涵盖了世界上大部分卡车和客车。由于软件操作方便性与仿真的实时性,使其成为了许多汽车制造商及研发单位的有力工具,被广泛地应用于现代汽车系统的开发。

TruckSim采用面向特性的参数化建模手段,用于仿真及分析轻型货车、大客车、重型半挂车、重型卡车、多轴军用汽车,其中包括具有双轮、非对称转向系统、多轴以及单个或多拖车的情况等车辆,对驾驶员操纵(转向、制动、加速)、3D路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性。

TruckSim

软件优点:

(1)使用方便

Trucksim主要由图形化数据库、车辆数学模型及求解器、仿真动画显示器和绘图器四部分组成。所有组成部分都由一个图形用户界面来控制。用户通过点击“Run Math Model”来进行仿真。通过点击“Animate”按钮可以以三维动画形式观察仿真的结果。点击“Plot”按钮可以察看仿真结果曲线。很短的时间内,你就可以掌握TruckSim的基本使用方法,完成一次简单仿真并观察仿真结果。所要设置或调整的特性参数都可以在图形界面上完成。包括整车(二、三、四轴)模型数据库、控制输入(速度、转向、制动、油门、驾驶员模型、路面信息)数据库、仿真设置(仿真起始时间、距离和仿真频率)数据库。150多个图形窗口使用户能够访问车辆的所有属性,控制输入,路面的几何形状,绘图及仿真设置。

利用TruckSim的数据库建立一个车辆模型并设置仿真工况,在很短的时间内即可完成。在数据库里有一系列的样例并允许用户建立各种组件、车辆及测试结果的库文件。这一功能使得用户能够迅速地在所做的不同仿真之间切换,对比仿真结果并作相应的修改。车辆及其参数是利用各种测试手段所得到的数据和表格,包括实验测试及悬架设计软件的仿真测试等

TruckSim为快速建立车辆模型提供了新的标准。对于控制输入,TruckSim可以接受制动和转向角输入的时间关系曲线(开环控制)。它也具有对于转向(驾驶员模型)和速度控制的闭环控制选项。

(2)报告与演示

TruckSim输出的数据可以导出并添加到报告、excel工作表格及PowerPoint示中。仿真的结果也可以很方便地导入到各种演示软件中。

(3) 快速

将整车数学模型与计算速度很好地结合在一起,车辆模型在主频为3GHz的PC机上能以十倍于实时的速度运行。这使得TruckSim容易支持硬件在环(HIL)或软件在环(SIL)仿真。TruckSim持Applied Dynamics International(ADI), A&D, dSPACE,ETAS,Opal-RT 及其它实时仿真系统。TruckSim这一快速特性也使得它可以应用于优化及试验设计等。

(4) 精度及验证

TruckSim建立在对车辆特性几十年的研究基础之上,通过数学模型来表现车辆的特性。每当加入新的内容时,都有相应的实验来验证。使用TruckSim的汽车制造商及供应商提供了很多关于实验结果与TruckSim仿真结果一致性的报告。

(5) 标准化及可扩展性

TruckSim可以在一般的Windows系统及便携式电脑上运行。TruckSim也可以在用于实时系统的计算机上运行。数学模型的运动关系式已经标准化并能和用户扩展的控制器,测试设备,及子系统协调工作。这些模型有以下三种形式:

TruckSim自带的内嵌模块嵌入模型的MATLAB/Simulink S-函数具有为生成单独EXE文件的可扩展C代码的库文件。TruckSim软件的Matlab CMEX函数可在Simulink环境中使用,可以快速建立控制器开发的数学模型。

(6) 有效、稳定、可靠

TruckSim包括了车辆动力学仿真及观察结果所需的所有工具。MSC利用先进的代码自动生成器来生成稳定可靠的仿真程序,这比传统的手工编码方式进行软件开发要快很多。

车辆动力学仿真bikesim

bikesim主要对摩托车进行参数化建模,然后模拟你想模拟的工况。

MEDYNA软件

MEDYNA软件是由德国航空航天研究所于1984年推出的多体系统模拟软件。软件适用于铁路、公路车辆、磁悬浮车辆以及一般机械系统动态模拟计算,程序用Fortran77编写。

