数学建模投篮命中率的数学模型

数学建模投篮命中率的数学模型
数学建模投篮命中率的数学模型

数学建模投篮命中率的

数学模型

Company number【1089WT-1898YT-1W8CB-9UUT-92108】

投篮命中率的数学模型

摘要

随着篮球运动的普及,篮球比赛中紧张、激烈的气氛和更加具有攻击性的防守等因素导致投篮命中率大大降低。根据研究显示,影响投篮命中率有两个关键因素:出手角度和出手速度。本文主要运用运动力学的知识,建立有效的篮球投射模型, 从篮球投射时球的出手角度、出手速度、出手高度和篮球球心与篮框中心的水平距离、篮球入射角之间的关系入手,分析各种因素对投篮命中率的影响,并作适当的假设,在合理估计出手点与篮框中心距离并保持出手速度稳定的情况下, 确定投篮的最佳出手角度和最佳出手速度,得出一个既能使投篮时不过多耗费体力又能提高投篮命中率的结论。

首先,本文将三角函数、导数、微分等数学知识及运动学、力学等物理知识相互结合,在罚球投篮这一具体问题的相应具体情境下对此进行了深入分析。其次,本文建立了与之相关的数学模型,通过不同投篮情况的图表分析归纳出对应的公式,在多重公式的累加条件下最后整理得到满足要求的最终条件范围,得出模型的结果。在求解过程中,本文使用了MathType数学软件对所用的数学符号作了系统的整理,借此列出了各组公式,同时给出了详细的计算及分析过程,并得出最终结果。

本文在第一问中所设定的不考虑球出手后自身的旋转及球碰篮板或篮框的情况,即在只针对空心球的情况下又限制变量,分别讨论篮框大小、篮球大小、空气阻力及出手角度和速度的最大偏差这四个不同变量下命中率受到的的影响,给出公式,计算出结果。最终,本文探讨出提高罚球命中率的方法是控制投篮时的

出手角度和出手速度,使之分别限制在一定的范围内。出手角度和速度的过高或过低都会使罚球命中率不能保持在较高水平。

在第二问中本文针对篮球擦板后进篮的情况,假定篮球在碰撞过程中没有能量损耗的理想情况,讨论出了分别在限制区边线距篮框中心30度、45度、90度(罚球线)位置上这三种不同情境下出手角度、出手速度与投篮的命中率之间的关系。当运动员所站的位置改变时,即投篮出手点到篮框的距离改变时,出手角度和出手速度的增加或减少都影响了投篮的命中率。

关键词:命中率、出手角度、出手速度、投篮出手点、篮框中心、MathType 数学软件

一、问题重述

在激烈的篮球比赛中,提高投篮命中率对于获胜无疑起着决定性作用。而出手角度和出手速度是决定投篮能否命中的两个关键因素。

第一问,在各种投篮方式中,罚球投篮是最简单也是很重要的投篮方式。这一问只考虑罚球投篮这一简化模型,根据题目已给出的假设条件,假设罚球投篮不考虑球出手后球自身的旋转及球碰篮板或篮框的情况,即只考虑空心球,在此情况下,站在罚球线上怎样罚球才能使命中率高;

第二问,考虑篮球擦板后进篮的情况,即篮球与篮板弹性碰撞的情况下,讨论在限制区边线上分别距篮框中心30度、45度、90度这三种不同(罚球线)位置上出手角度、出手速度与投篮的命中率之间的关系。

二、问题分析

篮球是一项技术综合性较强的运动项目,需要队员们的共同努力与协作。但是,个人的投篮得分也十分重要。就罚球投篮而言,这是最简单但也很重要的投篮方式。投篮的关键是向上举球和起跳动作协调一致,同时保持篮球在空中最高点被迅速稳定地投出⑴。投球的过程可以认为是一个抛物的过程,球飞行的弧线可看作是一条抛物线。据科学和实践证明,球的出手角度影响着球的飞行路线,球的飞行路线一般有低弧线、中弧线和高弧线三种,一般以中弧线为最佳⑵。过去的种种实验表明,若投篮的抛物线过高,那么球飞行的时间会过长,路程也大,受空气的阻力和风力的影响就大,这样不宜控制球的飞行方向,从而影响到投篮的命中率⑶。若篮球飞行的抛物线太低,那么球的入射角较小,在这种情况下也难将篮球投中。

为了在比赛中更好地取胜,就必须有效地提高投篮命中率,而影响投篮命中率的两个最为关键的因素就是投球时的出手角度和出手速度。因此,考虑合适的

出手角度和出手速度是解决问题的最大关键⑷。在这里,本文根据题目要求依次研究如下问题:

第一问:在不考虑球出手后球自身的旋转及球碰篮板或篮框的情况,根据以下分类具体研究如何提高罚球命中率

1.只考虑篮框的大小,忽略空气阻力的影响;

2.考虑篮球和篮框的大小,同样忽略空气阻力的影响;

