引水式水电站水力学计算设计大纲范本概要

引水式水电站水力学计算设计大纲范本概要
引水式水电站水力学计算设计大纲范本概要

FJD34260 FJD

水利水电工程技术设计阶段

引水式水电站水道水利学

计算大纲范本

水利水电勘测设计标准化信息网

1998年1月

1

水电站技术设计阶段

引水式水电站水道水力学计算大纲

主编单位:

主编单位总工程师:

参编单位:

主要编写人员:

软件开发单位:

软件编写人员:

勘测设计研究院

年月

2

目次

1. 引言 (4)

2. 设计依据文件和规范 (4)

3.基本资料 (4)

4.计算原则与假定 (6)

5.计算内容与方法 (6)

6.观测设计 (15)

7.专题研究 (16)

8.应提供的设计成果 (16)

3

4

1 引言

工程位于 ,是以 为主, 等综合利用的水利水电枢纽工程。水库最高洪水位 m,正常蓄水位 m,死水位 m ,最大坝高 m 。电站总装机容量 MW,单机容量 MW,共 台,保证出力

MW

电站设计水头 m,最大水头 m,最小水头 m 。电站最大引用流量 m 3

/s

本工程初步设计于 年 月审查通过。

2 设计依据文件和规范

2.1

(1) 工程可行性研究报告

;

(2) 工程可行性研究报告审批文件

; (3) 工程初步设计报告;

(4) 工程初步设计报告审批文件; (5) 2.2 主要设计规范

(1)SDJ 12—78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分) (试行)及补充规定; (2)SD 134—84 水工隧洞设计规范;

(3)SD 303—88 水电站进水口设计规范(试行); (4)SD 144—85 水电站压力钢管设计规范(试行); (5)DL/T 5058-1996 水电站调压室设计规范;

(6)DL/T 5079-1997 水电站引水渠道及前池设计规范 (7)SL 74—95 水利水电工程钢闸门设计规范; (8)SDL 173—85 水力发电厂机电设计技术规范。

3 基本资料

3.1 工程等级及建筑物级别

(1)根据SDJ 12—78规范表1确定本工程为

(2)根据引水系统工程在水电站枢纽中所处的位置及其重要性,按SDJ 12—78确定建筑物级别为

3.2

(1)各种频率下的洪水流量,和经水库调节后相应的下泄流量; (2)多年平均流量; (3) 3.4

设计计算中常用的各种水位流量资料如表1。

5

表1 水位流量表

3.5

(1)最大坝高、坝型;

(2)进水口主要高程及尺寸:

进口底板高程及喇叭口尺寸、进口曲线型式

;

进口工作闸门中心线桩号、及其底版高程及孔口尺寸; 渐变段长度及尺寸;

(3)引水隧洞直径、长度,渐变段末端桩号,隧洞起点底板或中心线高程,调压室与隧洞中心线交点处桩号及高程

; (4)调压室的体型、尺寸

,

(5)压力管道主管直径、长度、坡度、弯段转弯半径,支管直径、长度、分岔型式,水轮

3.6 机电设备及其主要参数 (1)机组额定转速 r/min; (2)机组飞逸转速 r/min; (3)机组轴向总推力 t; (4)机组旋转方向 ;

(5)机组飞轮力矩GD 2 t/m 2

; 3.6.1

(1)水轮机型号为 ,转轮直径D 1= m; (2)水轮机的特性曲线;

(3)水轮机调速时间 s,及其行程曲线图;

(4)涡壳进口尺寸,涡壳设计最大水头H= m, 涡壳长度为 m,平均流速为 m/s; (5)尾水管型式 ,中心线长度 m,平均流速 m/s; (6)水轮机安装高程 m,水轮机吸出高度H s = m 3.6.2

(1)额定容量 MVA; (2)额定电压 V; (3)额定电流 A; (4)额定功率 ;

(5)额定频率 s -1

; (6)相 数 3.7 运行方式

根据水电站的运行方式,决定引水道的水力计算条件,

6

(1)丢弃负荷时,考虑瞬时全部关机,负荷从100 %→0;相应的流量由Q max →

0; (2)加负荷时,考虑其他机组正常运行时,瞬时开最后一台机组,管道内流量由Q p →(Q

p +q)

4 计算原则与假定

4.1

(1)引水系统的水力计算,除执行本《大纲》外

,还应符合有关规程、规范、标准的规定

(2)设计前应认真收集和分析有关水力计算的原始资料,落实电站的运行方式,并了解有

(3)

有关抽水蓄能电站水道水力设计,参见“抽水蓄能电站水道水力过渡过程计算大纲

4.2 设计假定

(1)根据建筑物的等级,确定洪水位的高程、下泄流量和相应的下游尾水位,作为设计的

(2)按照电站在电网系统中的位置和运行的条件,

(3)在计算调压室的最高和最低涌波以及进行压力管道内的水锤计算时,要计算电站的

1)

(4)引水系统水力计算选用糙率系数时,计算调压室内最高涌波时取小值,计算最低涌波取大值。

5 计算内容与方法

5.1

7

在设计水头时损失应分段计算

:

(1)自进水口至调压室与隧洞交叉处;

(2)自调压室与隧洞交叉处到水轮机进口(即蜗壳进口);

(3)蜗壳尾水管至尾水出口(如有尾水洞及尾水调压室的电站也应计算在内)。 计算情况又分为:

(1)关机情况—采用小的糙率系数计算沿程损失; (2)开机情况— 5.3.1

水流通过的管道自进水口到尾水出口均应包括在内, (1)谢才公式(Chezy)(1775)

v =C(RJ)1/2

(1) 沿程损失:

式中:v 为断面平均流速; C 谢才系数;

R 断面的水力半径,即R =A/P ; J 为水力坡度; Δh f 沿程水头损失; L 隧洞或管道长度; A 断面积; P

(2)曼宁公式(Manning)(1890年)

C=(1/n)R

1/6

(3)

沿程损失:

n 为糙率系数;

A 过水面积; Q 过流量;

R

水力半径,园形断面 R =D/4; L 隧洞或管道长度; D 5.3.2

局部水头损失,可参照有关规范进行计算(如进水口部分可参照SD 303—88附录四……等)。其计算公式如下:

()

22

2R

c L v h f =?()

43

4222L R A Q n h f ???

?????=?

