舵机详解[1]

舵机详解[1]
舵机详解[1]

舵机详解

前言

伺服机是遥控模型控制动作的动力来源,不同类型的遥控模型所需的伺服机种类也随之

不同。如何审慎地选择经济且合乎需求的伺服机,也是一门不可轻忽的学问,本文章主要探讨适合各等级直升机各工作部位所使用的伺服机.

技术规格

厂商所提供的伺服机规格资料,都会包含外形尺寸(mm)、扭力(kg-cm)、速度(秒/60°)、测试电压(V)及重量(g)等基本资料。扭力的单位是kg-cm,意思是在摆臂长度 1 公分处,能吊起几公斤重的物体。这就是力臂的观念,因此摆臂长度愈长,则扭力愈小。速度的单位是sec/60°,意思是伺服机转动60°所需要的时间。

电压会直接影响伺服机的性能,例如Futaba S-9001 在4.8V 时扭力为 3.9kg、速度为0.22 秒,在6.0V 时扭力为5.2kg、速度为0.18 秒。若无特别注明,JR 的伺服机都是以 4.8V 为测试电压,Futaba则是以 6.0V 作为测试电压。

所谓天下没有白吃的午餐,速度快、扭力大的伺服机,除了价格贵,还会伴随著高耗电的特点。因此使用高级的伺服机时,务必搭配高品质、高容量的镍镉电池,能提供稳定且充裕的电流,才可发挥伺服机应有的性能。

离线伺服机的构造

伺服机主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。其工作原理是

由接收机发出讯号给伺服机,经由电路板上的IC 判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回讯号,判断是否已经到达定位。

位置检测器其实就是可变电阻,当伺服机转动时电阻值也会随之改变,藉由检测电阻值便可知转动的角度。

一般的伺服马达是将细铜线缠绕在三极转子上,当电流流经线圈时便会产生磁场,与转子外围的磁铁产生排斥作用,进而产生转动的作用力。依据物理学原理,物体的转动惯量与质量成正比,因此要转动质量愈大的物体,所需的作用力也愈大。伺服机为求转速快、耗电小,於是将细铜线缠绕成极薄的中空圆柱体,形成一个重量极轻的五极中空转子,并将磁铁置於圆柱体内,这就是无核心马达。

为了适合不同的工作环境,有防水及防尘设计的伺服机;并且因应不同的负载需求,伺服机的齿轮有塑胶及金属之区分,金属齿轮的伺服机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。较高级的伺服机会装置滚珠轴承,使得转动时能更轻快精准。滚珠轴承有一颗及二颗的区别,当然是二颗的比较好。