3.考虑出手角度和出手速度的最大偏差;

4.考虑有空气阻力影响的情况。

第二问:考虑篮球擦板后进篮的情况,此时忽略碰撞时的能量损耗,分别讨论以下三种情况时出手角度、出手速度与投篮的命中率之间的关系

1.在限制区边线上距篮框中心30度位置;

2.在限制区边线上距篮框中心45度位置;

3.在限制区边线上距篮框中心90度位置。

三、模型假设

假设一:运动员有良好的心理素质⑸,防守队员的防守不影响投篮的命中率;假设二:运动员掌握熟练的投篮技术,并能根据实际需要控制球的出手角度与相应出手速度,准确判断出手点与篮框中心的水平距离;

假设三: 投球的运动曲线和篮圈中心在同一平面内;

假设四:在考虑篮球擦板进篮时,篮球与球板的碰撞是完全弹性碰撞⑹,没有能量损失;

假设五:出手后,篮球在空中的旋转不影响投篮效果;

假设六:在第一问中不考虑球碰篮板或篮框的情况;

假设七:在第二问中忽略空气阻力的影响。

四、符号说明

s

0:投篮出手点到篮框中心水平距离,单位为米(m),这里s

=

H

0:篮框的高度, 单位为米(m),这里H

=

R:篮框半径, 单位为米(m),这里R=

D:篮框直径,单位为米(m),这里D=

d:篮球直径,单位为米(m)

h

:篮球运动员出手的高度, 单位为米(m)

v:投篮出手速度, 单位为米/秒(m/s)

g:重力加速度,单位为米/秒2,这里取g=s2

θ:投篮出手角度,单位为度(°)

:篮球入框时的入射角,单位为度(°)

x:球入篮框时球心可以偏离(前后)的最大距离,单位为米(m)

A(θ):入篮篮球空中运行轨迹位于图中两曲线之间区域,单位为平方米(㎡)L:限制区底边边长的一半,单位为米(m),这里L=

五、模型建立与求解

对问题一的模型求解:

1.只考虑篮框的大小,忽略空气阻力的影响

如图,设P

1P

2

为篮框横截面,篮框高为H

,半径为R

投篮出手点到篮框中心水平距离为s

0,出手高度为h

投篮出手角度为θ,速度为v,入篮篮球空中运行轨迹位于图中两曲线之间区域,其面积为A(θ)

建立相应的数学模型及求解:

显然,投球入篮与否与距离s

、出手角度θ、出手速度v、篮框高、半径等因素有关,为了综合考虑这些因素,我们用入篮篮球的空中运行区域的大小来刻画投篮的命中程度。

于是,该问题转化为求一个角度θ

0(h

, s

),能使运行区域面积A(θ)最大,

O θ

h 0 H 0

S 0

第一步:由运动学知弧1OP 、2OP 的方程为斜上抛运动轨迹方程,方程式为:

由于1OP 过点10

00(,)P s R H h --,则有: 则1OP 的方程为

同理,2OP 得方程为 另外,直线P 1P 2的方程为 第二步,求运动区域面积A(θ) 运用定积分求面积,得 第三步,求A(θ)得极值点:

由A(θ)的表达式可以看出,当tan θ越大(即θ越大,θ<900),A(θ)越大。但事实上由于投篮出速度只可能在某一范围内变化,所以tan θ只可能在某一范围内变化。为求tan θ在所给定的范围内使A(θ)达到最大,我们把A 化为初速度v 的函数来求极大值。 回到运动方程 222

tan 2cos g

y x x v θθ

=-

设曲线过点0000(,),[,]s H h s s R s R -∈-+,代入方程得: 从而有

这是关于tan θ的一元二次方程,取其最小的根: 其中,2v 满足 4222002()0v v H h g g s ---≥ 又因为

所以,tan θ是2v 的减函数,当2v 达到极小时,tan θ达到极大,由于

解得 则有 其中

从上式可以看出,0()s θ是s 的减函数,由于00[,]s s R s R ∈-+ 所以

由题已知H 0=(米),

R=(米), s 0=(米), 假定h 0=(米)

把H 0、s 0、R 的数据代入计算,得角度、速度的范围: 2.考虑篮球和篮框的大小,同样忽略空气阻力的影响

d 大小的影响,如果入射角太小,则球会碰到篮框导致球不能入框(见图2)。利用三角函数关系容易得出球心命中框心且球入框的条件为

D

d >

βsin 即

在本题给定的篮球直径d 和篮框直径D 数据下,容易算出球心命中框心且球入框的入射角> 。此外,通过简单的计算,可以得出球心前后偏离框心的最大距离x 满足

由已知篮框直径D=(米),得

3.考虑出手角度和出手速度的最大偏差

A D

β

O

图2

记出手角度和出手速度的允许的最大偏差的为和v ,因为出手角度和出手速度的最大偏差可以看作当罚球点到篮框的水平方向距离L 变为Lx 引起的偏差,此时篮框的高度是不发生变化的,于是式(2)可以用方程