VAMPIRE软件

VAMPIRE软件是专门针对铁路机车车辆系统开发的,软件具有自动建模功能,能完成包括轮对模拟、蠕滑力计算、轨道曲线、轨道不平顺输入以及动力学特性预测,程序也可以考虑车体的模态。

NUCARS软件

NUCARS软件也是应用多体系统动力学方法采用相对坐标系进行机车车辆系统的自动建模,由于其针对以货车为主的铁路机车车辆进行模拟计算,因此程序中镶嵌了货车所特有的斜楔减振器以及心盘、旁承等摩擦模块,而且程序不像MEDYNA那样庞大,Version2.1及以前的版本的机车车辆系统数据准备均在文本环境中进行,在Version 2.3的版本中增加了较强的可视化前后处理功能。

MSC ADAMS软件

MSC软件公司,领先的多学科仿真解决方案,加快产品创新,发布了2015版的Adams多体动力学仿真解决方案套件。Adams2015版本提供了新的功能和重大改进在许多领域,特别是对Adams/Car。汽车工程师将受益于模型的设置和车辆事件模拟新出的开箱即用,定制化解决方案。这些新功能也使用户能够创建自己的车型更高的保真度子系统的能力。

ADAMS能完成包括运动学、约束反力求解、特征值、频域分析、静力学、准静力学分析以及完全非线性和线性动力学分析,具有可视化的二维和三维建模能力,可包括刚体和柔体结构,具有组装、分析、动态显示不同模型或一个模型在某一过程变化中的能力。

Recurdyn多体动力学仿真软件RecurDyn

软件是韩国FunctionBay公司的旗舰产品,是新一代的多体动力学仿真分析软件,它采用全新的运动方程理论和完全递归算法,计算极其快速稳定,非常适合于求解大规模的体系统动力学问题,尤其是接触问题和柔性多体动力学问题。

RecurDyn 为用户提供许多方便使用的功能(如亲切的用户界面、丰富的函数库、子系统建模、图形分层等),建模快捷、方便、直观、准确。

RecurDyn软件与各类CAD/CAE软件及液压控制软件等均有非常良好的接口关系,其

高效的求解效率使得多软件联合仿真解决大规模问题和实时仿真成为可能。

RecurDyn/Professional包括前后处理器Modeler及求解器Solver。基于Professional 提供的各种建模元素,用户可以建立起系统级的机械虚拟数字化样机模型,并对其进行运动学、动力学、静平衡、特征值等全面的虚拟测试验证,通过判断仿真测试的数据、曲线、动画、轨迹等结果,据以进行系统功能改善实现创新设计。

RecurDyn支持Parasolid、IGES、STEP、ACIS、SHL等格式模型文件,亦提供2D/3D 几何造型功能,同时支持参数化建模。RecurDyn提供20多种约束类型和10多类力的施加形式,在接触建模方面,通过21项接触定义方式方便用户具体操作并实现高效率的求解。对于大型复杂系统,可通过子系统层层实现全面考核。

车辆动力学

车辆动力学 Vehicle dynamics 课程简介 本课程主要讲述轮式车辆动力学的基本理论,内容包括车轮的纵向特性和横向特性,车轮与地面相互作用时的阻力和牵引力;车辆直线行驶时的驱动力和行驶阻力,车辆的加速性和制动性;轮式车辆的转向机理,轮式车辆的转向过渡过程;路面不平度的统计特性,描述车辆行驶振动的传递函数和状态空间方法,车辆被动悬架、半主动悬架和主动悬架的数学模型和计算机仿真;多自由度汽车行驶的动力学问题。 本课程是车辆工程硕士研究生必修课程。 教学大纲 第一部分大纲说明 1.课程名称:车辆动力学 2.课程代码:010******* 3.课程类型:学位课 4.开课时间:春(或秋) 5.总学时数及学分:32学时,2学分 6.开课部门:机械与汽车工程学院 7.授课对象:硕士研究生 8.面向学科:机械工程 9.预修课程:机械振动 10.考核方式:考试考查,闭卷考试70%,平时成绩30% 11.主讲教师:蔡仁华 13. 教材及教学参考资料: 教材: 米奇克、瓦伦托维兹著,陈萌三等译汽车动力学(第四版)清华大学出版社2009年王良曦、王红岩车辆动力学国防工业出版社 2008年版