8

v 2

/2g

ζ

局部损失种类如下: (1)进口损失; (2)拦污栅损失; (3)渐变段损失; (4)闸门槽损失; (5)弯管段损失; (6)

5.4

根据枢纽和建筑物的特征及电站的等级,如表1

列出校核情况和设计情况,并计算各种

(1)引用流量计算公式

N 电站出力,MW ;

H 0 电站净水头,m ; η 效率系数。 (2)

表2 各种计算工况表

调压室的水力计算应满足DL/T 5058-1996 调压室的水力计算包括以下内容:

(1)验算水力发电厂工作的稳定性,即确定调压室的稳定面积,以确保不稳定流逐步衰减;

(2)决定调压室的最高涌波;

(2) 5.5.1

为了降低水轮机压力水道中的水锤压力,防止水锤波向隧洞内传播,应按DL/T 5058-1996中的不等式判定是否设置调压室:

T W >〔T W 〕 (7)

T W =ΣLV/(gH) 压力引水道中水流的惯性时间常数,s ;

()

522

g

v h ζ

=?()

681.9ο

ηH N Q =

9

L 压力引水道(包括涡壳和尾水管)各分段的长度,m ; V 各分段内相应的流速,m/s;

g 重力加速度,g=9.81m/s 2

; H 相应水头(最小水头),m ; 〔T W 〕 T W 的允许值,一般取2s ~4s

5.5.2

计算最小稳定断面时,应按电站运行中可能出现的最小水头计算。计算水头损失时,压力引水道应选用可能的最小糙率,压力管道选用可能的最大糙率。调压室的稳定断面按托马(Thoma)公式计算并乘以系数K :

式中: L 压力引水道长度,m;

f 引水隧洞断面积,m 2

; Hj 电站最小净水头,m;

α 自水库至调压室水头损失系数(包括局部损失与沿程摩擦损失),在有连接

管时应计入速头:

K 系数,一般选用1.0 ~ 1.1

5.5.3

调压室涌波计算按

DL/T 5058-1996 (1)

按上游水库正常蓄水位和电站机组满载运行瞬时丢弃全部负荷,或按上游水库设计洪水位,电站满载运行瞬时丢弃全部负荷,作为设计情况进行计算;并按上游水库校核洪水位

,

(2)

调压室的最低涌波水位,按上游水库最低设计水位,电站由(m-1)台机组的过流量增至m 台的情况作计算。

(3)

5.6 水轮机调节保证计算(包括水锤计算)

()

82j

gaH KLf F =

g

V h

a w

212

+

=

10

1

则速率上升值小,

(1)决定压力管道内最大内水压力,作为设计或校核压力管道、涡壳和水轮机强度的依据。 (2)决定管路内最小内水压力,作为布置管线及防止压力管道中产生真空和校核尾水管内

5.6.3 (1) 1)

压力过水系统末端(涡壳末端)的允许相对压力升高值ζmax,目前一般采用下列数值:

11

图2

压力管道内水击压力分布示意图

H o >100m 时, ζmax=0.15~0.30; 当H o =40m ~100m 时, ζmax=0.30~0.50; 当H o <40m 时, ζmax=0.5~0.7 2)

在压力过水系统内任何位置不允许产生负压,且应有2 m ~3 m 的余压; 尾水管进口的允许最大真空度为

8 m (2)

甩满负荷时机组速率上升值β的允许值必须满足SDJ 173—85第2.2.3条中的规定: 当机组容量占电力系统工作总容量的比重较大,且担负调频任务时,宜小于45 %

;

提示:经过专门论证后β值也可略超过55

5.6.4

12

(1)水锤波传播速度a 计算

式中:α 水锤波传播速度,

m/s

1425 为声音在水中的传播速度,m/s ;

E 0 水的弹性模量, E 0=2.1×103

MPa ; E

钢 E =2.1×105

MPa ;

生铁 E =1.0×105

MPa ;

钢筋 E =2.1×104

MPa ; 橡皮 E =2MPa ~ 6 MPa ; D 管道直径,cm ; δ 管壁厚度,

cm (2)

1)

直接水锤:水轮机关闭或开启时间

Ts ≤t Φ=2L /α (10)

间接水锤:水轮机关闭或开启时间

Ts >t Φ=2L /α (11)

式中: Ts 水轮机导叶关闭或开启的时间,s ; α 水锤波传播速度,m /s ;

t Φ 水锤波行驶两倍管路长度所需时间称为水锤的相; L 管道长度,

m

2) σ和

μ 管道系数σ:

管路断面系数μ

:

式中: V 0 管道中的初始流速,m/s ; α 水锤波传播速度,m/s ;

H 0 静水头,即上游水位与尾水位之差,m; T ′s 水轮机导水叶关闭或开启时间,s;

g 重力加速度, g =9.81m/s 2

;

ΣLV 为压力输水管L T V T ,涡壳L C V C 和尾水管L B V B 的总和, ΣLV =L T V T +L C V C +L B V B 。 根据管道特性系数σ和

μ

(3) 1)

()()

()

911425δοD E E a +=()

12's

T

gH LV

a ο∑=

()

132ο

ομgH aV =

13

当μτ0>1.5时, 最大水锤压力发生在末相

:

ξm =(σ/2)[σ±(σ2+4)1/2

] (14)

当μτ0<1时,最大水锤发生在第一相末

:

ξ1=2μ[τ0τ1(1±ξ1)1/2

] (15)

式中:σ、μ 管道特性系数;

ξm 末相水锤相对压力升高或降低; ξ 1 第一相水锤相对压力升高或降低; τ0 导水机构的初始相对开度; τ 1 ξ1:

ξ1=2μ{(τ0+μτ21)-[(τ0+μτ21)2-τ20+τ21]1/2

} (16) 2)

当Ts <2L/α时为直接水锤,其压力升高值为ΔH,在完全关闭(τk =0)时

: ΔH =αV 0/g (17) V 0

(4)

3

1)压力管道的最大压力升高ξT 为:

ξT =〔ΣL T V T /(ΣLV)〕ξmax (18) ΔH T =ξT H 0 (19)

2)涡壳末端最大压力升高ξc 为:

ξc =[(ΣL T V T +ΣL C V C )/(ΣLV)]ξmax (20)

ΔHc =ξcH 0 (21)

3)尾水管中的最大压力降低ηB 为:

ηB =〔(ΣL B V B )/(ΣLV)〕ξmax (22) ΔH B =ηB H 0 (23)

14

4

4)尾水管最大真空度H B 为:

H B =H S +V 2

3/(2g)+ΔH B (24)

式中:H S 吸出高度,m ;

V 3 尾水管进口流速,m/s 5.6.4.2

甩全负荷时转速变化计算公式:

β

β=[(n max -n 0)/n 0]100 % (25)

式中:n 0 初始转数,即甩负荷前机组的稳定转数;

n max 甩负荷过程中机组所达到的最大瞬时转速。 用列宁格勒金属工厂(П·М·З)的公式计算β:

β=-1+[1+(365N 0T)/(GD 2n 20)]1/2=[1+(T/T a )]1/2

1 (26) 式中:G 、D 分别为机组转动部分的重量和惯性直径。由于发电机转子的惯性比机组

其他转动部分的惯性大得多,通常只考虑发电机转子的GD 2

; T 水轮机出力自N 0降低至0时的历时(升速时间); N 0 机组起始出力,kW ;

Ta 机组惯性时间常数,Ta =(GD 2n 2

0)/(365N 0),s

由于导水叶关闭过程中,水轮机出力受水击压力和水轮机特性等因素的影响;和导叶动作滞后以及采用不同导叶启闭规律等因素的影响。必须采用修正系数,常用的有摩根史密斯(S.M.S.)公式:

f =(1+ξcp)3/2

(27)

β=〔T S /(2T a )〕 f C (29) 式中:f 水击影响修正系数;

C 水轮机飞逸特性影响修正系数; T S 导叶总关闭时间,s ;

()