(*)

代替。在式(*)中假设出手速度v 不变,可以看作是x 的函数,将式(*)对x 求微分,并令x=L 代入,有

用和x 代替d 和dx,得到出手角度允许的最大偏差与x 的关系

类似地,将式(*)中的出手速度v 只看成是x 的函数,将式(*)对x 求微分,并令x=L 代入,有得到出手速度的允许的最大偏差 v 与x 的关系 4. 考虑有空气阻力影响的情况

这里只考虑水平方向的阻力,不考虑垂直方向的阻力,因为投篮时对球运动的阻力主要体现在水平方向上。通常水平方向的阻力与速度成正比,如果设比例系数为k, 则篮球在水平方向上的运动可以由如下微分方程描述: 这是常系数线性微分方程,用高等数学中的特征方程法可以求出它的解 于是得到如下球的运动参数方程:

注意到通常罚球时阻力并不大(阻力系数一般不超过秒-1),而罚球后球的运动时间也很短(大约1秒左右),因此,我们可以把运动方程(16)中的e –kt 在t=0处做泰勒展开并略去t 的二次幂以上的项,就可以得到更为简洁的运动方程 将此式与式(1)相比,可以看到阻力对x(t)的影响因子为(1-kt/2),因为

k=,t1,因此有阻力对命中率的影响约为23%。此外,如果不考虑篮球和篮框的大小,就有球心命中框心的条件为 5.计算结果与分析

5.1 以出手点高0h =为例,篮球运动员投空心篮时,利用公式(26),可以求得在不同的落球点的相应出手角度范围如下:

投空心篮时落球点与出手角度的情况统计表

D

图3

5.2 以出手点高为0h =,运动员投空心篮时,可以利用公式(26)在不同的落球点的相应出手角度范围如下:

投空心篮时落球点与出手角度的情况统计表

因此,从表中可以看出,当投篮的出手点高0h =,在罚线线投球的最佳出手角度是49?,这与现实中的投篮结果差异很小⑺。 对问题二的求解:

1.针对在限制区边线上距篮框中心90度(罚球线)位置上的投篮

现在假设与篮球板背面的那边也有一个“篮框”,这时根据假设,补出篮板背面的部分,篮球运动的曲线也构成一条抛物线,这种情况考虑为这条抛物线也通过篮板后面的那个篮框。但这时球员要正确估计球出手点到虚拟篮框圈心的水平距离,这时投篮的情况转化为投空心篮的情况给予考虑,(原0s 变为0s +,计算机程序如附录),如图4:

2.针对在限制区边线上距篮框中心30 y

o x

同样假设与篮球板背面的那边也有一个“篮框”,这时根据假设,补出篮板背面的部分,篮球运动的曲线也构成一条抛物线,这种情况考虑为这条抛物线也通过篮板后面的那个篮框。 但这时球员要正确估计球出手点到虚拟篮框圈心的距离,这时投篮的情况转化为投空心篮的情况给予考虑,(原0s 变为1S )

如图所示,A 为篮框中心正下面,B ,C ,D 为限制区边线,E 为人所站的在限制区边线上距篮框中心30度的位置。 先求出AE 的长度,再进而算出1S 。 在如图所示中, 有Rt ⊿CHE ~Rt ⊿CGB , ∴

CH EH

CG BG

=

又BG=L-R ,CG=0S , 设AE=S ,

则EH=SCOS 030-R ,

∴求得0

0S S*cos30R CH=L-R

-()

又CH+AF=0S ,即0

0S S*cos30R L-R

-()+0S*sin30=0S

∴解得

cos120=

即2

2201

S S 0.750.15S*cos120=+- 从而可解得

3.针对在限制区边线上距篮框中心45度(罚球线)位置上的投篮

同样假设与篮球板背面的那边也有一个“篮框”,这时根据假设,补出篮板背面的部分,篮球运动的曲线也构成一条抛物线,这种情况考虑为这条抛物线也通过篮板后面的那个篮框。 但这时球员要正确估计球出手点到虚拟篮框圈心的距离,这时投篮的情况转化为投空心篮的情况给予考虑,(原0s 变为2S )

如图所示,A 为篮框中心正下面,B ,C ,D 为限制区边线,N

边线上距篮框中心45度的位置。 先求出AN 的长度,再进而算出2S 。 在如图所示中, 有Rt ⊿CHN ~Rt ⊿CGB , ∴

N CH H

CG BG

=

又BG=L-R ,CG=0S , 设AN=k ,

则NH=kCOS 045-R ,

∴求得0

0S k*cos45R CH=L-R

-()

又CH+AF=0S ,即0

0S k*cos45R L-R

-()+0k*sin 45=0S

∴解得 k =又在图中,

由余弦定理得

即2220

2S k 0.750.15k *cos135=+-

从而可解得 4.结果分析

当出手高度为0h =投碰板篮,运动员投碰板篮时, 可以利用公式(26)在不同的落球点的相应出手角度范围如下:

投碰板篮时落球点与出手角度范围的情况统计表

六、模型评价与推广

本文所用的模型是建立在罚球投篮的基础上,通过对具体投篮问题中具体情况的详细分析,给出了满足不同情况下有效提高投篮命中率对出手角度和出手速度的要求。本模型用数学语言即数字、图表以及公式符号等来表达出罚球投篮这一实际问题,更科学具体地分析了投球过程中影响命中率的两个条件对命中率的具体影响所在。此外,模型通过具体的公式计算得出适合投篮的最佳出手角度和速度范围,使这三者之间的相互关系有了数据的支持和保障。同时,本模型最终结论和结果给了篮球运动员们合理训练的科学依据,也方便研究人员在此基础上展开对投篮运动的深入研究。

此次建立的数学模型还可用于制定有针对性的训练计划,包括专门针对不同身高的篮球运动员的投篮训练计划以及运动员不同距离下的投篮训练。在现实篮球运动中,还有很多情况可以通过建立数学模型进行有效分析,数学模型也表现出越来越广泛的作用。用数学方法研究体育运动,说明数学在体育训练中也在发挥着越来越明显的作用,所用到的数学知识也越来越深入。

七、参考文献

⑴郭鼎文,投篮的技巧[M],北京:北京体育大学出版社,2003年

⑵投篮命中率,,2011-11-29

⑶杨远波,第六届中国大学生篮球联赛男子8强攻防能力研究[J],成都体育学

院学报,(1):72-74,2006年

⑷何惠民,对CUBA男篮得分能力的研究与分析[J],杭州师范学院学报,

(10):16-18,2003年

⑸张新仪,寇振声,篮球运动理论与方法[M],山东:石油大学出版社,2001年

⑹程守洙,江之永,普通物理学[M],北京:高等教育出版社,2001年

⑺翁荔,CUBA若干技术指标与队员比赛能力的分析和探究[J],上海体育学院学

报,(1):37-38,2003年

八、附录

为了得到关于最小出手速度和出手角度的计算结果,取在出手高度h=~(m)下,由式(8)和(9)编程计算出最小出手速度和相应的最小出手角度,程序为:

H=;l=;

Do[v=*(H-h+Sqrt[l^2+(H-h)^2]);

a0=ArcTan[v/l]*180/Pi vmin= a0=

h= vmin= a0=

这里出手角度a0的单位为度,出手高度h的单位为米,速度单位为米/秒。

这个计算结果说明最少出手速度和相应的最小出手角度都是随着出手高度的增加而有所减少,而出手速度一般不要小于8m/s。

为了得到出手速度和出手高度对出手角度的计算结果,取出手速度v=~(m/s)和出手高度h=~(m)下,由式(5)和(10)编程计算出手角度1和2及对应的入射角度1和2,程序为:

H=;l=;

Do[v2=v^2;at=Sqrt[1-2**(H-h+*l^2/(2v2))/v2]; a1=v2*(1+at)/l;a2=v2*(1-at)/l;

b1=a1-2*(H-h)/l;b2=a2-2*(H-h)/l;

a1=ArcTan[a1]*180/Pi h=

a1= a2= b1= b2=

v=8. h=

a1= a2= b1= b2=

v=8. h=2.

a1= a2= b1= b2=

v=8. h=

a1= a2= b1= b2=

v= h=

a1= a2= b1= b2=

v= h=

a1= a2= b1= b2=

v= h=2.

a1= a2= b1= b2=

v= h=

a1= a2= b1= b2=

v=9. h=

a1= a2= b1= b2=

v=9. h=

a1= a2= b1= b2=

v=9. h=2.

a1= a2= b1= b2=

v=9. h=

a1= a2= b1= b2=

这里出手角度a1和a2(对应公式中的1和2)及入射角度b1和b2(对应公式中的1和2)的单位为度,出手高度h的单位为米,速度单位为米/秒。

从这个计算结果可以看出第二个入射角度2均小于度,它不满足式(11),因此在考虑篮球和篮框大小时,出手角度只能是1。此外,计算结果提示我们,在速度一定时,出手高度越大,出手角度应越大,但随着速度的增加,高度对角度的影响变小。高度对角度的影响在1度左右。出手高度一定时,速度越大,出手角度也应越大,速度的影响在7~9度之间。

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

投篮问题的数学模型

建模论文 题目:投篮问题 指导老师:窦霁虹 报告人:张莲民(20021090035) 段海婷(20021090002) 江云(20021090004) 2005年6月3日

