第13章 简单线性回归与相关

简单线性回归模型

第二章 简单线性回归模型 一、单项选择题 1.影响预测误差的因素有( ) A .置信度 B .样本容量 C .新解释变量X 0偏离解释变量均值的程度 D .如果给定值X 0等于X 的均值时,置信区间越长越好。 2.OLS E 的统计性质( ) A .线性无偏性 B .独具最小方差性 C .线性有偏 D .β∧ 是β的一致估计 3.OLSE 的基本假定( ) A .解释变量非随机 B .零均值 C .同方差 D .不自相关 4.F 检验与拟合优度指标之间的关系( ) A . 21111n p p R --?? ?- ?-?? B . 21111n p p R --?? ?- ?-?? C . 2111n p p R -???- ?-?? D . 2111n p p R -???- ?-?? 5.相关分析和回归分析的共同点( ) A .都可表示程度和方向 B .必须确定解释(自)变量和被解释(因)变量 C .不用确定解释(自)变量和被解释(因)变量 D .都研究变量间的统计关系 6.OLS E 的基本假设有( ) A .解释变量是随机的 B .随机误差项的零均值假设

C .随机误差项同方差假设 D .随机误差项线性相关假设 7.与 2 ()() 1 ()1i i i n x x y y i n x x i - --==∑∑ 等价的式子是( ) A .2 2 1()1i i i n x y nx y i n x n x i -=-=∑∑ B .2()1()1i i i n x x y i n x x i --==∑∑ C .2()1()1i i i n x x x i n x x i -=-=∑∑ D .xy xx L L 8.下列等式正确的是( ) A .SSR=SST+SSE B .SST=SSR+SSE C .SSE=SSR+SST D .SST=SST ×SSE 9.无偏估计量i β的方差是( ) A . 2 1 () n j j X X σ=-∑ B . 2 2 1 ()n j j X X σ=-∑ C . 2 () n j j X X σ=-∑

第10章-简单线性回归分析思考与练习参考答案

第10章 简单线性回归分析 思考与练习参考答案 一、最佳选择题 1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。 A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错 2.如果相关系数r =1,则一定有( C )。 A .总SS =残差SS B .残差SS =回归 SS C .总SS =回归SS D .总SS >回归SS E. 回归MS =残差MS 3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。 A .ρ=0时,r =0 B .|r |>0时,b >0 C .r >0时,b <0 D .r <0时,b <0 E. |r |=1时,b =1 4.如果相关系数r =0,则一定有( D )。 A .简单线性回归的截距等于0 B .简单线性回归的截距等于Y 或X C .简单线性回归的残差SS 等于0 D .简单线性回归的残差SS 等于SS 总 E .简单线性回归的总SS 等于0 5.用最小二乘法确定直线回归方程的含义是( B )。 A .各观测点距直线的纵向距离相等 B .各观测点距直线的纵向距离平方和最小 C .各观测点距直线的垂直距离相等 D .各观测点距直线的垂直距离平方和最小

E .各观测点距直线的纵向距离等于零 二、思考题 1.简述简单线性回归分析的基本步骤。 答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。 2.简述线性回归分析与线性相关的区别与联系。 答:区别: (1)资料要求上,进行直线回归分析的两变量,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。直线相关分析只适用于双变量正态分布资料。 (2)应用上,说明两变量线性依存的数量关系用回归(定量分析),说明两变量的相关关系用相关(定性分析)。 (3)两个系数的意义不同。r 说明具有直线关系的两变量间相互关系的方向与密切程度,b 表示X 每变化一个单位所导致Y 的平均变化量。 (4)两个系数的取值范围不同:-1≤r ≤1,∞<<∞-b 。 (5)两个系数的单位不同:r 没有单位,b 有单位。 联系: (1)对同一双变量资料,回归系数b 与相关系数r 的正负号一致。b >0时,r >0,均表示两变量X 、Y 同向变化;b <0时,r <0,均表示两变量X 、Y 反向变化。 (2)回归系数b 与相关系数r 的假设检验等价,即对同一双变量资料,r b t t =。由于相关系数r 的假设检验较回归系数b 的假设检验简单,故在实际应用中常以r 的假设检验代替b 的假设检验。 (3)用回归解释相关:由于决定系数2 R =SS 回 /SS 总 ,当总平方和固定时,回归平方 和的大小决定了相关的密切程度。回归平方和越接近总平方和,则2 R 越接近1,说明引入相关的效果越好。例如当r =0.20,n =100时,可按检验水准0.05拒绝H 0,接受H 1,认为两变量有相关关系。但2 R =(0.20)2=0.04,表示回归平方和在总平方和中仅占4%,说明