281

211

-+

=

ο

n n T T C p a

s

15

n p 水轮机飞逸转速,r/min ; ξ

cp

其次在我国常用列宁格勒金属工厂(П.М.З.)公式:

β=[1+(T S1/T a )f ]1/2

-1 (30)

式中: f 水击影响修正系数。 当σ<0.6及β<0.5时,可根据σ=(ΣLV)/(gH 0T S )值查图5即得;

T S1 导叶自全开度至空载开度的时间,

s

对混流式和冲击式水轮机T S1=(0.85~0.9) T S ;

对轴流式水轮机T S1=(0.65~0.7) T S 。

图5水击影响系数与管道特性系数σ的关系曲线 图6水轮机出力变化过程线

甩负荷时速率上升值β

:

β=-1+〔1+(365N 0T s1f )/(GD 2n 2。)〕

1/2

(31)

6 观测设计

水道系统应进行的观测(如有关大纲已列,此处可省略

): (1)进水口前水位观测; (2)

(3)进水口拦污栅前、后自计水位观测,量测栅前栅后的水头压差;

(4)

(5)调压室大井内自记水位观测,记录负荷变动时,调压室内的水位变化曲线,自动画制波动 与时间关系曲线,

如果是差动式调压室,在升管内也要布置自计水位计,

(6)压力引水系统的外部观测及水文地质观测。

16

7 专题研究

提示:可能需要进行专题研究的项目有:

(1)研制成套完整的水库水位、下游尾水位、机组出力和流量关系的自动记录装置。 (2) 如何计算复杂管路布置内,在负荷变化时,水锤波的反射的分配,如多台机组联合

运行中,有一台机突然关闭时,对其他机组的影响。

(3)调节保证计算中,根据我国各大电网的情况,对速率上升值β应确定多少合适。 (4)研制一套实测压力管道中,各种不同衬砌材料的糙率系数。

8 应提供的设计成果

8.1 计算成果(含计算书)

(1)水头损失计算成果(含沿程、局部损失)

(2)引用流量计算成果(含各种工况)

(3)调压室水力计算成果(含稳定断面,最高和最低涌波,以及有阻抗孔时的阻抗孔计算); (4)水轮机调节保证计算成果(含水锤计算)

8.2

(1)引水系统管道(含压力管道)

(2)

(3)观测设备布置图及观测设备汇总表。

引水式电站闸坝枢纽工程设计说明书本科毕业设计

本科毕业设计 水电站闸坝枢纽工程设计说明书 摘要 鱼潭水电站位于四川省某自然保护区境内,系岷江一级支流熊猫河干流上的梯级电站。电站规划装机24MW,为有压引水式开发方案。闸址位于岩谷大桥下游约700m处,该处布臵有引水发电隧洞取水口,经过约2.6km的压力隧洞至调压井,然后接约300m长的压力钢管至规划厂址处获得约46m水头。闸坝左岸有省级干道公路通过,交通方便。熊猫河系岷江右岸支流,全长87.9km,流域面积1742 km2。鱼潭水电站闸址距河口约30km,控制流域面积1467 km2,占全流域的84%。为保护区内水力资源丰富,目前熊猫河干支流上已装机326.8MW,约占其理论蕴藏量的37.5%。XX 电站出线将以110千伏一回送入四川主网,它的兴建不仅可以扩大电网的规模,支援四川主网电力,更重要的是对加速振兴保护区经济,办好自然保护区,保护珍稀动植物有着重大的经济意义和社会意义。此前区内已开发兴建的约6.8MW 小型水电站的电力,除用于区内大量的农副产品加工、保护区研究中心科研用电、农民以电代柴及生活照明外,多余容量均已送入四川主网。为加强区内生态环境保护,鱼潭水电站的部分电力将用于进一步实施“以电代柴”,调整区内能源结构。 关键词:水利枢纽;闸坝;全闸方案;枢纽布臵

The abstract The Yutan hydrodynamic station is in a nature egis borough of Sichuan province, and it is a rundle hydrodynamic station of the Panda River potamic trunk which is a anabranch of Minjiang River.The hydrodynamic station mark out 24MW capability.And it is a press citation station. The milldam address locates big bridge downstream in the rock valley about the 700 meters. the place's decoration has already led a water to generate electricity the hole to take the water, has been gone to adjust to press well, then connected the pressure steel pipe that grows about the 300 meters to go to the power plant site to acquire about the 46 meters water head about the pressure hole with 2.6 kilo meters.There is a interprovincial highway stand the left of the milldan ,the traffic is so conveniency.The Panda river is on the right km.The milldan bank of Minjiang river, it is 87.9 kilo meters long, the drainage area is 1742 2 km drainage area,is of the 84% of the address is 30 km long from the bayou, control 1467 2 drainage area.The nature egis’s water resource is wealth, Now the river of the Panda has marked out 326.8MW ,aboat having 37.5% of its theories reserves. The Yutan hydrodynamic station stand a line will with once 110 kilo-Volts send a present in return to go into a Sichuan main net.It is not only can accelerate the economy of the nature egis borough,do well for the nature egis borough, and it will protect the rarity animal and foliage.That is having important economic meaning or society meaning.Now,this areas having buiding about 6.8MW mini-hydrodynamic station’s electric power.Those power is for process the farm produce,for investigate center,for farmer’s living illuming or using electricity to substitute firewood.And the superabundance of the power all sending to Sichuan main net.I n order to strengthen the ecosystem of the area, parts of electric powers will used for the further implement"with electricity substitute firewood", adjusting the energy structure inside the area. Keyword: Hydraulic pivot; milldam; entirely milldam project; Pivot lay

引水式水电站概要

引水式水电站 全部或主要由引水系统集中水头和引用流量以开发水能的水电站。 世界上已建成的引水式水电站,最大水头达1767m(奥地利赖瑟克山水电站);引水道最长的达39km(挪威考伯尔夫水电站)。中国已建成的引水式水电站,最大水头为629m(云南以礼河第三级盐水沟水电站);引水隧洞最长的为8601m(四川渔子溪一级水电站)。 分类引水式水电站可分为无压引水式水电站(图1) 和有压引水式水电站(图2)。无压引水式水电站的引水道为明渠、无压隧洞、渡槽等。有压引水式水电站的引水道,一般多为压力隧洞、压力管道等。 主要建筑物引水式水电站的主要建筑物,根据其位置和用途,可分为以下三个部分。 首部枢纽建筑物有壅高河流水位及将水流引向引水道的挡水建筑物和导流建筑物,有清除污物、杂物和沉淀泥沙的建筑物,有时还有防冰设施和排冰的建筑物,如坝、拦河闸、引水道的进水口、拦污栅、沉沙池、冲淤和排冰设施。其中,有些建筑物可根据当地的地形、地质等条件,布置在首部枢纽或引水道的沿线。 引水道及其辅助建筑物在无压引水道上,常需布设雨水侧向溢流堰、拦沙槛,以及防止崩石、拦截泥石流等保护性工程措施;通常在引水明渠末端建前池或日调节池。在

