牛顿第二定律

牛顿第二定律
牛顿第二定律

牛顿第二定律

【知识点的认识】

1.内容:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.

2.表达式:F合=ma.该表达式只能在国际单位制中成立.因为F合=k?ma,只有在国际单位制中才有k=1.力的单位的定义:使质量为1kg的物体,获得1m/s2的加速度的力,叫做1N,即1N=1kg?m/s2.

3.适用范围:

(1)牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).

(2)牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.

4.对牛顿第二定律的进一步理解

牛顿第二定律是动力学的核心内容,我们要从不同的角度,多层次、系统化地理解其内涵:F量化了迫使物体运动状态发生变化的外部作用,m量化了物体“不愿改变运动状态”的基本特性(惯性),而a则描述了物体的运动状态(v)变化的快慢.明确了上述三个量的物理意义,就不难理解如下的关系了:a∝F,a∝.

另外,牛顿第二定律给出的F、m、a三者之间的瞬时关系,也是由力的作用效果的瞬时性特征所决定的.

(1)矢量性:加速度a与合外力F合都是矢量,且方向总是相同.

(2)瞬时性:加速度a与合外力F合同时产生、同时变化、同时消失,是瞬时对应的.(3)同体性:加速度a与合外力F合是对同一物体而言的两个物理量.

(4)独立性:作用于物体上的每个力各自产生的加速度都遵循牛顿第二定律,而物体的合加速度则是每个力产生的加速度的矢量和,合加速度总是与合外力相对应.

(5)相对性:物体的加速度是对相对地面静止或相对地面做匀速运动的物体而言的.

【命题方向】

题型一:对牛顿第二定律的进一步理解的考查

例子:放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系如图甲所示,物块速度v与时间t的关系如图乙所示.取重力加速度g=10m/s2.由此

两图线可以得出()

A.物块的质量为1.5kg

B.物块与地面之间的滑动摩擦力为2N

C.t=3s时刻物块的速度为3m/s

D.t=3s时刻物块的加速度为2m/s2

分析:根据v﹣t图和F﹣t图象可知,在4~6s,物块匀速运动,处于受力平衡状态,所以拉力和摩擦力相等,由此可以求得物体受到的摩擦力的大小,在根据在2~4s内物块做匀加速运动,由牛顿第二定律可以求得物体的质量的大小.根据速度时间图线求出3s时的速度和加速度.

解答:4~6s做匀速直线运动,则f=F=2N.2~4s内做匀加速直线运动,加速度a=,根据牛顿第二定律得,F﹣f=ma,即3﹣2=2m,解得m=0.5kg.由速度﹣时间图线可知,3s时刻的速度为2m/s.故B、D正确,A、C错误.

故选:BD.

点评:本题考查学生对于图象的解读能力,根据两个图象对比可以确定物体的运动的状态,再由牛顿第二定律来求解.

题型二:对牛顿第二定律瞬时性的理解

例子:如图所示,质量为m的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P、Q.球静止时,Ⅰ中拉力大小为F1,Ⅱ中拉力大小为F2,当剪断Ⅱ瞬间时,球的加速度a 应是()

A.则a=g,方向竖直向下B.则a=g,方向竖直向上

C.则a=,方向沿Ⅰ的延长线D.则a=,方向水平向左

分析:先研究原来静止的状态,由平衡条件求出弹簧和细线的拉力.刚剪短细绳时,弹簧来不及形变,故弹簧弹力不能突变;细绳的形变是微小形变,在刚剪短弹簧的瞬间,细绳弹力可突变!根据牛顿第二定律求解瞬间的加速度.

解答:Ⅱ未断时,受力如图所示,由共点力平衡条件得,F2=mgtanθ,F1=.

刚剪断Ⅱ的瞬间,弹簧弹力和重力不变,受力如图:

由几何关系,F合=F1sinθ=F2=ma,由牛顿第二定律得:

a==,方向水平向左,故ABC错误,D正确;

故选:D.

点评:本题考查了求小球的加速度,正确受力分析、应用平衡条件与牛顿第二定律即可正确解题,知道弹簧的弹力不能突变是正确解题的关键.

题型三:动力学中的两类基本问题:①已知受力情况求物体的运动情况;②已知运动情况求物体的受力情况.

加速度是联系运动和受力的重要“桥梁”,将运动学规律和牛顿第二定律相结合是解决问题的基本思路.

例子:某同学为了测定木块与斜面间的动摩擦因数,他用测速仪研究木块在斜面上的运动情况,装置如图甲所示.他使木块以初速度v0=4m/s的速度沿倾角θ=30°的斜面上滑紧接着下滑至出发点,并同时开始记录数据,结果电脑只绘出了木块从开始上滑至最高点的v﹣t图线如图乙所示.g取10m/s2.求:

(1)上滑过程中的加速度的大小a1;

(2)木块与斜面间的动摩擦因数μ;

(3)木块回到出发点时的速度大小v.

分析:(1)由v﹣t图象可以求出上滑过程的加速度.

(2)由牛顿第二定律可以得到摩擦因数.

(3)由运动学可得上滑距离,上下距离相等,由牛顿第二定律可得下滑的加速度,再由运动学可得下滑至出发点的速度.