参考资料: 张克健.车辆地面动力学.国防出版社.2002年版 RANDOM VIBRA TION,S.H.Carandall,Editor,The M.I.T.Press,1963 第二部分教学内容和教学要求 第一章车辆-地面相互作用力学 主要讲述车轮与地面间相互作用力学。 1.1 车轮-地面力学 1.1.1 轮胎的垂直特性 1.1.2 车轮的纵向特性 1.1.3 车轮的横向特性 1.2 车轮阻力 1.2.1 滚动阻力 1.2.2 穿水阻力 1.2.3 轴承摩擦,残余制动力矩 1.2.4车轮其他阻力 1.2.5总的车轮阻力 第二章车辆直线行驶力学 主要讲述车辆直线行驶力学,还叙述了牵引特性计算步骤,以及机械传动、液力传动车辆的加速性能计算方法。轮式车辆制动性相关的内容在本章的最后进行了介绍。 2.1 车辆的驱动力和行驶阻力 2.1.1 车辆的驱动力 2.1.2 车辆空气动力学 2.1.3 车辆的行驶阻力 2.1.4 车辆行驶条件 2.2 车辆直线行驶牵引计算 2.2.1 动力装置特性 2.2.2 车辆的牵引特性 2.2.3 牵引计算步骤 2.3 机械传动车辆的加速性能 2.3.1 发动机稳态运行时车辆的加速性 2.3.2 发动机非稳态运行时车辆的加速性 2.4 安装液力传动车辆的直线行驶牵引计算 2.4.1 液力传动车辆特点 2.4.2 液力变矩器的原始特性 2.4.3 液力变矩器与发动机共同工作特性 2.4.4 综合式液力传动车辆牵引计算 2.4.5 综合式液力传动车辆的加速性能 2.5 车辆的制动性能

车辆动力学概述

车辆动力学概述 回顾车辆动力学的发展历史,揭示车辆动力学研究内容及未来发展趋势,对车辆特性和设计方法也作了简要介绍。 1.历史发展 车辆动力学是近代发展起来的一门新兴学科。其发展历史可追溯到100多年前[1],直到20世纪30年代初人们才开始注意车轮摆振问题等;而后一直到1952年间,人们通过不断研究,定义了不足转向和过度转向,建立了简单的两自由度操纵动力学方程,开始进行有关行驶平顺性研究并建立了K2试验台,提出了“平稳行驶”概念,引入前独立悬架等;1952年以后,人们扩展了操纵动力学分析,开始采用随机振动理论对行驶平顺性进行性能预测,理论和试验两方面对动力学的发展也起了很大作用。然而,在新车型的设计开发中,汽车制造商仍然需要依赖于具有丰富测试经验与高超主观评价技能的工程师队伍,实际测试和主观评价在车辆开发中还有不可替代的作用。 2.研究内容 严格地说,车辆动力学是研究所有与车辆系统运动有关的学科。它涉及范围很广,除了影响车辆纵向运动及其子系统的动力学响应(纵向动力学)外,还有行驶动力学和操纵动力学。人们长期以来习惯按纵向、垂向和横向分别独立研究车辆动力学问题,而实际情况是车辆同时受到三个方向的输入激励且各个方向运动响应特性相互作用、相互耦合。随着功能强大的计算机技术和动力学分析软件的发展,我们已经有能力将三个方向的动力学问题结合起来进行研究。 纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系,按工况不同分为驱动动力学和制动动力学两大部分。与行驶动力学有关的主要性能及参数包括悬架工作行程、乘坐舒适性、车体的姿态控制及轮胎动载荷的控制等;而行驶动力学研究的首要问题是建立考虑悬架特性在内的车辆动力学模型。操纵动力学内容相当丰富,轮胎在其中起着相当重要的作用;通常操纵动力学研究范围分为三个区域,即线性域、非线性域和非线性联合工况。 3.车辆特性和设计方法