有压引水道的末端与压力水管之间,常设置调压室,以减少水击影响和改善机组的调节保证条件。 厂房枢纽包括压力水道末端及其以后的一整套建筑物。不论是有压引水式水电站或无压引水式水电站,厂房枢纽主要有水电站主厂房、水电站副厂房、水电站升压开关站、尾水道(明渠或隧洞)。其具体布置有三种方式:①首部布置是将厂房布置在引水道临近进水口的上段,具有较长的尾水隧洞;②中部布置是将厂房布置在引水道中段,引水与尾水道都较长;③尾部布置是将厂房布置在引水道末端附近,引水道很长,但尾水道很短,首部及中部布置均采用地下式厂房。尾部布置则可采用地面式厂房、地下式厂房或半地下式厂房(见水电站厂房)。具体布置方法根据地形、地质条件择优选定,并根据水电站运行条件决定是否在引水洞、尾水洞上设调压室。 适用条件在河流比降较大、流量相对较小的山区或丘陵地区的河流上,当可在较短的河段中,以较小尺寸的引水道取得较大的水头和相应的较大发电功率时,建设引水式水电站常是经济合理的。有时采用裁弯取直引水或跨流域引水,也可建造经济合理的引水式水电站。在丘陵地区,引水道上下游的水位相差较小,常采用无压引水式水电站;在高山峡谷地区,引水道上下游的水位相差很大,常建造有压引水式水电站。与坝式水电站相比,引水式水电站引用的流量常较小,又无蓄水库调节径流,水量利用率较差,综合利用效益较小。但引水式水电站因无水库淹没损失,工程量又较小,单位造价往往较低,常成为其主要优点。

水电站课程设计报告

1.课程设计目的 水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。 2.课程设计题目描述和要求 2.1工程基本概况 本电站是一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。 本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。 2.2设计条件及数据 1.厂区地形和地质条件: 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.水电站尾水位: 厂址一般水位12.0米。 厂址调查洪水痕迹水位18.42米。 3.对外交通: 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度: 本地区地震烈度为六度,故设计时不考虑地震影响。

高程布置参考—给水处理厂课程设计计算手册

给水处理厂课程设计计算书 12.高程布置 为了配合平面布置,我们首先应根据下表估计各构筑物之间连接管渠的大小及长度大致水头损失。然后在平面布置确定后,按水力学公式逐步计算各构筑物之间的水 构筑物 沉淀池~滤池0.3~0.5 快滤池内 2.0~3.0 虹吸、无阀滤池 1.5~2.0 滤池到清水池0.3~0.5 1.3.4高程布置设计计算

1.3.4.1水处理构筑物的高程布置设计计算 1.水头损失计算 在处理工艺流程中,各构筑物之间水流应为重力流。两构筑物之间水面高差即为流程中的水头损失,包括构筑物本身、连接管道、计量设备等水头损失在内。水头损失应通过计算确定,并留有 余地. (1)处理构筑物水头损失 处理构筑物中的水头损失与构筑物的型式和构造有关,具体根据设计手册第3册表15-13 g ——重力加速度,2/m s 。 ① 配水井至絮凝池连接管线水头损失 a )沿程水头损失 配水井至絮凝池连接管采用800DN 钢管,管长15l m =。 考虑浑水的因素0.015n =,按0.013n =查设计手册第1册水力计算表得 1.8i =‰,换算成相当 于0.015n =时的i : 浑水管长15m 算得沿程损失为:

b)局部水头损失 管路中,进口1个,局部阻力系数 10.50 ξ=;急转弯管1个, 20.90 ξ=;闸阀1个, 30.06 ξ=; 90o弯头1个, 41.05 ξ= ;出口1个,局部阻力系数 5 0.04 ξ=,则局部阻力系数总计为: 管内流速 1.11/ v m s =,则管路局部水头损失为: c)总水头损失 ②絮凝池至沉淀池 絮凝池与沉淀池合建,其损失取0.1m。 ③沉淀池至V a)沿程水头损失 沉淀池至V型滤池连接管采用900 DN钢管,管长l= 21.052 2.1 ξ=?=; 闸阀2 43.0 ξ=;出口1个,V,按0.013 n=查设计手册第1册水力计算表得 2.4 i=‰,则V型滤池至清水池连接管沿程损失为: b)局部水头损失 管路中,进口1个,局部阻力系数 10.50 ξ=;90?弯头3个,局部阻力系数 21.053 3.15 ξ=?=; 闸阀1个, 30.06 ξ=;出口1个,局部阻力系数 41.00 ξ=,则局部阻力系数总计为:管内流速 1.0/ v m s =,则管路局部水头损失为: c)总水头损失

引水式水电站水力学计算设计大纲范本概要

精品文档 i 欢迎下载 FJD34260 水利水电工程技术设计阶段 引水式水电站水道水利学 计算大纲范本 水利水电勘测设计标准化信息网 1998年1月 FJD

_____水电站技术设计阶段 引水式水电站水道水力学计算大纲 主编单位: 主编单位总工程师:参编单位: 主要编写人员:软 件开发单位:软件 编写人员: ______ 勘测设计研究院 年月 2欢迎下载

目次 1. 引言. (4) 2. 设计依据文件和规范. (4) 3. 基本资料 (4) 4. 计算原则与假定 (6) 5. 计算内容与方法 (6) 6. 观测设计 (15) 7. 专题研究 (16) 8. 应提供的设计成果 (16) 3欢迎。下载

4欢迎下载 1引言 工程位于,是以 为主,等综合利用的水利水电枢纽工程。水库最高洪水位 m, 正常蓄水位 m,死水位 m ,最大坝高 m 。电站总装机容量 MW,单机容量 MW,共 台,保证出力 MW 。 3 电站设计水头 m,最大水头 m,最小水头 m 。电站最大引用流量 m /s 。 本工程初步设计于 年 月审查通过。 2设计依据文件和规范 2.1 有关本工程的文件 (1) 工程可行性研究报告; ⑵ 工程可行性研究报告审批文件 ⑶ 工程初步设计报告; ⑷ 工程初步设计报告审批文件 有关的专题报告。 2.2 主要设计规范 水利水电枢纽工程等级划分及设计标准 试行)及补充规定; 水工隧洞设计规范; 水电站进水口设计规范(试行); 水电站压力钢管设计规范 (试行); 水电站调压室设计规范; 水电站引水渠道及前池设计规范 水利水电工程钢闸门设计规范; 水力发电厂机电设计技术规范。 3基本资料 3.1 工程等级及建筑物级别 (1) 根据SDJ 12 — 78规范表1确定本工程为 等工程。 (2) 根据引水系统工程在水电站枢纽中所处的位置及其重要性 ,按SDJ 12 — 78确定建筑 物级别为 级。 3.2 技术设计阶段工程枢纽布置图 提示:本设计阶段,各建筑物的布置图,应包括建筑物的体型尺寸、位置、高程、桩号 3.3 水文资料 (1) 各种频率下的洪水流量,和经水库调节后相应的下泄流量 (2) 多年平均流量; (3) 厂房尾水出口处的水位流量关系曲线。 3.4 水位资料 设计计算中常用的各种水位流量资料如表 1。 SDJ 12 — 78 ( SD 134 — 84 (1) SD 303 — 88 (2) SD 144 — 85 ⑸ DL/T 5058-1996 ⑹ DL/T 5079-1997 (7) SL 74 — 95 (8) SDL 173 — 85 (山区、丘陵区部分)