解答:(1)由题图乙可知,木块经0.5s滑至最高点,由加速度定义式有:

上滑过程中加速度的大小:

(2)上滑过程中沿斜面向下受重力的分力,摩擦力,由牛顿第二定律F=ma得上滑过程中有:

mgsinθ+μmgcosθ=ma1

代入数据得:μ=0.35.

(3)下滑的距离等于上滑的距离:

x==m=1m

下滑摩擦力方向变为向上,由牛顿第二定律F=ma得:

下滑过程中:mgsinθ﹣μmgcosθ=ma2

解得:=2m/s2

下滑至出发点的速度大小为:v=

联立解得:v=2m/s

答:(1)上滑过程中的加速度的大小;

(2)木块与斜面间的动摩擦因数μ=0.35;

(3)木块回到出发点时的速度大小v=2m/s.

点评:解决本题的关键能够正确地受力分析,运用牛顿第二定律和运动学公式联合求解.

【解题方法点拨】

1.根据牛顿第二定律知,加速度与合外力存在瞬时对应关系.对于分析瞬时对应关系时应注意两个基本模型特点的区别:

(1)轻绳、轻杆模型:①轻绳、轻杆产生弹力时的形变量很小,②轻绳、轻杆的拉力可突变;

(2)轻弹簧模型:①弹力的大小为F=kx,其中k是弹簧的劲度系数,x为弹簧的形变量,②弹力突变.

2.应用牛顿第二定律解答动力学问题时,首先要对物体的受力情况及运动情况进行分析,确定题目属于动力学中的哪类问题,不论是由受力情况求运动情况,还是由运动情况求受力情况,都需用牛顿第二定律列方程.

应用牛顿第二定律的解题步骤

(1)通过审题灵活地选取研究对象,明确物理过程.

(2)分析研究对象的受力情况和运动情况,必要时画好受力示意图和运动过程示意图,规定正方向.

(3)根据牛顿第二定律和运动公式列方程求解.(列牛顿第二定律方程时可把力进行分解或合成处理,再列方程)

(4)检查答案是否完整、合理,必要时需进行讨论.

高一物理《牛顿第二定律》知识点讲解

高一物理《牛顿第二定律》知识点讲解 实验:用控制变量法研究:a 与F 的关系,a 与m 的关系 一、牛顿第二定律 1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a 的方向与F 合的方 向总是相同。 2.表达式:F=ma 或 m F a 合 = 用动量表述:t P F ?=合 揭示了:① 力与a 的因果关系.... ,力是产生a 的原因和改变物体运动状态的原因; ② 力与a 的定量关系.... 3、对牛顿第二定律理解: (1)F=ma 中的F 为物体所受到的合外力. (2)F =ma 中的m ,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个 物体组成一个系统)做受力分析时,如果F 是系统受到的合外力,则m 是系统的合质量. (3)F =ma 中的 F 与a 有瞬时对应关系, F 变a 则变,F 大小变,a 则大小变,F 方向变a 也方向变. (4)F =ma 中的 F 与a 有矢量对应关系, a 的方向一定与F 的方向相同。 (5)F =ma 中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. (6)F =ma 中,F 的单位是牛顿,m 的单位是kg ,a 的单位是米/秒2. (7)F =ma 的适用范围:宏观、低速 4. 理解时应应掌握以下几个特性。 (1) 矢量性 F=ma 是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。 (2) 瞬时性 a 与F 同时产生、同时变化、同时消失。作用力突变,a 的大小方向随着改变,是瞬时的对应关系。 (3) 独立性 (力的独立作用原理) F 合产生a 合;F x 合产生a x 合 ; F y 合产生a y 合 当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在

牛顿第二定律典型计算题精选

牛顿第二定律典型计算题精选 一、无相对运动的隔离法整体法(加速度是桥梁) 典例1:如图所示,bc 是固定在小车上的水平横杆,物块M中心穿过横杆,M通过细线悬吊着小物块m,小车在水平地面上运动的过程中,M始终未相对杆bc 移动,M、m与小车保持相对静止,悬线与竖直方向夹角为α,求M受到横杆的摩擦力的大小及方向。 二、有相对运动的隔离法整体法(12F ma Ma =+合) 典例2:如图所示,质量为M 的斜劈放置在粗糙的水平面上,质量为m 1的物块用一根不可伸长的轻绳挂起,并通过滑轮与在光滑斜面上放置的质量为m 2的滑块相连。斜面的倾角θ,在m 1、m 2的运动过程中,斜劈始终不动。若m 1=1kg ,m 2=3kg ,θ=37°,斜劈所受摩擦力大小及方向?(sin37°=0.6,g =10m/s 2)

三、传送带(共速后运动研判) 典例3:如图所示,传送带与水平方向成θ=30°角,皮带的AB部分长L=3.25m,皮带以v=2m/s的速率顺时针方向运转,在皮带的A端上方无初速地放上一个 μ=,求: 小物体,小物体与皮带间的滑动摩擦系数/5 (1)物体从A端运动到B端所需时间; (2)物体到达B端时的速度大小. 四、有动力滑板(最大静摩擦力决定分离点) 典例4:如图,质量M=1kg的木板静止在水平面上,质量m=1kg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,取g=10m/s2。现给铁块施加一个水平向左的力F,若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中做出铁块受到的摩擦力f随力F大小变化的图像。