车辆系统动力学复习重点

1.系统动力学研究内容及发展趋势 研究内容 长期以来,人们一直在很大程度上习惯按纵向、垂向和横向分别独立研究车辆动力学问题;而实际中的车辆同时会受到三个方向的输入,各方向所表现的运动响应特性必然是相互作用、相互耦合的. 纵向动力学:纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系。按车辆工况的不同,可分为驱动动力学和制动动力学两大部分。 行驶动力学:主要是研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车辆的运动。 操纵动力学:主要研究车辆的操纵特性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。 操纵动力学的研究范围分为三个区域:线性域:侧向加速度越小于0.4kg时,通常意味着车辆在高附着路面做小转向运动; 非线性域:在超过线性域且小于极限侧向加速度(约为0.8kg)范围内; 非线性联合工况:通常指车辆在转弯制动或转弯加速时的情况。 发展趋势: (1)车辆主动控制:ABS,TCS等逐步向车身侧倾控制,可切换阻尼的半主动悬架和四轮底盘控制系统的集成,转向等当面扩展。通过控制算法、传感器技术和执行机构的开发实现的自动调节。 (2)车辆多体运动动力学:车辆的多刚体模型逐步向多柔体模型发型。可以准确分析虚拟样机的性能,检查虚拟样机的缺陷从而缩短产品的设计周期,节约试制费用,同时提高物理样机与最终产品之间的相似性。 (3)“人—车—路”闭环系统:充分考虑驾驶员模型以及车辆本身的一些动力学问题来提高汽车稳定性。 2.轮胎滚动阻力概念及其分类: 概念:当充气的轮胎在理想路面(通常指平坦的干、硬路面)上直线滚动时,其外缘中心对称面与车轮滚动方向一致,所受到的滚动方向相反的阻力。 分类:弹性迟滞阻力、摩擦阻力和风扇效应阻力。 3.什么是滚动阻力系数?影响因素有哪些? 其值等于相应载荷作用下滚动阻力F R与车轮垂直载荷F X的比值。 影响因素:车轮载荷(反比)、胎压(反比)、车速(正比,先缓慢增加,再明显增加)、轮胎的结构设计、嵌入材料和橡胶混合物的选用。 4.滑动率S:表示车辆相对于纯滚动(或纯滑动)状态的偏离程度。驱动工况时称为滑转率,被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。 若车轮的转动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则 S在0~1之间变化。当车轮做纯滚动时,及uw=rdω,此时s=0;当被驱动轮处于纯滑动状态 是,s=1. 5.轮胎纵向力与滑动率的关系 (1)与滑转率之间的关系 一般情况下,由于轮胎初始的滑转主要由胎面的弹性变形引起的,因而一开始车轮力矩

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

汽车系统动力学习题答案分析解析

1.汽车系统动力学发展趋势 随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容,随着多体动力学的发展及计算机技术的发展,使汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析技术集成的方向发展,主要有三个大的发展方向: (1)车辆主动控制 车辆控制系统的构成都将包括三大组成部分,即控制算法、传感器技术和执行机构的开发。而控制系统的关键,控制律则需要控制理论与车辆动力学的紧密结合。 (2)多体系统动力学 多体系统动力学的基本方法是,首先对一个由不同质量和几何尺寸组成的系统施加一些不同类型的连接元件,从而建立起一个具有合适自由度的模型;然后,软件包会自动产生相应的时域非线性方程,并在给定的系统输入下进行求解。汽车是一个非常庞大的非线性系统,其动力学的分析研究需要依靠多体动力学的辅助。 (3)“人—车—路”闭环系统和主观与客观的评价 采用人—车闭环系统是未来汽车系统动力学研究的趋势。作为驾驶者,人既起着控制器的作用,又是汽车系统品质的最终评价者。假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就