水电站课程设计

一、原始资料及设计条件 1、概述 1.1工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2. 工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW。 2、水文气象资料 2.1洪水 各频率洪峰流量详见下表1。 (1)下坝址水位~流量关系曲线详见下表2。 表3 上坝址水位~流量关系曲线表(高程系统:85黄海) (3)厂址水位~流量关系曲线详见下表4。 表4 厂址水位~流量关系曲线表(高程系统:85黄海)

多年平均含沙量:0.089kg/m3 多年平均输沙量:22.05万t 设计淤沙高程:169.0m 淤沙内摩擦角:100 淤沙浮容重:0.9t/m3 2.4气象 多年平均气温:16.6℃ 极端最高气温:39.1℃ 极端最低气温:-8.6℃ 多年平均水温:18.2℃ 历年最高气温:34.1℃ 历年最低气温: 2.1℃ 多年平均风速: 1.40m/s 历年最大风速:13.00m/s,风向:NE 水库吹程: 3.0km 最大积雪厚度:21cm 基本雪压:0.25KN/m3 3、工程地质与水文地质 3.1工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2)基岩物理力学指标如下 上坝址 饱和抗压强度:20~30MPa 抗剪指标:f砼/岩=0.6~0.65 抗剪断指标:f′砼/岩=0.8~0.9 c′=0.7~0.8MPa 下坝址 饱和抗压强度:15~25MPa 抗剪指标:f砼/岩=0.6~0.62 抗剪断指标:f′砼/岩=0.7~0.8 c′=0.70MPa 3.2坝址工程地质条件 (1)上坝址工程地形、地质条件 上坝址位于河流弯曲段下游,流向2790,基本为“U”型横向河谷。河床基岩裸露,高程181~184m,河床宽136m,水深0.5~3.0m。坝轴线上游100~350m,河床深槽较发育,一般槽宽20~40m,槽深11~14.5。当蓄水位192m 时,河谷宽161m ,左岸冲沟较发育,坝轴线上、下游分别分布2# 及3# 冲沟,边坡具下陡上缓特征,高程227m以下坡角450,以上坡角250,山顶高程271m ;右岸地形较平顺,上游有一小冲沟分布,边坡较陡峻,坡角350~450,山顶高程292m。

引水式水电站设计分析

引水式水电站设计分析 摘要:随着国民经济水平的不断提高,我国的电力事业也得到了很大的发展。水电站在电力行业中占有很大的比重,其设计、施工质量对于电力企业的生产具有重要的影响。引水式水电站是较简单的一种引水发电站类型,工程涉及战线长、范围广、考虑因素多。文章主要讨论引水式水电站设计对坝址、厂址、引水线路的选择及压力前池设计和电站装机容量的确定等,供引水式水电站设计者参考。 关键词:引水式水电站;坝址;厂址;引水渠道;压力前池 一、引水式水电站坝址的选择及布置 1.1 水电站坝址的选择 在引水式水电站的设计过程中,设计人员要注重坝址的选择。在实际的操作过程中,相关工作人员要加强对相关河道的自然条件进行调查和分析,关注相关的地质问题,而且还要对工程投资以及综合管理进行分析。在引水设计方面,要选择河床比较稳定并且水量大的河段。此外,对于要求比较严格的水电站,相关工作人员要将相关的渠道设置在河水溢出带的下游,这样就能够增大河水从河床两侧的溢出量,可以在很大程度上提高水电站的发电量,使得水电站在冬季能够正常运行。值得注意的是,对于在春季和冬季上游冰量较多的河道,相关工作人员还要采取一定的除冰设计措施。要设置科学合理的水闸,使得冰块能够顺利通过。 在渠道型式的选择上,要注重选择合理的模式。一般来讲,当前使用较多的渠道,其正面一般用作排沙、泄洪以及排冰,而侧面则主要是拦河闸和拦河坝。在实际的河道考察和设计过程中,要密切注意水流方向以及水流条件,使得河道的轴线与排冰、泄洪能够在一条直线上,这样能够切实地保护相关河道不会受到较多破坏,实现耗水量少、流水效果好的目的。 1.2 枢纽布置 在引水式水电站的设计过程中,水电站枢纽的布置非常重要。在实际操作过程中,应根据工程开发的方式以及河流的水流特点,合理布置枢纽。当前比较常见的枢纽形式主要包括坝、闸混合式以及全闸布置两种形式。坝、闸混合式枢纽的优点是运行较为方便灵活,投资相对较少,而且具有较强的安全性能,在投入使用之后,其管理控制相对较为方便。而全闸式枢纽具有较好的排除推移能力,其泄流能力也较大,但是,其缺点也是非常明显的,主要表现在:运行不够灵活、管理难度相对较大,闸门的启用也比较频繁。 2 引水式水电站的引水线路设计 2.1 引水渠道的轴线选择

塔的水力学计算手册

塔的水力学计算手册

1.目的与适用范围 (1) 2.塔设备特性 (1) 3.名词术语和定义 (1) 4.浮阀/筛孔板式塔盘的设计 (1) 5.填料塔的设计 (1)

1.目的与适用范围 为提高工艺工程师的设计质量,推广计算机应用而编写本手册。 本手册是针对气液传质塔设备中的普遍性问题而编写。对于某些具体塔设备的数据(比如:某生产流程中针对某塔设备的板效率而采用的计算关联式,或者对于某吸收填料塔的传质单元高度或等板高度而采用的具体计算公式)则未予收入。本设计手册以应用为主,主要是指导性的计算方法和步骤,并配合相应的计算程序,具体公式及理论推阐可参考有关文献。 2.塔设备特性 作为气(汽)、液两相传质用的塔设备,首先必须能使气(汽)、液两相得到充分的接触,以得到较高的传质分离效率。 此外,塔设备还应具有以下一些特点: (1)当气(汽)、液处理量过大(超过设计值)时,仍不致于发生大量的雾 沫挟带或液泛等影响正常操作的现象。 (2)当操作波动(设计值的50%~120%)较大时,仍能维持在较高的传 质效率下稳定操作,并具有长期连续操作所必须具备的可靠性。 (3)塔压力降尽量小。 (4)结构简单、耗材少、制造和安装容易。 (5)耐腐蚀、不易堵塞。 (6)塔内的滞留液量要小。 3.名词术语和定义 3.1 塔径(tower diameter),D T 塔筒体内壁直径,见图3.1-(a)。 3.2 板间距(tray spacing),H T 塔内相邻两层塔盘间的距离,见图3.1-(a)。 3.3 降液管(downcomer),DC 各层塔盘之间专供液相流体通过的组件,单溢流型塔盘为侧降液管,双溢流型塔盘有侧降液管和中央降液管,三或多溢流型塔盘有侧降液管、偏侧降液管、偏中央降液管及中央降液管。 3.4 降液管顶部宽度(DC top width),Wd 弓形降液管面积的弦高。掠堰另有算法,见图3.1-(a),-(b)。 3.5 降液管底间隙(DC clearance),ho 降液管底部边缘至塔盘(或受液盘)之间的距离,见图3.1-(a)。 3.6 溢流堰高度(weir height),hw 降液管顶部边缘高出塔板的距离,见图3.1-(a)。 3.7 总的塔盘横截面积(total tower cross-section area),A T