一、问题的提出 激烈的篮球比赛中,提高投篮命中率对于获胜无疑起着决定作用,而出手角度和出手速度是决定投篮能否命中的两个关键因素。这里讨论比赛中最简单、但对于胜负也常常是很重要的一种投篮方式--------罚球 我们建立数学模型研究以下数学问题: 1) 先不考虑篮球和篮框的大小,讨论球心命中框心的条件。对不同的出手高度h 和出手速度v ,确定出手角度α和篮框的入射角度β; 2) 考虑篮球和篮框的大小 ,讨论球心命中框心且球入框的条件。检查上面得到的出手角度α和篮框的入射角度β是否符合这个条件; 3) 为了使球入框,球心不一定要命中框心,可以偏前或偏后(这里暂不讨论偏左或偏右)。讨论保证球入框的条件下,出手角度允许的最大偏差,和出手速度允许的最大偏差; 二、模型的假设 1、 假设求出手后不考虑自身的旋转 2、 不考虑篮球碰篮板或篮框入框 3、不考虑空气阻力对篮球的影响时 三、符号设定 d 篮球直径 D 篮框直径 L 罚球点和篮框中心的水平距离 H 篮框中心的高度 h 篮球运动员的出手高度 v 篮球运动员投篮出手速度 按照标准尺寸,L=4.6m ,H=3.05m ,d=24.6cm ,D=45cm. 四、问题的分析与模型的建立 1、问题1)的分析与模型的建立: 不考虑篮球和篮框的大小的简单情况,相当于将球视为质点(球心)的斜抛运动。将坐标原点定在球心P ,列出x(水平)方向和y (竖直)方向的运动方程,就可以得到球心的运动轨迹,于是球心命中框心的条件可以表示为 出手角度与 出手速度、出手高度之间的关系,以及篮框的入射角度与出手角度,由此可对不同的出手速度,出手高度,计算出手角度和入射角度。 由于不考虑篮球和篮筐的大小,不考虑空气阻力的影响,从未出手时的球心 p 为坐标原点, x 轴为水平方向, y 轴为竖直方向,篮球在 t =0时以出手速度 v 和出手角度α 投出,可视为质点(球心)的斜抛运动,其运动方程 是我们熟知的。 (1) 其中 g 是重力加速度.由此可得球心运动轨迹为如下抛物线 2 sin )(2 gt t v t y - =αt v t x αcos )(=

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

数学建模模糊综合评价法

学科评价模型(模糊综合评价法) 摘要:该模型研究的是某高校学科的评价的问题,基于所给的学科统计数据作出综合分析。基于此对未来学科的发展提供理论上的依据。 对于问题1、采用层次分析法,通过建立对比矩阵,得出影响评价值各因素的所占的权重。然后将各因素值进行标准化。在可共度的基础上求出所对应学科的评价值,最后确定学科的综合排名。(将问题1中的部分结果进行阐述) (或者是先对二级评价因素运用层次分析法得出其对应的各因素的权重(只选取一组代表性的即可),然后再次运用层次分析法或者是模糊层次分析法对每一学科进行计算,得出其权重系数)。通过利用matlab确定的各二级评价因素的比较矩阵的特征根分别为:4.2433、2、4.1407、3.0858、10.7434、7.3738、3.0246、1 对于问题2、基于问题一中已经获得的对学科的评价值,为了更加明了的展现各一级因素的作用,采用求解相关性系数的显著性,找出对学科评价有显著性作用的一级评价因素。同时鉴于从文献中已经有的获得的已经有的权重分配,对比通过模型求得的数值,来验证所建模型和求解过程是否合理。 对于问题3、主成份分析法,由于在此种情况下考虑的是科研型或者教学型的高校,因此在评价因素中势必会有很大的差别和区分。所以在求解评价值的时候不能够等同问题1中的方法和结果,需要重新建立模型,消除或者忽略某些因素的影响和作用(将问题三的部分结果进行阐述)。 一、问题重述

学科的水平、地位是评价高等学校层次的一个重要指标,而学科间水平的评价对于学科本身的发展有着极其重要的作用。而一个显著的方面就是在录取学生方面,通常情况下一个好的专业可以录取到相对起点较高的学生,而且它还可以使得各学科能更加深入的了解到本学科的地位和不足之处,可以更好的促进该学科的发展。学科的评价是为了恰当的学科竞争,而学科间的竞争是高等教育发展的动力,所以合理评价学科的竞争力有着极其重要的作用。鉴于学科评价的两种方法:因素分析法和内涵解析法。本模型基于某大学(科研与教学并重型高校)的13个学科在某一时期内的调查数据,包括各种建设成效数据和前期投入的数据。 通过计算每一级、每一个评价因素所占的权重,确定某一学科在评价是各因素所占的比重,构建评价等级所对应的函数。通过数值分析得出学科的评价值。需要解决一下几个问题: 1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。 2、模型分析,给出建立模型的适用性、合理性分析。 3、假设数据来自于某科研型祸教学型高校,请给出相应的学科评价模 型。 二、符号说明与基本假设 2.1符号说明 符号说明 S——评价数(评价所依据的最终数值) X——影响评价数值的一级因素所构成的矩阵