不存在了。因此,在人—车闭环系统中的驾驶员模型研究,也是今后汽车系统动力学研究的难题和挑战之一。除驾驶员模型的不确定因素外,就车辆本身的一些动力学问题也未必能完全通过建模来解决。目前,人们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,而车辆的最终用户是人。因此,对车辆系统动力学研究者而言,今后一个重要的研究领域可能会是对主观评价与客观评价关系的认识 2.目前汽车系统动力学的研究现状 汽车系统动力学研究内容范围很广,包括车辆纵向运动及其子系统的动力学响应,还有车辆垂向和横向动力学内容。及行驶动力学和操纵动力学。行驶动力学研究路面不平激励,悬架和轮胎垂向力引起的车身跳动和俯仰运动;操纵动力学研究车辆的操纵稳定性,主要是轮胎侧向力有关,引起的车辆侧滑、横摆、和侧倾运动。汽车系统动力学的研究可以分为三个阶段: 阶段一(20世纪30年代) ①对车辆动态性能的经验性的观察 ②开始注意到车轮摆振的问题 ③认识到车辆舒适性是车辆性能的一个重要方面 阶段二(30年代—50年代) ①了解了简单的轮胎力学,给出了轮胎侧偏角的定义 ②定义不足转向和过度转向 ③建立了简单的两自由度操纵动力学方程

机械动力学复习题

机械动力学复习试题 1、试求图1-1所示系统的等效弹簧常数,并导出其运动微分方程。 2、一无质量的刚性杆铰接于O ,如图2-1所示。试确定系统振动的固有频率,给出参数如下:k 1=2500磅/英寸(4.3782×105N/m ), K 2=900磅/英寸(1.5761×105N/m ), m=1磅*秒2/英寸(175.13kg ), a=80英寸 (2.03m), b=100英寸(2.54m )。 3、试求出图3-1所示系统的固有频率。弹簧是线性的,滑轮对中心0的转动惯量为I 。设R=2500磅/英寸(4.3782×105N/m ), I=600磅*英寸*秒2(67.79N*m*s 2), m=2.5磅*秒2/英寸(437.82kg ), R=20英寸(0.5/m ) 4、一台质量为M 的机器静止地置于无质量的弹性地板上,如图4-1所示。当一单位载荷作用于中心点时的挠度为x st 。今在机器上放有一总质量为ms并带有两个旋转的不平衡质量的振动器提供一铅垂的谐波力mlw 2sinwt ,这里,转动的频率w 是可以改变的。试说明怎样用此振动器来测定系统弯曲振动的固有频率。 2 k 图3-1 图2-1

5,、图5-1中所示的系统模拟一在粗糙道路上运动的车辆,速度为均匀,即V=常数。试计算其响应Z(t)和传给车辆的力。 图5-1 6,、试导出如图6-1所示系统的运动微分方程,并求解位移X1(t)。

7、转动惯量分别为I 1和I 2的两个圆盘安装在扭转刚度分别为GJ 1和GJ 2的圆轴上如图7-1。导出这两个圆盘的转动微分方程。 8、导出图8-1所示系统当θ为微小角时的运动微分方程。 图 6-1 GJ 1 GJ 2 1() t θ2()t θ M 2(t) M 1(t) I 1 I 2

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

车辆动力学练习题及参考答案(可编辑修改word版)