某水电站设计课程设计 精品

第一章原始资料及设计条件 1.1 概述 1.1.1 工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW,根据水利水电工程等级划分的规定,工程规模为小(1)型,工程等别为Ⅳ等。永久性建筑物闸坝、电站厂房等属4级建筑物,临时建筑物属5级。 1.2 水文气象资料 1.2.1 洪水 各频率洪峰流量详见下表 表1-1 坝址洪峰流量表 1.2.2 水位~流量关系曲线: 表1-2 下坝址水位~流量关系曲线表高程系统:85黄海

表1-3 上坝址水位~流量关系曲线表 高程系统:85黄海 表1-4 厂址水位~流量关系曲线表 高程系统:85黄海 多年平均含沙量:0.0893/m kg ; 多年平均输沙量:22.05万t ;设计淤沙高程:169.0m ;淤沙内摩擦角:10?;淤沙浮容重:0.93/m t 。 1.2.4 气象 多年平均气温:16.6?C ;极端最高气温:39.1?C ;极端最低气温:-8.6?C ;多年平均水温:18.2?C ;历年最高气温:34.1?C ;历年最低气温:2.1?C ;多年平均风速:1.40s m /; 历年最大风速:13.00s m /,风向:NE ;水库吹程:3.0km ;最大积雪厚度:21cm ;基本雪压:0.252/m KN 。 1.3 工程地质与水文地质 1.3.1 工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2) 基岩物理力学指标 上坝址:饱和抗压强度:20~30MPa ;抗剪指标:岩砼/f =0.6~0.65;抗剪断指标:

引水式水电站水力学计算设计大纲范本概要

FJD34260 FJD 水利水电工程技术设计阶段 引水式水电站水道水利学 计算大纲范本 水利水电勘测设计标准化信息网 1998年1月 1

水电站技术设计阶段 引水式水电站水道水力学计算大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3.基本资料 (4) 4.计算原则与假定 (6) 5.计算内容与方法 (6) 6.观测设计 (15) 7.专题研究 (16) 8.应提供的设计成果 (16) 3

4 1 引言 工程位于 ,是以 为主, 等综合利用的水利水电枢纽工程。水库最高洪水位 m,正常蓄水位 m,死水位 m ,最大坝高 m 。电站总装机容量 MW,单机容量 MW,共 台,保证出力 MW 电站设计水头 m,最大水头 m,最小水头 m 。电站最大引用流量 m 3 /s 本工程初步设计于 年 月审查通过。 2 设计依据文件和规范 2.1 (1) 工程可行性研究报告 ; (2) 工程可行性研究报告审批文件 ; (3) 工程初步设计报告; (4) 工程初步设计报告审批文件; (5) 2.2 主要设计规范 (1)SDJ 12—78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分) (试行)及补充规定; (2)SD 134—84 水工隧洞设计规范; (3)SD 303—88 水电站进水口设计规范(试行); (4)SD 144—85 水电站压力钢管设计规范(试行); (5)DL/T 5058-1996 水电站调压室设计规范; (6)DL/T 5079-1997 水电站引水渠道及前池设计规范 (7)SL 74—95 水利水电工程钢闸门设计规范; (8)SDL 173—85 水力发电厂机电设计技术规范。 3 基本资料 3.1 工程等级及建筑物级别 (1)根据SDJ 12—78规范表1确定本工程为 (2)根据引水系统工程在水电站枢纽中所处的位置及其重要性,按SDJ 12—78确定建筑物级别为 3.2 (1)各种频率下的洪水流量,和经水库调节后相应的下泄流量; (2)多年平均流量; (3) 3.4 设计计算中常用的各种水位流量资料如表1。

工艺专业塔器水力学计算设计导则

1 塔器设计概述 1.1 石油化工装置中塔器占有很大的比重。几乎每种工艺流程都存在蒸馏或吸收等分离单元过程,因此塔器设计至关重要。往往塔器设计的优劣,决定着装置的先进性和经济性,必须给予重视。 1.2 塔器设计与工艺流程设计有着非常密切的关系,亦即塔器的选型和水力学计算与工艺流程的设计计算是结合在一起的。有时塔器设计影响着分离流程和操作条件的选择。例如减小蒸馏塔的回流比,能降低能耗,但塔板数增加,对塔器讲就是减小塔径和增加塔高,其中必有一个最经济条件的选择。又如真空塔或对釜温有要求的蒸馏塔均对压降要求较严,需要选择压降低的板式塔或填料塔,在塔器水力学计算后,压降数据要返回工艺作釜温核算。 1.3 一般工艺流程基本确定后,进行塔器的选型、设计等工作。塔器设计涉及到工艺、化学工程、设备、仪表、配管等专业。化学工程专业的任务及与各专业间关系另有说明。见化学工程专业工作手册H-P0101-96、H-P0301-96。 1.4 随着石油化工和科技的迅猛发展,蒸馏塔从一般的一股进料、二股产品的常规塔发展为多股进料、多侧线,有中间换热的复杂塔。要求塔的生产能力大、效率高、塔板数多,即大塔径、多程数、高效、低压降等,对塔器设计提出了更高的要求,并推动了塔器设计工作的发展。 1.5 近年来电子计算机的普及和发展,为工艺与塔器设计提供了有力的工具。我们可应用PROCESS或PRO/Ⅱ等工艺流程模拟软件进行计算,得到塔的最大和最小汽液负荷、密度等数据,以便进行分段的塔的水力学计算,使工艺和塔的水力学计算能同步进行,并作多方案比较,求得最佳设计。 1.6 设计中主要考虑的问题 1.6.1 确定工艺流程(尤其是分离流程) 通过工艺流程模拟电算,选定最佳切割方案,其中包括多股进料、侧线采出、进料状态和位置等方面的选择。 1.6.2 塔压的设定

电大水利水电 —水电站__课程设计 (本科)汇编

《某小型水电站设计》 课程设计 学生姓名: 学号: 专业:水利水电 指导教师:

第一章内容简介 内容摘要 本设计为一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。整个设计根据地形及地质条件和相关资料、规格等要求,进行全面结合考虑,力图合理、科学,有较强的实用性。 关键词:引水式径流水电站设计规划

第二章有关设计资料 2.1 厂区地形和地质条件 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.2 水电站尾水位 厂址一般水位10.0米。 厂址调查洪水痕迹水位18.42米。 2.3 对外交通 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。 2.4 地震烈度 本地区地震烈度为六度,故设计时不考虑地震影响。