牛顿第二定律

牛顿第二定律 导读:本文是关于牛顿第二定律,希望能帮助到您! 教学目标 知识目标 (1)通过演示实验认识加速度与质量和和合外力的定量关系; (2)会用准确的文字叙述牛顿第二定律并掌握其数学表达式; (3)通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律; (4)认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系; (5)能初步运用运动学和牛顿第二定律的知识解决有关动力学问题. 能力目标 通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力.情感目标 培养认真的科学态度,严谨、有序的思维习惯. 教学建议 教材分析 1、通过演示实验,利用控制变量的方法研究力、质量和加速度三者间的关系:在质量不变的前题下,讨论力和加速度的关系;

在力不变的前题下,讨论质量和加速度的关系. 2、利用实验结论总结出牛顿第二定律:规定了合适的力的单位后,牛顿第二定律的表达式从比例式变为等式. 3、进一步讨论牛顿第二定律的确切含义:公式中的表示的是物体所受的合外力,而不是其中某一个或某几个力;公式中的和均为矢量,且二者方向始终相同,所以牛顿第二定律具有矢量性;物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化,这就是牛顿第二定律的瞬时性. 教法建议 1、要确保做好演示实验,在实验中要注意交代清楚两件事:只有在砝码质量远远小于小车质量的前题下,小车所受的拉力才近似地认为等于砝码的重力(根据学生的实际情况决定是否证明);实验中使用了替代法,即通过比较小车的位移来反映小车加速度的大小. 2、通过典型例题让学生理解牛顿第二定律的确切含义. 3、让学生利用学过的重力加速度和牛顿第二定律,让学生重新认识出中所给公式. 教学设计示例 教学重点:牛顿第二定律 教学难点:对牛顿第二定律的理解 示例: 一、加速度、力和质量的关系 介绍研究方法(控制变量法):先研究在质量不变的前题下,

牛顿第二定律练习题和答案

牛顿第二定律练习题和 答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的

D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F 改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

牛顿第二定律专题(高清图)

牛顿运动定律 专题一(第12讲) 一、斜面问题 1.(2013重庆理综) 图1为伽利略研究自由落体运动实验的示意图,让小球 由倾角为θ的光滑斜面滑下,然后在不同的θ角条件下进行多次实验,最后推理出自由落体运动是一种匀加速直线运动。分析该实验可知,小球对斜面的压力、小球运动的加速度和重力加速度与各自最大值的比值y随θ变化的图像分别对应图2中的() A.①、②和③ B.③、②和① C.②、③和① D.③、①和② 二、等时圆问题 2.如图所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d 位于同一圆周上,a点为圆周的最高点,d点为最低点。每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a、b、c处释放(初速为 0),用t1、t2、t3依次表示滑环到达d所用的时间,则() A.t1 < t2 < t3 B.t1 > t2 > t3 C.t3 > t1 > t2 D.t1 = t2 = t3

变式1:如图所示,oa、ob、oc是竖直面内三根固定的光滑细杆,O、a、b、c、d位于同一圆周上,d点为圆周的最高点,c点为最低点。每根杆上都套着一个小滑环(图中未画出),三个滑环都从o点无初速释放,用t1、t2、t3依次表示滑环到达a、b、c所用的时间,则( ) t1 = t2 = t3 B.t1 > t2 > t3 C.t1 < t2 < t3 D.t3 > t1 > t2 变式2:有三个光滑斜轨道1、2、3,它们的倾角依次是60°、45°和30°。 这些轨道交于O点.现有位于同一竖直线上的3个小物体甲、乙、丙,分别沿这3个轨道同时从静止自由下滑,如图所示。物体滑到O点的先后顺序是() A.甲最先,乙稍后,丙最后 B.乙最先,然后甲和丙同时到达 C.甲、乙、丙同时到达 D.乙最先,甲稍后,丙最后 三、连接体问题 3.如图所示,质量形状均相同的木块紧靠在一起,放在光滑的水平面上,现用水平恒力推1号木块,使10个木块一起向右匀加速运动,则2号木块对3号木块的推力为___________,4号木块对3号木块的推力为___________.

知识讲解牛顿第二定律基础

牛顿第二定律 【学习目标】 1.深刻理解牛顿第二定律,把握Fam?的含义. 2.清楚力的单位“牛顿”是怎样确定的. 3.灵活运用F=ma解题. 【要点梳理】 要点一、牛顿第二定律 (1)内容:物体的加速度跟作用力成正比,跟物体的质量成反比. (2)公式:Fam∝或者Fma?,写成等式就是F=kma.. (3)力的单位——牛顿的含义. ①在国际单位制中,力的单位是牛顿,符N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1 m/s2加速度的力,叫做1N.即1N=1kg·m/s2. ②比例系数k的含义. 根据F=kma知k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小,k的大小由F、m、a三者的单位共同决定,三者取不同的单位,k的数值不一样,在国际单位制中,k=1.由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位. 要点二、对牛顿第二定律的理解 (1)同一性 【例】质量为m的物体置于光滑水平面上,同时受到水平力F的作用,如图所示,试讨论: ①物体此时受哪些力的作用? ②每一个力是否都产生加速度? ③物体的实际运动情况如何? ④物体为什么会呈现这种运动状态? 【解析】①物体此时受三个力作用,分别是重力、支持力、水平力F. ②由“力是产生加速度的原因”知,每一个力都应产生加速度. ③物体的实际运动是沿力F的方向以a=F/m加速运动. ④因为重力和支持力是一对平衡力,其作用效果相互抵消,此时作用于物体的合力相当于F. 从上面的分析可知,物体只能有一种运动状态,而决定物体运动状态的只能是物体所受的合力,而不能是其中一个力或几个力,我们把物体运动的加速度和该物体所受合力的这种对应关系叫牛顿第二定律的同一性. 因此,牛顿第二定律F=ma中,F为物体受到的合外力,加速度的方向与合外力方向相同. (2)瞬时性