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数学建模——投篮命中率的数学模型

投篮命中率的数学模型 摘要 随着篮球运动的普及,篮球比赛中紧张、激烈的气氛和更加具有攻击性的防守等因素导致投篮命中率大大降低。根据研究显示,影响投篮命中率有两个关键因素:出手角度和出手速度。本文主要运用运动力学的知识,建立有效的篮球投射模型, 从篮球投射时球的出手角度、出手速度、出手高度和篮球球心与篮框中心的水平距离、篮球入射角之间的关系入手,分析各种因素对投篮命中率的影响,并作适当的假设,在合理估计出手点与篮框中心距离并保持出手速度稳定的情况下, 确定投篮的最佳出手角度和最佳出手速度,得出一个既能使投篮时不过多耗费体力又能提高投篮命中率的结论。 首先,本文将三角函数、导数、微分等数学知识及运动学、力学等物理知识相互结合,在罚球投篮这一具体问题的相应具体情境下对此进行了深入分析。其次,本文建立了与之相关的数学模型,通过不同投篮情况的图表分析归纳出对应的公式,在多重公式的累加条件下最后整理得到满足要求的最终条件范围,得出模型的结果。在求解过程中,本文使用了MathType数学软件对所用的数学符号作了系统的整理,借此列出了各组公式,同时给出了详细的计算及分析过程,并得出最终结果。 本文在第一问中所设定的不考虑球出手后自身的旋转及球碰篮板或篮框的情况,即在只针对空心球的情况下又限制变量,分别讨论篮框大小、篮球大小、空气阻力及出手角度和速度的最大偏差这四个不同变量下命中率受到的的影响,给出公式,计算出结果。最终,本文探讨出提高罚球命中率的方法是控制投篮时的出手角度和出手速度,使之分别限制在一定的范围内。出手角度和速度的过高或过低都会使罚球命中率不能保持在较高水平。 在第二问中本文针对篮球擦板后进篮的情况,假定篮球在碰撞过程中没有能量损耗的理想情况,讨论出了分别在限制区边线距篮框中心30度、45度、90度(罚球线)位置上这三种不同情境下出手角度、出手速度与投篮的命中率之间的关系。当运动员所站的位置改变时,即投篮出手点到篮框的距离改变时,出手角度和出手速度的增加或减少都影响了投篮的命中率。 关键词:命中率、出手角度、出手速度、投篮出手点、篮框中心、MathType 数学软件

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

《数学建模与数学实验》本科教学日历

《数学建模与数学实验》本科教学日历 数学建模部分 开设课程课程名称数学建模课程编号0701107 施教单位理学院 课内学时 总课时36 课程性质公共基础讲授课时28 修读要求选修实践课时8 选用教材教材名称数学建模教程出版社名称高等教育出版社 出版时间 及版次 2011年出版,第一版印刷时间2011年 其他情况 教学安排 班次授课对象及人数任教教员(指导教员)姓名及职称数学建模A 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 数学建模B 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验 1 1 (1)什么是数学建模?数学建模的一般概念 (2)几个数学建模问题 讲授 1 2 (1)数学建模的一般步骤 (2)敏感问题调查案例 讲授 1 2 3 (1)行走步长问题 (2)雨中行走淋雨量最小问题 (3)道路是越多越通畅吗? 讲授 1 4 (1)有奖销售的抽奖策略问题 (2)“非诚勿扰”女生最佳选择问题 (3)网络文章流行度预测和招聘匹配 讲授 1 3 5 (1)线性规划模型基本概念 (2)整数规划模型 (3)0-1规划模型 讲授 1 6 (1)非线性规划 (2)多目标规划 讲授 1 4 7 (1)最短路算法 (2)最小生成树算法 讲授 1 8 (1)最大流算法 (2)PageRank算法 讲授 1 5 9 规划模型上机实践实践 1

课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验10 图论模型上机实践实践 1 6 11 (1)博弈模型基本概念 (2)Nash平衡和Pareto最优 (3)博弈论案例 讲授 1 12 (1)贝叶斯纳什均衡 (2)拍卖模型 讲授 1 7 13 社会选择理论中的选举问题数学模型-阿罗不可能定理讲授 1 14 越野长袍团体赛排名规则公平性问题讲授 1 8 15 军事作战模型-Lanchester作战模型讲授 1 16 自动化车床管理模型讲授 1 9 17 (1)“边际效应”基本概念 (2)实物交换模型,最佳消费模型、报童售报问题 讲授 1 18 (1)价格弹性模型 (2)合作效益的Shapley值分配模型 讲授 1 10 19 (1)聚类分析基本概念 (2)常用聚类算法 讲授 1 20 (1)方差分析基本概念 (2)单因素方差分析 (3)双因素方差分析 讲授 1 11 21 (1)主成分分析基本概念 (2)因子分析 讲授 1 22 (1)一元回归分析 (2)多元回归分析 (3)多元回归模型的检验与优化 讲授 1 12 23 聚类分析和方差分析上机实践实践 1 24 主成分分析和多元回归分析上机实践实践 1 13 25 (1)遗传算法基本思想 (2)算法步骤 讲授 1 26 遗传算法计算实例讲授 1 14 27 (1)模拟退火算法基本思想 (2)算法步骤 讲授 1 28 模拟退火算法计算实例讲授 1 15 29 (1)蚁群算法基本思想 (2)算法步骤 讲授 1 30 (1)数学建模中的计算机仿真 (2)不可召回的秘书招聘问题 (3)车灯光源优化设计 (4)生命游戏 讲授 1 16 31 遗传算法上机实践实践 1 32 模拟退火算法上机实践实践 1