第九章 相关与简单线性回归分析

第九章相关与简单线性回归分析 第一节相关与回归的基本概念 一、变量间的相互关系 现象之间存在的依存关系包括两种:确定性的函数关系和不确定性的统计关系,即相关关系。 二、相关关系的类型 1、从相关关系涉及的变量数量来看:简单相关关系;多重相关或复相关。 2、从变量相关关系变化的方向看:正相关;负相关。 3、从变量相关的程度看:完全相关;不相关;不完全相关。 二、相关分析与回归分析概述 相关分析就是用一个指标(相关系数)来表明现象间相互依存关系的性质和密切程度;回归分析是在相关关系的基础上进一步说明变量间相关关系的具体形式,可以从一个变量的变化去推测另一个变量的变化。 相关分析与回归分析的区别: 目的不同:相关分析是用一定的数量指标度量变量间相互联系的方向和程度;回归分析是要寻求变量间联系的具体数学形式,要根据自变量的固定值去估计和预测因变量的值。 对变量的处理不同:相关分析不区分自变量和因变量,变量均视为随机变量;回归区分自变量和因变量,只有因变量是随机变量。 注意:相关和回归分析都是就现象的宏观规律/平均水平而言的。 第二节简单线性回归 一、基本概念 如果要研究两个数值型/定距变量之间的关系,以收入x与存款额y为例,对n个人进行独立观测得到散点图,如果可以拟合一条穿过这一散点图的直线来描述收入如何影响存款,即简单线形回归。 二、回归方程 在散点图中,对于每一个确定的x值,y的值不是唯一的,而是符合一定概率分布的随机变量。如何判断两个变量之间存在相关关系?要看对应不同的x,y的概率分布是否相同/y的总体均值是否相等。 在x=xi的条件下,yi的均值记作E(yi),如果它是x的函数,E(yi) =f(xi),即回归方程,就表示y和x之间存在相关关系,回归方程就是研究自变量不同取值时,因变量y的平均值的变化。当y的平均值和x呈现线性关系时,称作线性回归方程,只有一个自变量就是一元线性回归方程。 一元线性回归方程表达式:E(y i )= α+βx i ,其中α称为常数,β称为回

多元线性回归模型习题及答案

多元线性回归模型 一、单项选择题 1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定 系数为,则调整后的多重决定系数为( D ) A. B. C. 下列样本模型中,哪一个模型通常是无效 的(B ) A. i C (消费)=500+i I (收入) B. d i Q (商品需求)=10+i I (收入)+i P (价格) C. s i Q (商品供给)=20+i P (价格) D. i Y (产出量)=0.6i L (劳动)0.4i K (资本) 3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在的显著性水平上对 1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C ) A. )30(05.0t B. )28(025.0t C. )27(025.0t D. )28,1(025.0F 4.模型 t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B ) A.x 关于y 的弹性 B. y 关于x 的弹性 C. x 关于y 的边际倾向 D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在( C ) A.异方差性 B.序列相关 C.多重共线性 D.高拟合优度 6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...) t H b i k ==时,所用的统计量 服从( C ) (n-k+1) (n-k-2) (n-k-1) (n-k+2) 7. 调整的判定系数 与多重判定系数 之间有如下关系( D ) A.2 211n R R n k -=-- B. 22111 n R R n k -=--- C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=---- 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。 A.只有随机因素 B.只有系统因素 C.既有随机因素,又有系统因素 、B 、C 都不对 9.在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):( C ) A n ≥k+1 B n

简单线性相关(一元线性回归分析)..