车辆动力学练习题 一、单项选择题 1.轨道车辆通常由()、驱动部、走行部、制动部与连接部等组成。 A.车体B.转向架 C.轮对D.电动机 2.EDS 型磁悬浮的悬浮高度一般为()mm,因而对轨道精度和维护要求相对不高。 A.10 B.30 C.100 D.50 3.铁道车辆的()是指车辆每一根轮轴能够承受的允许静载。 A.轴重B.额定载重C.轮对重D.车体重 4.车轮必须具有(),以引导车轮沿道岔形成的线路方向运行,并产生变道时所需的横向导向力。 A.轮缘B.踏面 C.缓冲装置D.车轴 5.铁路轨道可以分为()轨道和曲线轨道。 A.缓和曲线B.坡度 C.直线D.圆曲线 6.人对频率在()Hz 以下的横向振动最敏感。 A.1B.2 C.5 D.10 7.轨道车辆的轮对由左右轮子和车轴固接组成,左右轮对滚动角速度一致,则称为()轮对。 A.弹性B.普通 C.刚性D.磁悬浮 8.轮轨蠕滑是指具有弹性的钢质车轮在弹性的钢轨上以一定速度滚动时,在车轮与钢轨的()间产生 相对微小滑动。 A.上方B.下方C.侧面D.接触面 9.稳定性的含义包含静态平衡稳定性和()稳定性两大类。 A.动态B.准静态 C.安全D.非平衡 10.目前国内外最常用的轨道不平顺数值模拟方法主要有()、三角级数法和白噪声滤波法等。 A.二次滤波法B.五次滤波法 C.四次滤波法D.三次滤波法 11.轨道交通车辆使用的轮胎一般是高压充气轮胎,轮胎内压力高达()kPa。 A.200~300 B.400~500 C.600~700 D.800~900 12.创造了581k m/h的世界轨道交通列车的最高速度记录的是()超导磁浮。 A.中国B.美国 C.日本D.德国 13.铁路轨道按轨枕使用材料可分为()轨道和混凝土轨枕轨道 A.铁枕B.木枕C.铜枕D.不锈钢

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠; CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

车辆系统动力学答案A

车辆系统动力学答案A卷 一、填空每空一分 1、浮沉运动点头运动 2、平稳性安全性曲线通过能力 3、sperling指标等脱轨系数减载率倾覆系数等 4、圆柱踏面锥型踏面磨耗型踏面磨耗型踏面 5、导框式定位摩擦导柱式,橡胶堆式拉杆式,转臂式等任选四个,转臂式导 框式(或橡胶弹簧式) 6、平行于轨道方向 二、15分 1、下沉量影响:列车速度影响最大,其次是轴重,簧下质量有较小影响。对向作用力影响:速度影响较大,簧下质量也有较大影响,但不如速度参数影响大。对轮重减载率影响:速度影响较大,簧下质量也有较大影响,但不如速度参数影响大。 2、合理控制列车运行速度,保证线路铺设质量,尽量减小簧下质量(采用空心车轴,合理减小轮径),采用合理车轮踏面,采用弹性车轮,降低车轮动不平衡质量等。 三、15分 当轮对处于对中位置时,磨耗型踏面下车轮上的接触点的横向坐标约为65 mm左右,而轨头上的则在24 mm附近;在锥形踏面下车轮上的横向坐标为68.5 mm左右,轨头上的接触点横向坐标则大致为28.5 mm。另外,当轮对中心横移量小于8.0 mm时,锥形踏面下的轮轨接触点较磨耗踏面上的点更靠近整个弧段的中间位置。 对于磨耗型踏面,当轮对中心向右横移时,右轮接触点逐渐靠近轮缘而左轮接触点则逐渐远离轮缘;当轮对中心横移量由9.0 mm增至9.4 mm时,右轮和右轨的接触点位置出现了一定程度的突变。对于锥形踏面,轮对中心横移 量在0—8 mm范围内,左、右轮轨接触点位置均在踏面中部和钢轨顶部中点附近很小的范围内变化,车轮踏面上的接触区域很小,轨面上的接触区域几乎为一点,这对轮轨磨耗和保持踏面外形非常不利。 实践中,为了提高轮对使用寿命,及曲线通过能力,常选用轮对各种形式的磨耗踏面。 四、15分 按下图框图顺序求解。

车辆系统动力学第二次作业

第二次作业 柏满飞 1. 设计要求 1.1 汽车参数 1.2 性能要求 2. 牵引电动机量值的设计 2.1参考一些相关资料,可以取如下电动机参数: 2.2电机额定功率值 汽车轮胎半径:0.2794r m = 则齿轮传动的传动比:,max max =3.2930m g n r i V π= 则车辆转动惯量系数:2 121 1.07 g i δ δδ=++=, 式中10.04δ=,20.0025δ= 则电机的额定功率值:()2 2221 77.45235 t f b r f a D f f a M P V V Mgf V C A V kW t δρ= ++ += 取整可以选额定功率值:80t P kW =