数学模型与数学建模-2

2.1MATLAB MATLAB Matrix Laboratory , MathWorks 20 80 , , MATLAB Simulink .MATLAB 1) , ; 2) , ; 3) , ; 4) ( ), . 2.1.1MATLAB MATLAB , , . , MATLAB , 2.1.1 . MATLAB “>>” , MATLAB . , Enter ,MATLAB .

·8· 2 ? ? 2.1.1MATLAB 1.help , help . poly?t . help polyfit POLYFIT Fit polynomial to data..P=POLYFIT(X,Y,N)finds the coeffici-ents of a polynomial P(X)of degree N that fits the data Y best in a least-squares sense.P is a row vector of length N+1containing the polynomial coefficients in descending powers,P(1)*X^N+P(2)*X^(N-1) +···+P(N)*X+P(N+1). , MATLAB Help . Help Product Help , ( 2.1.2) 2.1.2Help

2.1MATLAB ·9· Seach , . 2.clear clear . “a=1”, >>a=1. 1 a. a , clear . >>clear a???Undefined function or variable a . 3.format MATLAB format . format short , 5 ; format rational ; format long g 15 ; >>format short>>pi ans=3.1416;>>format rational >>pi ans=355/113; >>format long g>>pi ans=3.14159265358979 2.1.2MATLAB 1. 2.1.1 MATLAB . MATLAB 1 , .MATLAB , B b . 2.1.1MATLAB pi i,j inf . n/0 inf, n 0 ans , . ,MATLAB ans NaN , . 0/0 inf/inf 2. MATLAB , . . MATLAB , , , . A=[1?256?49] A=[1,?2,5,6,?4,9] 6 A.

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

模糊综合评价法的数学建模方法简介_任丽华

8 《商场现代化》2006年7月(中旬刊)总第473期 20世纪80年代初,汪培庄提出了对绿色供应链绩效进行评价的模糊综合评价模型,此模型以它简单实用的特点迅速波及到国民经济和工农业生产的方方面面,广大实际工作者运用此模型取得了一个又一个的成果。本文简单介绍模糊综合评价法的数学模型方法。 一、构造评价指标体系 模糊综合评价的第一步就是根据具体情况建立评价指标体系的层次结构图,如图所示: 二、确定评价指标体系的权重 确定各指标的权重是模糊综合评价法的步骤之一。本文根据绿色供应链评价体系的层次结构特点,采用层次分析法确定其权重。尽管层次分析法中也选用了专家调查法,具有一定的主观性,但是由于本文在使用该方法的过程中,对多位专家的调查进行了数学处理,并对处理后的结果进行了一致性检验,笔者认为,运用层次分析法能够从很大程度上消除主观因素带来的影响,使权重的确定更加具有客观性,也更加符合实际情况。 在此设各级指标的权重都用百分数表示,且第一级指标各指标的权重为Wi,i=1,2,…,n,n为一级指标个数。一级指标权重向量为: W=(W1,…,Wi,…Wn) 各一级指标所包含的二级指标权重向量为: W=(Wi1,…,Wis,…Wim),m为各一级指标所包含的二级指标个数,s=1,2,…,m。 各二级指标所包含的三级指标权重向量为: Wis=(Wis1,…Wis2,…Wimq),q为各二级指标所包含的三级指标个数。三、确定评价指标体系的权重建立模糊综合评价因素集将因素集X作一种划分,即把X分为n个因素子集X1,X2,…Xn,并且必须满足: 同时,对于任意的i≠j,i,j=1,2,…,均有 即对因素X的划分既要把因素集的诸评价指标分完,而任一个评 价指标又应只在一个子因素集Xi中。 再以Xi表示的第i个子因素指标集又有ki个评价指标即:Xi={Xi1,Xi2,…,XiKi},i=1,2,…,n 这样,由于每个Xi含有Ki个评价指标,于是总因素指标集X其有 个评价指标。 四、 进行单因素评价,建立模糊关系矩阵R 在上一步构造了模糊子集后,需要对评价目标从每个因素集Xi上进行量化,即确定从单因素来看评价目标对各模糊子集的隶属度,进而得到模糊关系矩阵: 其中si(i=1,2,…,m)表示第i个方案,而矩阵R中第h行第j列元素rhj表示指标Xih在方案sj下的隶属度。对于隶属度的确定可分为两种 情况:定量指标和定性指标。 (1)定量指标隶属度的确定 对于成本型评价因素可以用下式计算: 对于效益型评价因素可以用下式计算:对于区间型评价因素可以用下式计算:上面三个式子中:f(x)为特征值,sup(f),inf(f)分别为对应于同一个指标的所有特征值的上下界,即是同一指标特征值的最大值和最小 模糊综合评价法的数学建模方法简介 任丽华 东营职业学院 [摘 要] 本文一种数学模型方法构造了一种对绿色供应链绩效进行评价的模糊综合评价法,主要从构造评价指标体系,确定评价指标体系的权重,确定评价指标体系的权重,建立模糊综合评价因素集,进行单因素评价、建立模糊关系矩阵R,计算模糊评价结果向量B等五个方面介绍这种评价方法。 [关键词] 绿色供应链绩效评价 模糊综合评价法 数学模型方法 流通论坛