第十三讲 简单线性相关(一元线性回归分析) 对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。 一、一元线性回归模型及其对变量的要求 (一)一元线性回归模型 1、一元线性回归模型示例 两个变量之间的真实关系一般可以用以下方程来表示: Y=A + BX + ε 方程中的A 、B 是待定的常数,称为模型系数,ε是残差,是以X 预测Y 产生的误差。 两个变量之间拟合的直线是: y a bx ∧ =+ y ∧ 是 y 的拟合值或预测值,它是在X 条件下Y 条件均值的估计 a 、 b 是回归直线的系数,是总体真实直线A 、B 的估计值,a 即 constant 是截距,当自变量的值为0时,因变量的值。 b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。 可以对回归方程进行标准化,得到标准回归方程: y x ∧ =β β 为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位(Z X X S j j j = -),因变量Y 的标准差的平均变化。

由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y的重要性。 (二)对变量的要求:回归分析的假定条件 回归分析对变量的要求是: 自变量可以是随机变量,也可以是非随机变量。自变量X值的测量可以认为是没有误差的,或者说误差可以忽略不计。 回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。 (三)数据要求 模型中要求一个因变量,一个或多个自变量(一元时为1个自变量)。 因变量:要求间距测度,即定距变量。 自变量:间距测度(或虚拟变量)。 二、在对话框中做一元线性回归模型 例1:试用一元线性回归模型,分析大专及以上人口占6岁及以上人口的比例(edudazh)与人均国内生产总值(agdp)之间的关系。 本例使用的数据为st2004.sav,操作步骤及其解释如下: (一)对两个变量进行描述性分析 在进行回归分析以前,一个比较好的习惯是看一下两个变量的均值、标准差、最大值、最小值和正态分布情况,观察数据的质量、缺少值和异常值等,缺少值和异常值经常对线性回归分析产生重要影响。最简单的,我们可以先做出散点图,观察变量之间的趋势及其特征。通过散点图,考察是否存在线性关系,如果不是,看是否通过变量处理使得能够进行回归分析。如果进行了变量转换,那么应当重新绘制散点图,以确保在变量转换以后,线性趋势依然存在。 打开st2004.sav数据→单击Graphs → S catter →打开Scatterplot 对话框→单击Simple →单击 Define →打开 Simple Scatterplot对话框→点选 agdp到 Y Axis框→点选 edudazh到 X Aaxis框内→单击 OK 按钮→在SPSS的Output窗口输出所需图形。 图12-1 大专及以上人口占6岁及以上人口比例与人均国内生产总值的散点图

第十九章直线相关与回归试题

第十九章 直线相关与回归 A 型选择题 1、若计算得一相关系数r=0.94,则( ) A 、x 与y 之间一定存在因果关系 B 、同一资料作回归分析时,求得回归系数一定为正值 C 、同一资料作回归分析时,求得回归系数一定为负值 D 、求得回归截距a>0 E 、求得回归截距a ≠0 2、对样本相关系数作统计检验(H 0:ρ=0),结果0.05()v r r >,统计结论是( )。 A. 肯定两变量为直线关系 B 、认为两变量有线性相关 C 、两变量不相关 B. 两变量无线性相关 E 、两变量有曲线相关 3、若1210.05()20.01(),v v r r r r >>,则可认为( )。 A. 第一组资料两变量关系密切 B. 第二组资料两变量关系密切 C 、难说哪一组资料中两变量关系更密切 D 、两组资料中两变量关系密切程度不一样 E 、以上答案均不对 4、相关分析可以用于( )有无关系的研究 A 、性别与体重 B 、肺活量与胸围 C 、职业与血型 D 、国籍与智商 E 、儿童的性别与体重 5、相关系数的假设检验结果P<α,则在α水平上可认为相应的两个变量间( ) A 、有直线相关关系 B 、有曲线相关关系 C 、有确定的直线函数关系 D 、有确定的曲线函数关系 E 、不存在相关关系 6、根据样本算得一相关系数r ,经t 检验,P <0.01说明( )

A 、两变量有高度相关 B 、r 来自高度相关的相关总体 C 、r 来自总体相关系数ρ的总体 D 、r 来自ρ≠0的总体 E 、r 来自ρ>0的总体 7、相关系数显著检验的无效假设为( ) A 、r 有高度的相关性 B 、r 来自ρ≠0的总体 C 、r 来自ρ=0的总体 D 、r 与总体相关系数ρ差数为0 E 、r 来自ρ>0的总体 8、计算线性相关系数要求( ) A .反应变量Y 呈正态分布,而自变量X 可以不满足正态分布的要求 B .自变量X 呈正态分布,而反应变量Y 可以不满足正态分布的要求 C .自变量X 和反应变量Y 都应满足正态分布的要求 D .两变量可以是任何类型的变量 E .反应变量Y 要求是定量变量,X 可以是任何类型的变量 9、对简单相关系数r 进行检验,当检验统计量t r >t 0.05(ν)时,可以认为两变量x 与Y 间( ) A .有一定关系 B .有正相关关系 C .无相关关系 D .有直线关系 E .有负相关关系 10、相关系数反映了两变量间的( ) A 、依存关系 B 、函数关系 C 、比例关系 D 、相关关系 E 、因果关系 11、)2(,2/05.0-