2.3电机外特性曲线 由以上参数得该电机的外特性曲线如图2.1所示。 图 2.1 电机外特性曲线 3. 加速性能的检验 基于牵引电机的转矩-转速特性、齿轮传动比以及车辆的参数,可以计算车辆的加速性能即加速时间和距离与车速之间的对应关系。 计算0100/km h -加速时间: 100 2 10.211 2 a p g r a D f M t dV s T i MGf C A V r δ ηρ==--? 满足性能要求。 4. 爬坡能力的检验 应用电机的转矩-转速特性、齿轮传动比,以及车辆的参数,并由行驶过程中汽车驱动力和阻力关系式: p g t T i F r η= ()21 cos sin 2r r a D f F Mg f C A V ααρ=++ 由此可计算得出牵引力和阻力与车速之间的关系,如图4.1所示。从而可计算出车辆的爬坡能力。

车辆系统动力学复习题 (2)

《车辆系统动力学》 (此复习题覆盖大部分试题。考试范围以课堂讲授内容为准。) 一、概念题 1. 约束和约束方程(19) 力学系统在运动时会受到某些几何和运动学特性的限制,这些构成限制条件的物体称为约束。 用数学方程表示的约束关系称为约束方程。 2. 完整约束和非完整约束(19) 如果系统约束方程仅是系统位形和时间的解析方程,则这种约束称为完整约束; 如果约束方程不仅包括系统的位形,还包括广义坐标对时间的倒数或者广义坐标的微分,而且不能通过积分使之转化为包括位形和时间的完整约束方程,则这种约束就称为非完整约束。 3. 轮胎侧偏角(31) 车轮回转平面与车轮中心运动方向的夹角。 4. 轮胎径向变形(31) 定义为无负载时的轮胎半径rt 与负载时的轮胎半径rtf 之差。 5. 轮胎的滚动阻力系数(40) 相应载荷下的滚动阻力与轮胎垂直载荷的比值。 6. 轮胎驱动力系数(50) 轮胎驱动力系数定义为驱动力与法向力的比值 7. 边界层(70) 当流体绕物体流动时,在物体壁面附近受流体粘性影响显著的薄层称为边界层。 8. 压力系数(74) 假设车身某点压力p 、速度v ,来流压力p ∞、速度v ∞,定义压力系数 2 1??? ? ??-==∞∞∞ v v q p-p C p 9. 风洞的堵塞比(77) 车辆迎风面积和风洞送风横断面面积的关系(堵塞比) 10. 雷诺数(79) 雷诺数定义为气流速度v 、流体特性长度L 的乘积与流体运动粘度ν的比值。Re=vL/ν 11. 空气阻力系数(82-83) q /A F Aq F C D D D == Fd 为空气阻力,A 为参考面积,通常采用汽车迎风面积,q 为动压力 12. 旋转质量换算系数(88) 12 d v i i +=r m Θδ 其中 ) (Ti c e 2 g 20dr 20w i ΘΘΘi i Θi ΘΘ++++=为等效转动惯量。mv 是整车整 备质量,rd 为驱动轮的滚动半径。 13. 后备驱动力(92) 车辆行驶时实际需要的驱动力FDem 与车辆所能提供的最大驱动力Fx 的差值。 14. 驱动附着率和制动附着率(101-102,105) 驱动附着率f 定义为纵向驱动力与法向力的比值 制动附着率:制动力力与法向力的比值 15. 驱动效率(103) 定义:驱动轴静载与整车重量的比值 W F /zs =τ

动车组动力学性能暂规

动力学性能 试验鉴定方法及评定标准

目次 1围 (4) 2术语和定义 (4) 3车辆坐标系 (4) 4总则 (5) 5试验条件 (5) 6测量参数 (8) 7评定指标 (10) 8评定指标限度值 (12)

前言 为2004年采购200km/h电动车组,特制定本《200km/h电动车组动力学性能试验鉴定方法及评定标准》。 本规定制定中曾参考了以下文献: ——《GB5599 铁道车辆动力学性能评定和试验鉴定规》 ——《TB/T2360 铁道机车动力学性能试验鉴定方法及评定标准》 ——《UIC518 铁道车辆试验与鉴定》 ——《UIC513 铁道车辆旅客振动舒适性评定指南》 ——《prEN 14363 铁路应用—铁路机车车辆运行特性验收试验—运行特性试验和静态试验》 本文件由铁道部科学研究院车辆研究所负责起草。