某水电站引水系统设计

某水电站引水系统设计 该水电站所在河流中下游地段侧向侵蚀作用十分强烈,形成迂回曲折的蛇形地貌,为修建引水式水电站提供了有利的地形条件。某水电站的引水隧洞和厂房位于南天门岭,此处分水岭宽约800m ,而两端河水位差达13m ,本区地层主要是前震旦系的黑云母混合片麻岩通过,沿洞线未发现断层,且洞线顶上部新鲜岩体厚达80~160m ,深部裂隙已趋闭合因此工程地质条件较好,洞线前部通过两条较大岩脉均大致与洞线正交,一条为石英斑岩,宽30~40m ,另一条为正常闪岩,宽26~30m ,岩脉与围岩接触良好,厂房后山坡地形坡度约50o~60o,坡高40m 左右,后山坡边坡基本稳定。 7.1隧洞洞径及洞线选择 布置考虑了地质条件、地形条件、施工条件与水力条件,由于施工技术条件的限制,引水洞径不宜大于12m ,因此,选择两条引水隧洞,四条压力管道分别给每台机组供水,供水方式为单元供水(即单管单机),钢管轴线与厂房轴线相垂直,这样可以使水流平顺,减小水头损失。 7.1.1有压引水隧洞洞径计算 由于水轮机选型部分已知单机最大引用流量:3max 124.91/Q m s = 隧洞断面面积:max 2e Q A V = 24 A D π= 式中: 4.2/e V m s = 由上式得:2max 22124.9159.484.2e Q A m V ?= == 则洞径8.7D m === 本设计中取9.0D m =。 7.1.2洞线选择原则 1)地质条件:尽可能位于完整坚硬的岩石中,避开岩体软弱、山岩压力大、地下水充沛及岩石破碎带、地震区。必须穿越软弱夹层或断层时尽可能正交布置。隧洞通过层状岩体时洞线与岩层走向夹角尽可能大,以利于围岩稳定,提高承载

理正岩土使用手册-水力学

第一章 功能概述 理正工程水力学计算软件包含有五个计算内容:倒虹吸水力学计算、渠道水力学计算、水闸水力学计算、隧洞水力学计算和消能工水力学计算。 倒虹吸水力学计算模块可计算倒虹吸的过水能力、设计倒虹吸管径; 渠道水力学计算模块含有清水渠道均匀流的水力计算、清水渠道非均匀流的水力计算和挟沙水流渠道的水力计算; 水闸水力学计算模块适用于无坎宽顶堰、有坎宽顶堰、WES实用堰上的平板和弧形闸门,可计算水闸的泄流能力、设计闸孔宽度和确定闸门的开启度; 水工隧洞水力学计算模块适用于矩形、圆形、拱形断面隧洞的水力设计,对无压隧洞可计算洞的过流能力和设计断面尺寸,半有压隧洞可校核隧洞的过流能力,对于有压隧洞可计算隧洞在不同水位、不同闸门开度下的泄流量,并可在已知过流量条件下校核上游水位,还可绘制出总水头线和压坡线,形象的显示洞身各点有无负压; 消能工水力学计算模块适用于底流式消能工和挑流式消能工的水力设计。底流式消能工中包括下挖式消力池、突槛式消力池(消力墙)和综合式消力池三种基本型式,可进行消力池尺寸设计计算和校核消能能力。挑流式消能工可进行连续式挑流鼻坎的水力计算。 五个计算模块最后都给出计算的图形结果、文字结果及图文并茂的计算书。 第二章 快速操作指南 2.1 操作流程 理正工程水力学计算软件的操作流程如图2.1-1,每一步骤都有相对应的菜单操作。 图2.1-1 操作流程 2.2 快速操作指南

2.2.1 选择工作路径 设置工作路径,既可以调入已有的工作目录,也可在输入框中键入新的工作目录,后面操作中生成的所有文件(包括工程数据及计算书等)均保存在设置的工作目录下。 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某单个计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。 2.2.2 增加计算项目 工程水力学计算软件包含有五个计算内容:倒虹吸水力学计算、渠道水力学计算、水闸水力学计算、隧洞水力学计算和消能工水力学计算。用户可根据需要选择。 图2.2-2 当选好一个计算项目后,点击【工程操作】菜单中的“增加项目”或“增”按钮来新增一个计算项目(以水闸水力学计算为例)。

引水式水电站水力学计算设计大纲概要

34260 水利水电工程技术设计阶段 引水式水电站水道水利学 计算大纲范本 水利水电勘测设计标准化信息网 1998年1月

水电站技术设计阶段 引水式水电站水道水力学计算大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3.基本资料 (4) 4.计算原则与假定 (6) 5.计算内容与方法 (6) 6.观测设计 (15) 7.专题研究 (16) 8.应提供的设计成果 (16)

1 引言 工程位于 ,是以为主, 等综合利用的水利水电枢纽工程。水库最高洪水位 m,正常蓄水位 m,死水位 m,最大坝高 m。电站总装机容量 ,单机容量 ,共台,保证出力。 电站设计水头 m,最大水头 m,最小水头 m。电站最大引用流量 m3。 本工程初步设计于年月审查通过。 2 设计依据文件和规范 2.1 有关本工程的文件 (1) 工程可行性研究报告; (2) 工程可行性研究报告审批文件; (3) 工程初步设计报告; (4) 工程初步设计报告审批文件; (5)有关的专题报告。 2.2 主要设计规范 (1) 12—78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分) (试行)及补充规定; (2) 134—84 水工隧洞设计规范; (3) 303—88 水电站进水口设计规范(试行); (4) 144—85 水电站压力钢管设计规范(试行); (5) 5058-1996 水电站调压室设计规范; (6) 5079-1997 水电站引水渠道及前池设计规范 (7) 74—95 水利水电工程钢闸门设计规范; (8) 173—85 水力发电厂机电设计技术规范。 3 基本资料 3.1 工程等级及建筑物级别 (1)根据 12—78规范表1确定本工程为等工程。 (2)根据引水系统工程在水电站枢纽中所处的位置及其重要性,按 12—78确定建筑物级别为级。 3.2 技术设计阶段工程枢纽布置图 提示:本设计阶段,各建筑物的布置图,应包括建筑物的体型尺寸、位置、高程、桩号...... 等。 (1)各种频率下的洪水流量,和经水库调节后相应的下泄流量; (2)多年平均流量; (3)厂房尾水出口处的水位流量关系曲线。 3.4 水位资料 设计计算中常用的各种水位流量资料如表1。

水电站课程设计

《水电站建筑物》课程设计BL电站计算说明书 姓名: 学号: 指导教师: 年月日

一、基本资料 1.1工程概况 根据某市供水和灌溉的需求,于X河的Y河口坝址修建BL水电站。该电站水库控制流域面积2085km2,坝址处多年平均径流量7.21×108m3。 水库属大(2)型,工程等别为Ⅱ等,主要建筑物为2级,次要建筑物为3级。采用混合坝型,拟建一座坝后式水电站。电站尾水泄入灌溉渠道,结合工农业用水进行发电。 水电站厂房按3级建筑物设计,厂房经右岸坝下公路对外联系。 1.2设计的目的与任务 目的:通过本次课程设计,使学生将所学水电站基本知识加以系统化,能够运用基本理论知识解决实际工程问题,使学生在分析问题、理论计算、制图、编写说明书与计算书等方面得到锻炼,初步掌握水电站的设计步骤、方法、基本理论,为参加工作打下基础。 任务:进行水轮机选型与厂房布置设计。 1.3BL电站设计资料 气象资料: 该地区多年平均气温9.3℃,最低气温-35.8℃。最大风速北风21m/s。最大冰厚0.37m。地面冻结深度一般在1.1m左右。 水文资料: (1)水库特征水位与溢洪道泄量特征: (2 电站尾水渠出口即为灌溉渠道的渠首,渠底高程40.35m,渠顶高程45.90m,渠