多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110(3、2、11) 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110(3、2、12) 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。 偏回归系数i b (k i ,...,2,1=)的意义就是,当其她自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min (2) 1 2211012 →++++-=??? ??-=∑∑==∧ n a ka k a a a n a a a x b x b x b b y y y Q (3、2、13) 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110) ,...,2,1(0202(3、2、14) 将方程组(3、2、14)式展开整理后得:

简单线性回归分析案例辨析及参考答案

第10章简单线性回归分析 案例辨析及参考答案 案例10-1年龄与身高预测研究。某地调查了4~18岁男孩与女孩身高,数据见教材表10-4,试描述男孩与女孩平均身高与年龄间的关系,并预测10.5岁、16.5岁、19岁与20岁男孩与女孩的身高。 教材表10-4 某地男孩与女孩平均身高与年龄的调查数据 采用SPSS对身高与年龄进行回归分析,结果如表教材10-5和教材表10-6所示。 教材表10-5 男孩身高对年龄的简单线性回归分析结果 估计值标准误P Constant 83.736 3 1.882 4 44.483 9 0.000 0 AGE 5.274 8 0.167 6 31.479 8 0.000 0 =990.98 =98.5% 教材表10-6 女孩身高对年龄的简单线性回归分析结果 估计值标准误P Constant 88.432 6 3.280 0 26.961 1 0.000 0 AGE 4.534 0 0.292 0 15.529 0 0.000 0 =241.15 =94.1% 经拟合简单线性回归模型,检验结果提示回归方程具有统计学意义。结果提示,拟合效果非常好,故可认为: (1)男孩与女孩的平均身高随年龄线性递增,年龄每增长1岁,男孩与女孩身高分别平均增加5.27 cm与4.53 cm,男孩生长速度快于女孩的生长速度。 (2)依照回归方程预测该地男孩10.5岁、16.5岁、19岁和20岁的平均身高依次为139.1 cm、170.8 cm、184.0 cm和189.2 cm;该地女孩10.5岁、16.5岁、19岁和20岁的平均身高依次为136.0 cm、163.2 cm、174.6 cm和179.1 cm。 针对以上分析结果,请考虑: (1)分析过程是否符合回归分析的基本规范? (2)回归模型能反映数据的变化规律吗? (3)拟合结果和依据回归方程而进行的预测有问题吗?

多元线性回归模型公式定稿版

多元线性回归模型公式 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为 (ka a a a x x x y ,...,,,21),n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110() 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110() 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。

偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min ...212211012→++++-=??? ??-=∑∑==∧n a ka k a a a n a a a x b x b x b b y y y Q () 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110),...,2,1(0202() 将方程组()式展开整理后得: ?????????????=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================n a a ka k n a ka n a ka a n a ka a n a ka n a a a k n a ka a n a a n a a a n a a n a a a k n a ka a n a a a n a a n a a n a a k n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x y x b x x b x x b x b x y b x b x b x nb 11221211101 121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( () 方程组()式,被称为正规方程组。 如果引入一下向量和矩阵: 则正规方程组()式可以进一步写成矩阵形式 B Ab =(3.2.15’)

多元线性回归模型公式().docx

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量 y 受 k 个自变量 x 1, x 2 ,..., x k 的影响,其 n 组观测值为( y a , x 1 a , x 2 a ,..., x ka ), a 1,2,..., n 。那么,多元线性回归模型的结构形式为: y a 0 1 x 1a 2 x 2 a ... k x ka a () 式中: 0 , 1 ,..., k 为待定参数; a 为随机变量。 如果 b 0 , b 1 ,..., b k 分别为 0 , 1 , 2 ..., k 的拟合值,则回归方程为 ?= b 0 b 1x 1 b 2 x 2 ... b k x k () 式中: b 0 为常数; b 1, b 2 ,..., b k 称为偏回归系数。 偏回归系数 b i ( i 1,2,..., k )的意义是,当其他自变量 x j ( j i )都固定时,自变量 x i 每变 化一个单位而使因变量 y 平均改变的数值。 根据最小二乘法原理, i ( i 0,1,2,..., k )的估计值 b i ( i 0,1,2,..., k )应该使 n 2 n 2 Q y a y a y a b 0 b 1 x 1a b 2 x 2a ... b k x ka min () a 1 a 1 有求极值的必要条件得 Q n 2 y a y a b 0 a 1 () Q n 2 y a y a x ja 0( j 1,2,..., k) b j a 1 将方程组()式展开整理后得:

第二章(简单线性回归模型)2-2答案教学文稿

第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项i u 和残差项i e 是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A . ()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B . () i i i i 1 2 2i i n X Y -X Y ?n X -X β ∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12 x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-)=最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线

线性回归方程中的相关系数r

线性回归方程中的相关系数r r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]

R2就是相关系数的平方, R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2 也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS 该统计量越接近于1,模型的拟合优度越高。 问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 ——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1)) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。 总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。R = R接近于1表明Y与X1,X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1,X2 ,…,Xk之间的线性关系程度不密切 相关系数就是线性相关度的大小,1为(100%)绝对正相关,0为0%,-1为(100%)绝对负相关 相关系数绝对值越靠近1,线性相关性质越好,根据数据描点画出来的函数-自变量图线越趋近于一条平直线,拟合的直线与描点所得图线也更相近。 如果其绝对值越靠近0,那么就说明线性相关性越差,根据数据点描出的图线和拟合曲线相差越远(当相关系数太小时,本来拟合就已经没有意义,如果强行拟合一条直线,再把数据点在同一坐标纸上画出来,可以发现大部分的点偏离这条直线很远,所以用这个直线来拟合是会出现很大误差的或者说是根本错误的)。 分为一元线性回归和多元线性回归 线性回归方程中,回归系数的含义 一元: Y^=bX+a b表示X每变动(增加或减少)1个单位,Y平均变动(增加或减少)b各单位多元: Y^=b1X1+b2X2+b3X3+a 在其他变量不变的情况下,某变量变动1单位,引起y平均变动量 以b2为例:b2表示在X1、X3(在其他变量不变的情况下)不变得情况下,X2每变动1单位,y平均变动b2单位

第二章 简单线性回归模型练习题

第二章简单线性回归模型练习题 一、术语解释 1 解释变量 2 被解释变量 3 线性回归模型 4 最小二乘法 5 方差分析 6 参数估计 7 控制 8 预测 二、填空 ξ,目的在于使模型更1 在经济计量模型中引入反映()因素影响的随机扰动项 t 符合()活动。 2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的()、社会环境与自然环境的()决定了经济变量本身的();(2)建立模型时其他被省略的经济因素的影响都归入了()中;(3)在模型估计时,()与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了()与()之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。 3 ()是因变量离差平方和,它度量因变量的总变动。就因变量总变动的变异来源看,它由两部分因素所组成。一个是自变量,另一个是除自变量以外的其他因素。()是拟合值的离散程度的度量。它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。()是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。 4 回归方程中的回归系数是自变量对因变量的()。某自变量回归系数β的意义,指

的是该自变量变化一个单位引起因变量平均变化( )个单位。 5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。 6 样本观察值与回归方程理论值之间的偏差,称为( ),我们用残差估计线性模型中的( )。 三、简答题 1 在线性回归方程中,“线性”二字如何理解 2 用最小二乘法求线性回归方程系数的意义是什么 3 一元线性回归方程的基本假设条件是什么 4 方差分析方法把数据总的平方和分解成为两部分的意义是什么 5 试叙述t 检验法与相关系数检验法之间的联系。 6 应用线性回归方程控制和预测的思想。 7 线性回归方程无效的原因是什么 8 回归分析中的随机误差项i ε有什么作用它与残差项t e 有何区别 9 判断如下模型,哪些是线性模型,哪些不是。以及它们经过怎样的变化能够变成线性模型 模型 描述性名称 121 .i i i a Y X ββε?? =++ ??? 倒数 12.ln i i i b Y X ββε=++ 半对数 12.ln i i i c Y X ββε=++ 反半对数 12. ln ln ln i i i c Y X ββε=++ 对数或双对数 121 . ln i i i c Y X ββε?? =-+ ??? 对数倒数 10 如下模型是线性回归模型吗并说出原因。 12.i i X i a Y e ββε++= 121.1i i i X b Y e ββε++= +