投篮问题的数学建模

摘要 如今全民大爱篮球运动,投球的命中率是一场比赛输赢的关键所在,能否投入篮筐与投球时运动员所处的位置、投球时的角度和投球时的出手速度有很大关系,该论文主要以罚球为出发点,排除了运动员因运动而造成的各种不利因素,讨论其罚球时球心与篮筐中心距离,球心所处高度以及投球速度之间的变化对球入篮的影响。把其简化成物理学上的上抛运动,对其水平上用匀速运动讨论起运动规律,在垂直方向以初速度为投球时的速度v,加速度为g做均减速运动讨论其运动规律。综合求解出其运动轨迹,利用导数意义,求出所需高度,速度等变量的最值,得出以下结论和规律,在标准的篮球场上,当运动员出手速度和出手角度均随着出手高度增加而减小,但当出手高度一定时,出手速度越大则球入筐时的入射角度也越大,速度一定时,出手高度越大,出手角度应越大,但是随着速度的增加,高度对出手角度的影响变小,说明取决出手角度的变化对出手速度更为敏感。在出手高度为1.8~2.1m之间时,出手速度一般要大于8m/s。入射角度一般需要大于33.1。分析出手角度和出手速度的最大偏差,得出速度越大,出手角度的允许偏差越小,而出手速度的允许偏差越大,且对出手角度的要求比对出手速度的要求严格;出手速度一定时,出手高度越大,出手角度的允许偏差越小,出手速度的允许偏差越大。 关键词:投篮,出手高度,出手速度,入射角度 问题提出 在激烈的篮球比赛中,提高投篮命中率对于获胜无疑起着决定作用,而出手角度和出手速度是决定投篮能否命中的两个关键因素。这里讨论比赛中最简单、但对于胜负也常常是很重要的一种投篮方式——罚球。 我们建立数学模型研究以下数学问题: 1)先不考虑篮球和篮框的大小,把它们的中心看成质点,只是简单的讨论球心 命中框心的条件。对不同的出手高度h和出手速度v,确定所对应的不同的出手角度α时所对应的不同篮框的入射角度β;

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模基础(入门必备)

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

投篮问题的数学建模精编WORD版

投篮问题的数学建模精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

摘要 如今全民大爱篮球运动,投球的命中率是一场比赛输赢的关键所在,能否投入篮筐与投球时运动员所处的位置、投球时的角度和投球时的出手速度有很大关系,该论文主要以罚球为出发点,排除了运动员因运动而造成的各种不利因素,讨论其罚球时球心与篮筐中心距离,球心所处高度以及投球速度之间的变化对球入篮的影响。把其简化成物理学上的上抛运动,对其水平上用匀速运动讨论起运动规律,在垂直方向以初速度为投球时的速度v,加速度为g做均减速运动讨论其运动规律。综合求解出其运动轨迹,利用导数意义,求出所需高度,速度等变量的最值,得出以下结论和规律,在标准的篮球场上,当运动员出手速度和出手角度均随着出手高度增加而减小,但当出手高度一定时,出手速度越大则球入筐时的入射角度也越大,速度一定时,出手高度越大,出手角度应越大,但是随着速度的增加,高度对出手角度的影响变小,说明取决出手角度的变化对出手速度更为敏感。在出手高度为1.8~2.1m之间时,出手速度一般要大于8m/s。入射角度一般需要大于33.1。分析出手角度和出手速度的最大偏差,得出速度越大,出手角度的允许偏差越小,而出手速度的允许偏差越大,且对出手角度的要求比对出手速度的要求严格;出手速度一定时,出手高度越大,出手角度的允许偏差越小,出手速度的允许偏差越大。 关键词:投篮,出手高度,出手速度,入射角度 问题提出 在激烈的篮球比赛中,提高投篮命中率对于获胜无疑起着决定作用,而出手角度和出手速度是决定投篮能否命中的两个关键因素。这里讨论比赛中最简单、但对于胜负也常常是很重要的一种投篮方式——罚球。 我们建立数学模型研究以下数学问题:

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

相关文档
最新文档