目前新推出的FET 伺服机,主要是采用FET(Field Effect Transistor)场效电晶体。F

ET 具有内阻低的优点,因此电流损耗比一般电晶体少。

选择伺服机

标准的直升机需搭配5颗伺服机,分别控制油门、副翼、升降舵、螺距及尾舵。

一油门

油门是所有动作中负载最轻的部位,且负载不会受到外在因素的影响而改变,所以选择油

门伺服机时,扭力不是问题(1就绰绰有馀),速度才是关键。因为直升机的油门与螺距作混控,故油门与螺距伺服机的速度最好要一致,才不会发生螺距伺服机已到达定位,油门

伺服机却姗姗来迟的情况。尤其作剧烈的3D飞行时,油门与螺距的变化量极大,若油门与螺距伺服机的速度不协调,会发生马力延迟的状况。

油门伺服机的速度并不是愈快愈好,因为还要考虑引擎的反应时间。引擎必须经过吸气、

压缩、爆炸、排气这一连串的步骤,尤其直升机用的引擎并不属於高转速型,因此伺服机

的速度如果太快,就会产生引擎运转速度跟不上伺服机的动作,进而出现油气混合比不适

当的状况。建议采用速度为0.19~0.24 秒的伺服机。

三副翼及升降舵

30 级及46 级的直升机应选择扭力3kg 以上的伺服机,60 级的直升机则需选择扭力5k

g 以上的伺服机。副翼及升降舵的反应速度,主要是由主旋翼转速及平衡翼片的重量所控制,与伺服机的速度快慢,较无明显且直接的关联,所以不需使用太快的伺服机。建议采

用速度为0.20~0.26 秒的伺服机。

四螺距

直升机的主旋翼螺距是出了名的重负载,因此螺距伺服机的扭力一定要够,最好能选择扭

力5kg 以上的伺服机。建议采用速度为0.19~0.24 秒的伺服机。

五尾舵

尾舵伺服机的扭力不需太大,3kg 就已经足够了。请依据您所使用的陀螺仪等级来搭配尾

舵伺服机。机械式陀螺仪因为反应速度较慢,因此无需使用高速伺服机。压电式陀螺仪需

搭配高速伺服机,才能发挥陀螺仪的性能。高级的陀螺仪都会指明建议使用的伺服机,例

如JR 5000T 陀螺仪建议搭配NES-8700G 伺服机,Futaba GY-501 陀螺仪建议搭配S-92 05 伺服机。若您使用的压电式陀螺仪并无特别指明伺服机的类型,建议您购买速度愈快的伺服机愈好。

如何以最经济的方式购买合用的伺服机,请参考下列步骤∶

1.先决定螺距伺服机,选择扭力5kg 以上的伺服机,再依据预算的多寡决定伺服机的速度。

2.依照螺距伺服机的速度,选择同速度但扭力小的伺服机,作为油门伺服机。

3.依据直升机的级数大小,选择扭力为3kg 或5kg 以上,速度为0.20~0.26 秒的伺服机

,作为副翼及升降舵伺服机。

4.依据陀螺仪的等级来决定尾舵伺服机的速度,愈高级的陀螺仪才需使用高级的伺服机。

若您使用CCPM 的直升机,因为是由副翼、升降舵及螺距伺服机采混控的方式共同来推动十字盘,所以这三个动作要选择同型号的伺服机。CCPM 的优点是连杆数少、传动直接、虚位小,并且可减轻伺服机的负荷,延长伺服机的使用寿命。

爱惜您的伺服机

一般说来伺服机并不需要特别的保养,只要注意下列重点,就可使您的伺服机长命百岁。

1.直升机的机械可动部份,不可小於伺服机的行程活动范围。

2.不要随意改变电源电压,例如接收机用4.8V,请勿为了提升伺服机的性能而改用6.0V

3.避免伺服机过度负载,依照工作的性质与摆臂的长度,决定扭力的大小。

4.善用避振垫圈来保护伺服机,安装伺服机时不可过度锁紧,造成避振垫圈变形。

5.更换伺服机齿轮时必须使用陶瓷系润滑油,请勿使用矿物系润滑油,以免造成塑胶齿轮变质,容易断裂。

6.若您的伺服机没有防水防尘的功能,请避免让水或尘土跑进伺服机内。

国内的伺服机市场与遥控器的市场一样,几乎是JR 与Futaba 的天下。用过这二种品牌的伺服机後,发觉JR 与Futaba 的伺服机除了接头样式不同之外,正逆转的方向也正好相反。另外Futaba 伺服机电线的包皮,比较容易产生破皮的现象。对於厂商无法统一伺服机的接头样式、电线色彩、排列顺序与正逆转方向深感无奈。若您想搭配不同厂牌的遥控系统与伺服机,请先查明电线的排列顺序,三条线分别为电源线、接地线与讯号线

舵机原理

1、概述 舵机最早出现在航模运动中。在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。举个简单的四通飞机来说,飞机上有以下几个地方需要控制: 1) 发动机进气量,来控制发动机的拉力(或推力); 2) 副翼舵面(安装在飞机机翼后缘),用来控制飞机的横 滚运动; 3) 水平尾舵面,用来控制飞机的俯仰角; 4) 垂直尾舵面,用来控制飞机的偏航角; 不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。由此可见,凡是需要操 作性动作时都可以用舵机来实现。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。