第8章 相关分析与回归分析及答案

第八章相关与回归分析 一、本章重点 1.相关系数的概念及相关系数的种类。事物之间的依存关系,可以分为函数关系和相关关系。相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。 2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数以及进行相关系数的推断。相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方法是不同的,一元线性回归中相关系数和测定系数有着密切的关系,得到样本相关系数后还要对总体相关系数进行科学推断。 3.回归分析,着重掌握一元回归的基本原理方法,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。用最小平方法估计回归参数,回归参数的性质和显著性检验,随机项方差的估计,回归方程的显著性检验,利用回归方程进行预测是回归分析的主要内容。 4.应用相关与回归分析应注意的问题。相关与回归分析都有它们的应用范围,必须知道在什么情况下能用,什么情况下不能用。相关分析和回归分析必须以定性分析为前提,否则可能会闹出笑话,在进行预测时选取的样本要尽量分散,以减少预测误差,在进行预测时只有在现有条件不变的情况下才能进行,如果条件发生了变化,原来的方程也就失去了效用。 二、难点释疑 本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。为了掌握基本计算的内容,起码应认真理解书上的例题,做完本指导书上的全部计算题。初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy、Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。如果能自己把这些公式推证一下,搞清其关系,那就更容易记住了。 三、练习题 (一)填空题 1事物之间的依存关系,根据其相互依存和制约的程度不同,可以分为(函数关系)和(相关关系)两种。 2.相关关系按相关关系的情况可分为()和();按自变量的多少分(单相关)和(复相关);按相关的表现形式分(线性相关)和(非线性相关);按相关关系的密切程度分(完全相关)、(不完全相关)和(不相关);按相关关系的方向分(正相关)和(负相关)。 3.回归方程只能用于由(自变量)推算(因变量)。 4.一个自变量与一个因变量的线性回归,称为(一元线性回归) 5.估计变量间的关系的紧密程度用(相关系数) 6.在相关分析中,要求两个变量都是随机的,而在回归分析中要求自变量是(不是随机的),因变量是(随机的)。 7.已知剩余变差为250,具有12对变量值资料,那么这时的估计标准误差是()。 8.将现象之间的相关关系,用表格来反映,这种表称为(相关表),将现象之间的相关关系用图表示称(相关图)。

计量经济学 简单线性回归 实验报告

实验报告 1. 实验目的 随着中国经济的发展,居民的常住收入水平不断提高,粮食销售量也不断增长。研究粮食年销售量与人均收入之间的关系,对于探讨粮食年销售量的增长的规律性有重要的意义。 2. 模型设定 为了分析粮食年销售量与人均收入之间的关系,选择“粮食年销售量”为被解释变量(用Y表示),选择“人均收入”为解释变量(用X 表示)。本次实验报告数据取自某市从1974年到1987年的数据(教材书上101页表3.11),数据如下图所示: 为分析粮食年销售量与人均收入的关系,做下图所谓的散点图: 粮食年销售量与人均收入的散点图 从散点图可以看出粮食年销售量与人均收入大体呈现为线性关系,可以建立如下简单现行回归模型:

3.估计参数 假定所建模型及其中的随机扰动项满足各项古典假定,可以用OLS 法估计其参数。 通过利用EViews对以上数据作简单线性回归分析,得出回归结果如下表所示: 可用规范的形式将参数估计和检验的结果写为: 99.61349+0.08147 (6.431242)(0.10738) t= (15.48900) (7.587119) =0.827498 F=57.56437 n=14 4.模型检验 (1).经济意义检验 所估计的参数=99.61349,=0.08147,说明人均收入每增加1元,平均说来可导致粮食年销售量提高0.08147元。这与经济学中边际消费倾向的意义相符。 (2).拟合优度和统计检验 拟合优度的度量:由回归结果表可以看出,本实验中可决系数为0.827498,说明所建模型整体上对样本数据拟合一般偏好。 对回归系数的t检验:针对:=0 和:=0,由回归结果表中还可以看出,估计的回归系数的标准误差和t值分别为:SE()=6.431242,t()=15.48900;的标准误差和t值分别为:SE()=0.10738,t()=7.587119.取a=0.05,查t分布表自由度为n-2=14-2=12的临界值(12)=2.179.因为t()=15.48900>(12)=2.179, 所以应拒绝:=0;因为t()=7.587119>(12)=2.179.所以应拒绝:=0。