道设计流量48.0m 3/s 。渠道加大流量53.0m 3/s 。 电站尾水渠水位流量关系表(Z ~Q ): (3)厂房地质资料 水库坝址系由变质岩、沙岩、熔岩及花岗岩类组成,坝址有一组北北西向断层,在厂房范围内有一小断层通过。 本地区地震基本烈度为Ⅶ度。厂房设计烈度为7度。 (4)水轮机选型的基本资料: 经水能计算,最终确定: 1.电站最大水头H max =27.8m ; 2.加权平均水头H a =22.1m ; 3.设计水头H r =21.3m ; 4.电站正常运转时的最小水头H min =14.0m 。 5.水电站总装机容量N f =6400kW ,考虑水电站运行及用水量变化规律,经方案比较,决定选用两台机组。发电机效率ηf =0.91。 二、 水轮机的选型 本水电站的最大水头H max =27.8m ,正常运转时最小水头H min =14.0m ,加权平均水头H a =22.1m ,设计水头H r =21.3m 。水电站总装机容量N f =6400kW ,设计装机台数2台,单机容量N y1=3200kW 。 2.1水轮机型号选择 根据该水电站的水头变化范围14.0~27.8m ,查《水电站(第三版)》,河海大学,刘启钊主编P 73表3-4水轮机系列型谱中查出合适的机型有HL240、HL310。选择HL240。 2.2 转轮直径的计算 转轮直径D 1按下式计算: m H H Q N D r 63.1%6.893.213.2140.181.93200 81.9r '1r 1=????= =η (2-1) 式中 N r ——水轮机的额定出力,3200kW ; H r ——水轮机的设计水头,21.3m ; '1Q ——原型水轮机单位流量,初步假定s /40.13'1'1m Q Q M ==; η ——与'1Q 相应的原型效率,假设为89.6%。 根据计算结果,D 1=1.63m ,应选择与之相近且偏大的轮转标称直径,但D 1=1.8m 相差太大,可近似取为D 1=1.6m 。

水电站引水系统设计

某水电站引水系统设计 该水电站所在河流中下游地段侧向侵蚀作用十分强烈,形成迂回曲折的蛇形地貌,为修建引水式水电站提供了有利的地形条件。某水电站的引水隧洞和厂房位于南天门岭,此处分水岭宽约800m ,而两端河水位差达13m ,本区地层主要是前震旦系的黑云母混合片麻岩通过,沿洞线未发现断层,且洞线顶上部新鲜岩体厚达80~160m ,深部裂隙已趋闭合因此工程地质条件较好,洞线前部通过两条较大岩脉均大致与洞线正交,一条为石英斑岩,宽30~40m ,另一条为正常闪岩,宽26~30m ,岩脉与围岩接触良好,厂房后山坡地形坡度约50o~60o,坡高40m 左右,后山坡边坡基本稳定。 7.1隧洞洞径及洞线选择 布置考虑了地质条件、地形条件、施工条件与水力条件,由于施工技术条件的限制,引水洞径不宜大于12m ,因此,选择两条引水隧洞,四条压力管道分别给每台机组供水,供水方式为单元供水(即单管单机),钢管轴线与厂房轴线相垂直,这样可以使水流平顺,减小水头损失。 7.1.1有压引水隧洞洞径计算 由于水轮机选型部分已知单机最大引用流量:3max 124.91/Q m s = 隧洞断面面积:max 2e Q A V = 24 A D π= 式中: 4.2/e V m s = 由上式得:2max 22124.9159.484.2e Q A m V ?= == 则洞径8.7D m === 本设计中取9.0D m =。 7.1.2洞线选择原则 1)地质条件:尽可能位于完整坚硬的岩石中,避开岩体软弱、山岩压力大、地下水充沛及岩石破碎带、地震区。必须穿越软弱夹层或断层时尽可能正交布置。隧洞通过层状岩体时洞线与岩层走向夹角尽可能大,以利于围岩稳定,提高承载

山区径流引水式电站设计

山区径流引水式电站设计 1电站装机容量的确定 径流式电站设计要按水能最大利用率合理确定电站装机容量,有2种根据:一种是根据多年平均典型年日平均流量设计保证率下的最大工作容量,再加备用容量和季节容量及机组供货情况确定;另一种是以多年月平均流量系列计算的设计流量作为确定电站最终装机容量。这2种确定电站装机容量的方法,对于并网电站来说,前一种方法,往往会使电站装机容量偏小,导致装机利用小时数偏高,出现弃水过多,使水能利用率降低;后一种方法确定电站装机容量,能提高径流引水式电站水能利用率,特别是可有效地利用汛期弃水电能。为此,对径流引水并网电站最好采用第2种方法确定电站装机容量。 2合理选择水轮发电机组 水轮发电机组是水电站的主要机电设备。机组选型设计的正确与否,直接关系到电站的造价、出力以及投产后的运行优劣等。按照以往的情况,对农村小型径流式电站(单机容量小于500kW的电站),设计者往往只是根据水能计算所提供的电站设计水头及单机引用流量2项参数,在水轮机生产厂家所提供的产品目录上选定水轮机的规格型号,然后按照产品目录上提供的水轮机转速、出力等配套发电机。用这种方法选定的水轮发电机组,往往会造成电站的投资增大,投产后机组长期处于非高效区运行、偏高设计工况大、机组效率降低、气蚀增大等不良后果。为了尽量减少上述不利因素的出现,在小型径流式机组选型设计上应重点考虑下列 几个方面: 1)水轮机机型 根据各种机型在不同的工况下,效率及稳定性有较大区别的运行特点,选择适合电站相关条件的机型,有利于提高机组的运行效率和运行的稳定性。比如,XJ型机组,运行效率较好,但价格较贵;CJ型机组,在枯水期出力小于50%以下,运行仍稳定,无明显气蚀,最高效率可达69%左右;SJ型机组,适应水头10~55m,流量0.5~0.7m3/s,出力22~320kW 的电站,这种机型效率高,即使在10%的流量下,也能充分运转,很适合流量变化大的径流式电站。 2)径流电站设计水头 对径流引水式电站,设计水头宜采用电站加权平均水头,尽量保证水轮机额定水头与实际水头相符。 3)引用流量 经水文计算,选取一定保证率下的设计流量作为机组的额定流量,对于径流式电站宜采用多年月平均流量系列计算设计流量。 4)做好机组出力的核验工作 在电站选型设计中必须依据设计水头、单机引用流量等参数,对初选的水轮机转速、转轮直径根据综合特性曲线,作出水轮机运行特性曲线,进行效率、出力、机型等方面的核验工作,最后择优而用。根据所选定的水轮机出力、转速和装置形式、发电机效率等配套发电机。 3 增大前池库容,提高电站的调节能力

相关文档
最新文档