牛顿第二定律基础计算终审稿)

牛顿第二定律基础计算文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

牛顿第二定律基础计算 1、如图所示,光滑水平面上有一个质量m=7.0kg的物体,在 F=14N的水平力作用下,由静止开始沿水平面做匀加速直线运 动.求: (1)物体加速度的大小; (2)5.0s内物体通过的距离. 2、如图所示,光滑水平面上,质量为5 kg的物块在水平拉力F=15 N的作用下,从静止开始向右运动。求: (1)物体运动的加速度是多少 (2)在力F的作用下,物体在前10 s内的位移 3、质量为2kg的物体,在水平拉力F=5N的作用下,由静止开始在水平面上运动,物体与水平面间的动摩擦因素为0.1,求: (1)该物体在水平面上运动的加速度大小。 (2)2s末时,物体的速度大小。 4、如图所示,质量为20Kg的物体在水平力F=100N作用下沿水平面做匀速直线运动,速度大小V=6m/s,当撤去水平外力后,物体在水平面上继续匀减速滑行3.6m后停止运动.(g=10m/s2)求: (1)地面与物体间的动摩擦因数;

(2)撤去拉力后物体滑行的加速度的大小. 5、一质量为2kg的物块置于水平地面上.当用10N的水平拉力F拉物块时,物块做匀速直线运动.如图所示,现将拉力F改为与水平方向成37°角,大小仍为10N,物块开始在水平地面上运动.(sin 37°=0.6,cos 37°=0.8,g取10m/s2)求:(1)物块与地面的动摩擦因数; (2)物体运动的加速度大小. 6、如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,小球和车厢相对静止,球的质量为. 已知当地的重力加速度 ,,求: (1)车厢运动的加速度,并说明车厢的运动情况. (2)悬线对球的拉力. 7、如图所示,位于水平地面上质量为M的物块,在大小为F、方向与水平方向成α角的拉力作用下沿地面作加速运动,若木块与地面之间的动摩擦因数为μ,求:(1)地面对木块的支持力; (2)木块的加速度大小. 8、如图所示,一个人用与水平方向成的力F=10N推一个静止 在水平面上质量为2kg的物体,物体和地面间的动摩擦因数为 0.25。(cos37o=0.8,sin37o=0.6, g取10m/s2)求:

牛顿第二定律拔高题袁老师

牛顿第二定律拔高题分类(袁老师整理) 题型一、牛顿第二定律的矢量性和整体性 1、如图,m以v向上滑动,m与M间的摩擦因数为μ,(1)求M受到地面的摩擦力大小和方向(2)求地面给M的支持力大小。 题型二、牛顿第二定律的瞬时性 1、如图,A、B、C三个小球的质量均为m,A、B之间用一根没有弹性的轻绳连在一起,BC之间用轻弹簧拴接,用细线悬挂在天花板上,整个系统均静止,现将A上面的细线烧断,使A的上端失去拉力,则在烧断细线瞬间,ABC 的加速度的大小分别为() 2、如图所示,光滑水平面上放置M、N、P、Q四个木块,其中M、P质量均为m,N、Q质量均为2m,M、P之间用一轻质弹簧相连。现用水平拉力F拉N,使四个木块以同一加速度a向右运动,则在突然撤去F瞬间,下列说法正确的是() A. PQ间的摩擦力改变 B. M、P的加速度大小变为a/2 C. MN间的摩擦力不变 D. N的加速度大小仍为a 题型三、连接体问题 1、质量均为m的滑块A. B紧靠着一起从固定斜面顶端由静止开始下滑,它们与斜面之间的摩擦因数分别为μ1和μ2,且μ1>μ2.在此过程中,物块B对A的压力为() A. (μ1?μ2)mgcosθ2 B. (μ1?μ2)mgcosθ C. mgsinθ?μ1mgcosθ D. 0 2、如图所示,B物体的质量为A物体质量的两倍,用轻弹簧连接后放在粗糙的斜面上.A、B与斜面的动摩擦因数均为μ.对B施加沿斜面向上的拉力F,使A. B相对静止地沿斜面向上运动,此时弹簧长度为l1;若撤去拉力F,换成大小仍为F的沿斜面向上的推力推A,A、B保持相对静止后弹簧长度为l2.则下列判断正确的是()