动力学性能试验鉴定方法及评定标准 1围 1.1本标准规定了采购200km/h电动车组在中国铁路线路上进行动力学性能试验鉴定的方法和评定标准。 2术语和定义 2.1铁道车辆(Railway Vehicles) 在轨道线路上运行的车辆统称,包括机车、客车、动车组中的动车、拖车等。 2.2运行参数 最高运营速度V lim 铁道车辆运营的最高速度;单位:km/h。V lim=200km/h 允许欠超高h0 铁道车辆通过曲线时允许最大未被平衡的超高;单位:mm。 3车辆坐标系 3.1车辆动力学试验的坐标系 车辆动力学试验的坐标系为右手坐标系,如图1所示。列车前进方向为x轴,车辆向上为z轴。 在试验中,被试车辆试验运行方向应唯一规定,进而可以分为正向运行和反向运行。 图1车辆动力学试验的坐标系

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

最新铁道车辆系统动力学作业及试题答案

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。 8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视

车辆系统动力学 作业

车辆系统动力学作业 课程名称:车辆系统动力学 学院名称:汽车学院 专业班级:2013级车辆工程(一)班 学生姓名:宋攀琨 学生学号:2013122030

作业题目: 一、垂直动力学部分 以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为: m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 二、横向动力学部分 以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性; 3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由 20sw sw u δδ-曲线和0 sw y sw a δ δ-曲线分析汽车的转向特性。 模型的有关参数如下: 总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =? 轴距 3.048L m = 质心至前轴距离 1.463a m =

质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =

车辆系统动力学试卷

1、系统动力学有哪三个研究内容? (1)优化:已知输入和设计系统的特性,使得它的输出满足一定的要求,可称为系统的设计,即所谓优化。就是把一定的输入通过选择系统的特性成为最优化的输出。 (2)系统识别:已知输入和输出来研究系统的特性。 (3)环境预测。已知系统的特性和输出来研究输入则称为环境预测。 例如对一振动已知的汽车,测定它在某一路面上行驶时所得的振动响应值(如车身上的振动加速度),则可以判断路面对汽车的输入特性,从而了解到路面的不平特性。 车辆系统动力学研究的内容是什么? (1)路面特性分析、环境分析及环境与路面对车辆的作用;(2)车辆系统及其部件的运动学和动力学;车辆内各子系统的相互作用; (3)车辆系统最佳控制和最佳使用; (4)车辆-人系统的相互匹配和模型研究、驾驶员模型、人机工程等。 2、车辆建模的目的是什么? (1)描述车辆的动力学特性; (2)预测车辆性能并由此产生一个最佳设计方案; (3)解释现有设计中存在的问题,并找出解决方案。 车辆系统动力学涉及哪些理论基础? (1)汽车构造 (2)汽车理论

(3)汽车动力学 (4)信号与系统 在“时间域”及“频率域”下研究时间函数x(t)及离散序列 x(n)及系统特性的各种描述方式,并研究激励信号通过系统 时所获得的响应。 (5)自动控制理论 (6)系统辨识 (7)随机振动分析 研究随机振动中物理量的描述方法(相关函数、功率谱密度), 讨论受随机激励的振动系统的激励、系统特性、响应三者统 计规律性之间的关系。 (8)多体系统动力学 建立车辆系统动态模型的方法主要有哪几种? 数学模型 (1)各种数学方程式:微分方程式,差分方程,状态方程,传递函数等。 (2)用数字和逻辑符号建立符号模型—方框图。 3、路面不平度功率谱密度的表达式有几种?各有何特点?试举出2 种以上路面随机激励方法,并说明其特点。(10分) 路面功率谱密度的表达形式分为幂函数和有理函数两种 (1)路面不平度的幂函数功率谱密度 ISO/DIS8608和国家标准GB7031-1987《车辆振动输入路

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

相关文档
最新文档