多元线性回归模型公式

二、多元线性回归模型 在多要素得地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联得情况。因此,多元地理回归模型更带有普遍性得意义。 (一)多元线性回归模型得建立 假设某一因变量y 受k 个自变量得影响,其n 组观测值为(),。那么,多元线性回归模型得结构形式为: (3.2.11) 式中: 为待定参数; 为随机变量。 如果分别为得拟合值,则回归方程为 ?=(3.2.12) 式中: 为常数; 称为偏回归系数。 偏回归系数()得意义就就是,当其她自变量()都固定时,自变量每变化一个单位而使因变量y 平均改变得数值。 根据最小二乘法原理,()得估计值()应该使 ()[]min (2) 1 2211012 →++++-=??? ??-=∑∑==∧ n a ka k a a a n a a a x b x b x b b y y y Q (3.2.13) 有求极值得必要条件得 (3.2.14) 将方程组(3.2.14)式展开整理后得: ??????????? ?? =++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================n a a ka k n a ka n a ka a n a ka a n a ka n a a a k n a ka a n a a n a a a n a a n a a a k n a ka a n a a a n a a n a a n a a k n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x y x b x x b x x b x b x y b x b x b x nb 11221211101 1 212212 2112101 21111212111210111 12121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2.15) 方程组(3.2.15)式,被称为正规方程组。 如果引入一下向量与矩阵: ??? ??? ? ? ? ????????? ??==kn n n k k k kn k k k n n T x x x x x x x x x x x x x x x x x x x x x x x x X X A ...1..................1...1...1... ...... ... ............1 (1112132313222121211132) 1 2232221 1131211

SPSS多元线性回归分析教程

线性回归分析的SPSS操作 本节容主要介绍如何确定并建立线性回归方程。包括只有一个自变量的一元线性回归和和含 有多个自变量的多元线性回归。为了确保所建立的回归方程符合线性标准,在进行回归分析之前, 我们往往需要对因变量与自变量进行线性检验。也就是类似于相关分析一章中讲过的借助于散点 图对变量间的关系进行粗略的线性检验,这里不再重复。另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。 一、一元线性回归分析 1数据 以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。数据编辑 窗口显示数据输入格式如下图7-8 (文件7-6-1.sav): 图7-8 :回归分析数据输入 2?用SPSS进行回归分析,实例操作如下: 2.1.回归方程的建立与检验 (1) 操作 ①单击主菜单An alyze / Regression / Li near ,?进入设置对话框如图7-9所示。从左边变量表 列中把因变量y选入到因变量(Depe ndent)框中,把自变量x选入到自变量 (I ndepe ndent)框中。在方法即Method —项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方 程时把所选中的全部自变量都保留在方程中。所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。具体如下图所示:

② 请单击Statistics 按钮,可以选择需要输出的一些统计量。 女口 Regression Coefficients (回 归 系数)中的Estimates ,可以输出回归系数及相关统计量,包括回归系数 B 、标准误、标准化回归 系数BETA 、T 值及显著性水平等。 Model fit 项可输出相关系数 R ,测定系数R 2,调整系数、 成后点击Continue 返回主对话框。 回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反 回归分析的假定,为此需进行多项残差分析。由于此部分容较复杂而且理论性较强,所以不在此 详细介绍,读者如有兴趣,可参阅有关资料。 ③ 用户在进行回归分析时,还可以选 择是否输出方程常数。单击 Options ??按钮,打开它的 对话框,可以看到中间有一项 Include constant in equation 可选项。选中该项可输出对常数的检验。 在Options 对话框中,还可以定义处理缺失值的方法和设置多元逐步回归中变量进入和排除方程 的准则,这里我们采用系统的默认设置,如图 7-11所示。设置完成后点击 Continue 返回主对话 框。 估计标准误及方差分析表。 上述两项为默认选项, 请注意保持选中。 设置如图7-10所示。设置完 图7-9线性回归分析主对话框 图7-10: 线性回归分析的 Statistics 选项 图7-11 :线性回归分析的 Options 选项

相关文档
最新文档