牛顿第二定律知识点及其经典例题分析

牛顿第二定律 知识要点梳理?知识点一——牛顿第二定律 ▲知识梳理?一、牛顿第二定律 1.牛顿第二定律内容:物体运动的加速度与所受的合外力处边成正比,与物体的质量成反比,加速度的方向与合外力相同。 2.牛顿第二定律的比例式为;表达式为。 3.力的单位是牛(N),1 N力的物理意义是使质量为m=1kg的物体产生的加速度的力。? 4.几点说明:?(1)瞬时性:牛顿第二定律是力的瞬时作用规律,力是加速度产生的根本原因,加速度与力同时存在、同时变化、同时消失。?(2)矢量性:是一个矢量方程,加速度a与力F方向相同。?(3)独立性:物体受到几个力的作用,一个力产生的加速度只与此力有关,与其他力无关。?(4)同体性:指作用于物体上的力使该物体产生加速度。 二、整体法与隔离法?1.连接体:由两个或两个以上的物体组成的物体系统称为连接体。 2.隔离体:把某个物体从系统中单独“隔离”出来,作为研究对象进行分析的方法叫做隔离法(称为“隔离审查对象”)。?3.整体法:把相互作用的多个物体视为一个系统、整体进行分析研究的方法称为整体法。 三、正交分解法与牛顿第二定律的结合应用 当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度 方向和垂直加速度方向上,有:(沿加速度方向);(垂直于加速度方向) 特殊情况下分解加速度比分解力更简单。?应用步骤一般为:?①确定研究对象;②分析研究对象的受力情况并画出受力图;③建立直角坐标系,把力或加速度分解在x轴和y轴上;④分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;⑤统一单位,计算数值。 四、用牛顿运动定律解题的一般步骤?1.审题,明确题意,清楚物理过程; 2.选取研究对象,可以是一个物体,也可以是几个物体组成的系统;?3.运用隔离法对研究对象进行受力分析,画出受力示意图;?4.建立坐标系,一般情况下可选择物体运动方向或加速度方向为正方向;?5.根据牛顿运动定律、运动学公式、题目所给的条件列方程; 6.解方程,对结果进行分析,检验或讨论。 ▲疑难导析 一、对牛顿第二定律的理解 牛顿第二定律是动力学的核心内容,在中学物理中有非常重要的地位。为了深刻理解牛顿第二定律,要从不同的角度,多层次、系统化地揭示其丰富的物理内涵。概括地讲,牛顿第二定律有“四同”“一相对”的特点。“四同”即同一单位制、同体、同时、同向;“一相对”即运动相对一定的参考系。 同单位制统一国际单位制:F的单位用牛(N),m的单位用千克(kg),a的单位用米/秒(),采用同一单位制的单位时,“”中的比例系数k为1,牛顿第二定律的表达式“”才成立。 同体性F、m、a三者都针对同一物体,其中F是该物体所受的外力,m是该物体的质量,a是在F 作用下该物体的加速度。

牛顿第二定律计算题2汇总

1.(9分)如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以v0=1 m/s 的速度匀速向右运动。现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m/s2。 (1)求旅行包经过多长时间到达传送带的右端。 (2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件? 2.(18分)如图所示,倾角α=30的足够长光滑斜面固定在水平面上,斜面上放一长L=1.8m 、质量M= 3kg 的薄木板,木板的最右端叠放一质量m=lkg 的小物块,物块与木板间的动摩擦因数μ=3 2.对木板施加沿斜面向上的恒力F ,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g=l02 /m s . (1)为使物块不滑离木板,求力F 应满足的条件; (2)若F=37.5N ,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离. 3.如图所示,一质量为M =4 kg ,长为L =2 m 的木板放在水平地面上,已知木板与地面间的动摩擦因数为0.1,在此木板的右端上还有一质量为m =1 kg 的铁块,小铁块可视为质点,木板厚度不计.今对木板突然施加一个水平向右的拉力.(g =10 m/ ) (1)若不计铁块与木板间的摩擦,且拉力大小为6 N ,则小铁块经多长时间将离开木板? (2)若铁块与木板间的动摩擦因数为0.2,铁块与地面间的动摩擦因数为0.1,要使小铁块相对木板滑动且对地面的总位移不超过1.5 m ,则施加在木板水平向右的拉力应满足什么条件?

牛顿第二定律

牛顿第二运动定律 牛顿第二定律即牛顿第二运动定律。 物体加速度的大小跟物体受到的作用力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”,即动量对时间的一阶导数等于外力之和。牛顿第二定律说明了在宏观低速下,比例式表达:a∝F/m,F∝ma;用数学表达式可以写成F=kma,其中的k为比例系数,是一个常数。但由于当时没有规定多大的力作为力的单位,比例系数k的选取就有一定的任意性,如果取k=1,就有F=ma,这就是今天我们熟知的牛顿第二定律的数学表达式。 英文名称 Newton's Second Law of Motion-Force and Acceleration 2内容 物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比。加速度的方向跟作用力的方向相同. 在国际单位中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1 加速度的力,叫做1N。即1N= 。 3公式 F合=ma 注:单位为N(牛)或者(千克米每二次方秒),N=。 (当单位皆取国际单位制时,k=1, 即为 ) 牛顿发表的原始公式:

(见自然哲学之数学原理) 动量为p的物体,在合外力为F的作用下,其动量随时间的变化率等于作用于物体的合外力。 用通俗一点的话来说,就是以t为自变量,p为因变量的函数的导数,就是该点所受的合外力。 即: 而当物体低速运动,速度远低于光速时,物体的质量为不依赖于速度的常量,所以有 这也叫动量定理。在相对论中F=m a是不成立的,因为质量随速度改变,而 依然适用。 由实验可得在加速度一定的情况下 ,在质量一定的情况下 。 (只有当F以N,m以kg,a以 为单位时,F合=m a成立) 牛顿第二定律可以用比例式来表示,这就是: a∝F/m 或F∝ma 这个比例式也可以写成等式: 其中k是比例系数。[1](详见高中物理人教版教材必修一p74页) 4几点说明 简介 1、牛顿第二定律是力的瞬时作用规律。力和加速度同时产生,同时变化,同时消失。 2、 是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。

系统牛顿第二定律

系统牛顿第二定律(质点系牛顿第二定律) 主讲:黄冈中学教师郑成 1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=,在木楔的倾角α=30°的斜面上,有一质量m=的物块,由静止开始沿斜面下滑,当滑行至s=时,速度v=s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向和地面对木楔的支持力.(g=10m/s2) 解法一:(隔离法)先隔离物块m,根据运动学公式得: v2=2as=s2

而N′=N=,f′=f=地=-Nsin30°+fcos30°=- 说明地面对斜面M的静摩擦力f地=,负号表示方向水平向左. 可求出地面对斜面M的支持力N地 N地-f′sin30°-N′cos30°-Mg=0 N地= fsin30°+Ncos30°+Mg=<(M+m)g=110N 因m有沿斜面向下的加速度分量,故整体可看作失重状态 方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.=m1a1x+m2a2x+…+m n a nx =m1a1y+m2a2y+…+m n a ny 解法二:系统牛顿第二定律: 把物块m和斜面M当作一个系统,则: x:f地=M×0 +macos30°=水平向左y:(M+m)g-N地=M×0+masin30°N地=(M+m)g-ma sin30°= 例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力和静摩擦力 解法一:隔离法

牛顿第二定律 提升计算

牛顿第二定律提升计算 1、如图所示,一个质量的物块,在的拉力作用下,从静止开始沿水平面做匀加速直线运动, 拉力方向与水平方向成,假设水平面光滑,取重力加速度,,。(1)画出物体的受力示意图; (2)求物块运动的加速度大小; (3)求物块速度达到时移动的距离。 2、如图所示,质量为10kg的金属块放在水平地面上,在大小为100N,方向与水平成37°角斜向上的拉力作用下,由静止开始沿水平地面向右做匀加速直线运动.物体与地面间的动摩擦因数μ=0.5.2s后撤去拉力,则撤去拉力后金属块在桌面上还能滑行多远?(已知sin37°=0.6,cos37°=0.8.g取10m/s2) 3、如图所示,长度l=2m,质量M=kg的木板置于光滑的水平地面上,质量m=2kg的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F=10N,取 g=10m/s2.求: (1)将木板M固定,小物块离开木板时的速度大小; (2)若木板M不固定,m和M的加速度a1、a2的大小; (3)若木板M不固定,从开始运动到小物块离开木板所用的时间.

4、如图甲所示,t=0时,一质量为m=2kg的小物块受到水平恒力F的作用,从A点由静止开始运动,经过B点时撤去力F,最后停在C点.图乙是小物块运动的速度一时间图象.已知重力加速度g=l0m/s2,求: (1)从第Is末到第2s末,物体运动的距离; (2)恒力F的大小. 5、一质量为的小球用轻细绳吊在小车内的顶棚上,如图所示.车厢内的地板上有一质量为 的木箱.当小车向右做匀加速直线运动时,细绳与竖直方向的夹角为θ=30°,木箱与车厢地板相对静止. (空气阻力忽略不计,取g=10 m/s2) 求: (1)小车运动加速度的大小 (2)细绳对小车顶棚拉力的大小 (3)木箱受到摩擦力的大小 . 6、质量分别为m1和m2的木块,并列放置于光滑水平地面,如图所示,当木块1受到水平力F的作用时,两木块同时向右做匀加速运动,求: (1)匀加速运动的加速度多大? (2)木块1对2的弹力.

牛顿第二定律说课稿

牛顿第二定律说课稿 (一)教材分析 牛顿运动定律以力和运动的知识为基础,进一步研究了力和运动的关系。牛顿运动定律是经典力学的基础,从牛顿运动定律出发可以推导出动能定理、动量定理等一系列重要的物理规律。牛顿运动定律还是学习热学、电磁学的重要基础。因此,这一章内容在力学和整个物理学中占有很重要的地位,是中学物理教学的重点。牛顿第二定律是动力学的核心规律,是本章的重点和中心内容。 (二)教学内容、教材体系与教学目标 本章教材在牛顿第一定律之后,安排了一节“运动状态的改变”,起到了承上启下的作用。它既是对牛顿第一定律的深化,使学生进一步认识到力是产生加速度的原因,质量是惯性大小的量度,也是为学习牛顿第二定律做的铺垫,使学生认识到物体的加速度由力和质量两个因素决定,并且对它们的关系有了定性的认识。 本节教材利用控制变量的实验方法,分别研究了加速度跟力、加速度跟质量的关系,再把这两个关系综合起来,总结出牛顿第二定律。然后把牛顿第二定律从物体受一个力的特殊情况,推广到受多个力的一般情况,从物体受恒力的情况推广到物体受变力的情况,并且进一步强调了牛顿第二定律的矢量性和瞬时性。 根据以上分析和大纲对本节内容的要求,结合学生的实际情况,确定的知识教学目标为: 1.知道牛顿第二定律内容及表达式,理解牛顿第二定律的含义,能应用牛顿第二定律分析和解决有关问题。 2.理解牛顿第二定律的矢量性和瞬时性。 3.知道力的单位“牛顿”的定义。 在本节课的教学中,还应渗透科学方法教育。让学生通过研究加速度跟力和质量的关系的实验,掌握控制变量法。在总结牛顿第二定律的过程中,让学生体会实验研究、分析数据、总结规律的科学研究方法,并在这一过程中培养学生实验、观察、分析、归纳、概括的能力。 (三)教学方法

牛顿第二定律

. §2 牛顿第二定律 教学目标: 1.理解牛顿第二定律,能够运用牛顿第二定律解决力学问题 2.理解力与运动的关系,会进行相关的判断 3.掌握应用牛顿第二定律分析问题的基本方法和基本技能 教学重点:理解牛顿第二定律 教学难点:力与运动的关系 教学方法:讲练结合,计算机辅助教学 教学过程: 一、牛顿第二定律 1.定律的表述 物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F=ma(其中的F和m、a必须相对应) 点评:特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 2.对定律的理解: (1)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。合外力变化时加速度也随之变化。合外力为零时,加速度也为零 F?a只表示加速度与合外力的大小关)矢量性:牛顿第二定律公式是矢量式。公式(2m系.矢量式的含义在于加速度的方向与合外力的方向始终一致. (3)同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言,即F12 / 1 . 与a均是对同一个研究对象而言. (4)相对性;牛顿第二定律只适用于惯性参照系 (5)局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子3.牛顿第二定律确立了力和运动的关系 牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。联系物体的受力情况和运动情况的桥梁或纽带就是加速度。 4.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设……+maa+ =m,则有:Fa+ma+mm每个质点的质量为,对应的加速度为a n312i13i2n合对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑∑∑F=ma,……a,将以上各式等号左、右分别相加,其中左边所=Fma,=Fm n221n11n2有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把

牛顿第二定律计算题

牛顿第二定律计算题(难度) 1.(17分)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为 1m 和2m ,各接触面间的动摩擦因数均为μ。重力加速度为g 。 (1)当纸板相对砝码运动时,求纸板所受摩擦力的大小; (2)要使纸板相对砝码运动,求所需拉力的大小范围; (3)本实验中, 1m =0.5kg , 2m =0.1kg , μ=,砝码与纸板左端的距 离d=0.1m ,取g=102 /m s 。 若砝码移动的距离超过l =0.002m ,人眼就能感知。 为确保实验成功,纸板所需的拉力至少多大 2.如图所示,竖直光滑的杆子上套有一滑块A,滑块通过细绳绕过光滑滑轮连接物块B,B 又通过一轻质弹簧连接物块C ,C 静止在地面上。开始用手托住A,使绳子刚好伸直处于水平位置但无张力,现将A 由静止释放,当速度达到最大时,C 也刚好同时离开地面,此时B 还没有到达滑轮位置.已知:m A =, m B =1kg, m c =1kg ,滑轮与杆子的水平距离L=。试求: (1)A 下降多大距离时速度最大 (2)弹簧的劲度系数 (3)的最大速度是多少 3.如图甲所示,平板小车A 静止在水平地面上,平板板长L=6m ,小物块B 静止在平板左端,质量m B = 0.3kg ,与A 的动摩擦系数μ=,在B 正前方距离为S 处,有一小球C ,质量m C = 0.1kg ,球C 通过长l = 0.18m 的细绳与固定点O 相连,恰当选择O 点的位置使得球C 与物块B 等高, 且C 始终不与平板A 接触。在t = 0时刻,平板车A 开始运动,运动情况满足如图乙所示S A – t 关系。若BC 发生碰撞,两者将粘在一起,绕O 点在竖直平面内作圆周运动, 并能通过O 点正上方的最高点。BC 可视为质点,g = 10m/s 2 , 求:(1)BC 碰撞瞬间,细绳拉力至少为多少 (2)刚开始时,B 与C 的距离S 要满足什么关系 4.如图所示为某钢铁厂的钢锭传送装置,斜坡长为L =20 m ,高为h =2 m ,斜坡上紧排着一排滚筒.长为l =8 m 、质量为m =1×103 kg 的钢锭ab 放在滚筒上,钢锭与滚筒间的动摩擦因数为μ=,工作时由电动机带动所有滚筒顺时针匀速转动,使钢锭沿斜坡向上移动,滚筒边缘的线速度均为v =4 m/s.假设关闭电动机的瞬时所有滚筒立即停止转动,钢锭对滚筒的总压力近似等于钢锭的重力.取当地的重力加速度g =10 m/s2.试求: (1)钢锭从坡底(如上图示位置)由静止开始运动,直到b 端到达坡顶所需的最短时间; (2)钢锭从坡底(如上图示位置)由静止开始运动,直到b 端到达坡顶的过程中电动机至 C B A L S O 图甲 3 S A t 12 图乙

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

牛顿第二定律

4-3 一、选择题(本大题共6小题,每小题5分,共30分) 1.(多选)(2017·南通高一检测)某物体在粗糙水平面上受一水平恒定拉力F作用由静止开始运动,下列四幅图中,能正确反映该物体运动情况的图象是() 【解析】物体所受合力一定,由F=ma知加速度a恒定,故C错误,D正确;又由v=at知v与t 成正比,A正确;由s=1 2知s与t2成正比,故B错误。 2at 【答案】AD 2.(多选)(2017·成都高一检测)力F1单独作用在物体A上时产生的加速度a1大小为5 m/s2,力F2单独作用在物体A上时产生的加速度a2大小为2 m/s2,那么,力F1和F2同时作用在物体A上时产生的加速度a的大小可能是() A.5 m/s2B.2 m/s2C.8 m/s2D.6 m/s2 【解析】设物体A的质量为m,则F1=ma1,F2=ma2,当F1和F2同时作用在物体A上时,合力的大小范围是F1-F2≤F≤F1+F2,即ma1-ma2≤ma≤ma1+ma2,加速度的大小范围为3 m/s2≤a≤7 m/s2,正确选项为A、D。 【答案】AD 3.(多选)如图所示,沿平直轨道运动的火车车厢中有一光滑的水平桌面,桌面上有一弹簧和小球,弹簧左端固定,右端拴着小球,弹簧处于原长状态。现发现弹簧的长度变短,关于弹簧长度变短的原因,以下判断中正确的是() A.火车可能向右运动,速度在增加 B.火车可能向右运动,速度在减小

C.火车可能向左运动,速度在增加 D.火车可能向左运动,速度在减小 【答案】AD 4.(2016·海南高考)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图所示。已知物体与斜面之间的动摩擦因数为常数,在0~5 s、5~10 s、10~15 s内F的大小分别为F1、F2和F3,则() A.F1F3 C.F1>F3D.F1=F3 【解析】加速下滑过程,有mg sin θ-F1-f=ma,匀速下滑过程,有mg sin θ-F2-f=0,减速下滑时,有F3-mg sin θ+f=ma,故有F1

牛顿第二定律

牛顿第二定律教学设计 一、学习任务分析 1.教材的地位和作用 牛顿第二定律是在实验基础上建立起来的重要规律,它是动力学的核心规律,也是学习其它动力学规律的基础。在《普通高中物理课程标准》共同必修模块“物理1”中涉及本节的内容有:“通过实验,探究加速度与物体质量、物体受力的关系,理解牛顿第二定律。”本条目要求学生通过实验,探究加速度、质量、力三者的关系,强调让学生经历实验探究过程。 2.学习的主要任务 本节的学习任务类型是综合型。在知识上要求知道决定加速度的因素、理解加速度、质量、力三者关系;在技能上要求能设计和操作实验,会测定相关物理量;体验性上要求经历探究活动、尝试解决问题方法、体验发现规律过程,体会科学研究方法──控制变量法、图象法的应用。 3.教学重点和难点 重点:①知道决定物体加速度的因素。 ②加速度与力和质量的关系的探究过程。 教学难点:引导学生在猜想的基础上进行实验设计,提出可行的实验方案、完成实验并得出实验结果。 二、学习者情况分析 在学习这一内容之前,所教的学生已经掌握了力、质量、加速度、惯性等概念;知道质量是惯性的量度、力是改变物体运动状态的原因;会分析物体的受力。已具备一定的实验操作技能,会用气垫导轨与光电测时系统或打点计时器研究匀变速直线运动;具备一定的计算机操作能力,会应用CAI课件处理实验数据。学生对物理学的研究方法已有一定的了解,在自主学习、合作探究等方面的能力有了一定提高。 在非智力因素方面,学生学习积极主动,对学习物理有较浓厚兴趣;有较强的好奇心和求知欲,乐于探究自然界的奥秘;敢于坚持正确观点,勇于修正错误;喜欢和同龄人一起学习,有将自己的见解与他人交流的愿望,具有团队精神。 三、教学目标分析 根据上述对学习任务和学习者情况的分析,确定本节课教学目标如下: 1.知识与技能目标 ①让学生明确物体的加速度只与力与和质量有关,并通过实验探究它们之间的定量关系; ②培养学生获取知识和设计实验的能力。 2.过程与方法目标 在探究过程中,渗透科学研究方法(控制变量法、实验归纳法、图象法等); 3.情感、态度、价值观目标 ①通过学生之间的讨论、交流与协作探究,培养团队合作精神;

牛顿第二定律以专题训练

牛顿第二定律 1.牛顿第二定律的表述(内容) 物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。 对牛顿第二定律理解: (1)F=ma中的F为物体所受到的合外力. (2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变. (4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。 (5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 (6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2. (7)F=ma的适用范围:宏观、低速 2.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 ③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。 3.应用举例 【例1】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.

相关文档
最新文档