工作原理:控制电路板接受来自信号线的控制信号,控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。 舵机的基本结构是这样,但实现起来有很多种。例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。需要根据需要选用不同类型。 舵机的输入线共有三条,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有两种规格,一是4.8V,一是6.0V,分别对应不同的转矩标准,即输出力矩不同,6.0V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而

MG996R舵机控制说课讲解

M G996R舵机控制

MG996R舵机控制方法 红:+5v,棕:GND,黄:信号 基于单片机的舵机控制方法具有简单、精度高、成本低、体积小的特点,并可根据不同的舵机数量加以灵活应用。 在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。 图1舵机的控制要求

舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 单片机实现舵机转角控制 可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。 当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定

详细的舵机控制原理资料

目录 一.舵机PWM信号介绍 (1) 1.PWM信号的定义 (1) 2.PWM信号控制精度制定 (2) 二.单舵机拖动及调速算法 (3) 1.舵机为随动机构 (3) (1)HG14-M舵机的位置控制方法 (3) (2)HG14-M舵机的运动协议 (4) 2.目标规划系统的特征 (5) (1)舵机的追随特性 (5) (2)舵机ω值测定 (6) (3)舵机ω值计算 (6) (4)采用双摆试验验证 (6) 3.DA V的定义 (7) 4.DIV的定义 (7) 5.单舵机调速算法 (8) (1)舵机转动时的极限下降沿PWM脉宽 (8) 三.8舵机联动单周期PWM指令算法 (10) 1.控制要求 (10) 2.注意事项 (10) 3.8路PWM信号发生算法解析 (11) 4.N排序子程序RAM的制定 (12) 5.N差子程序解析 (13) 6.关于扫尾问题 (14) (1)提出扫尾的概念 (14) (2)扫尾值的计算 (14)

一.舵机PWM 信号介绍 1.PWM 信号的定义 PWM 信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。具体的时间宽窄协议参考下列讲述。我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。 目前,北京汉库的HG14-M 舵机可能是这个过渡时期的产物,它采用传统的PWM 协议,优缺点一目了然。优点是已经产业化,成本低,旋转角度大(目前所生产的都可达到185度);缺点是控制比较复杂,毕竟采用PWM 格式。 但是它是一款数字型的舵机,其对PWM 信号的要求较低: (1) 不用随时接收指令,减少CPU 的疲劳程度; (2) 可以位置自锁、位置跟踪,这方面超越了普通的步进电机; 其PWM 格式注意的几个要点: (1 ) 上升沿最少为0.5mS ,为0.5mS---2.5mS 之间; (2) HG14-M 数字舵机下降沿时间没要求,目前采用0.5Ms 就行;也就是说PWM 波形 可以是一个周期1mS 的标准方波; (3) HG0680为塑料齿轮模拟舵机,其要求连续供给PWM 信号;它也可以输入一个周 期为1mS 的标准方波,这时表现出来的跟随性能很好、很紧密。

飞思卡尔--智能车舵机讲解

飞思卡尔--智能车舵机讲解

2.2 舵机的安装 完成了玩具车的拆卸之后要做的第二步就是安装舵机,现在市场上卖的玩具车虽然也具有转向 功能,但是前轮的转向多是依靠直流电机来驱动,无论向哪个方向转都是一下打到底,无法控制转 过固定的角度,因此根据我们的设计需求,需要将原有的转向部分替换成现有的舵机,以实现固定 转角的转向。舵机的实物图如图 2.1所示。 需要说明的是由于小车系玩具车改装,在安装舵机是需要合理的利用小车的结构,将舵机安装 牢固,同时还需注意合理利用购买舵机是附赠的齿轮,从而将舵机固定在合适的位置。舵机的安装 方式有俯式、卧式多种,不同的安装方法力臂长短、响应速度都有所不同,这一点请自己根据实际 情况合理选择,图 2.2 为舵机的安装图。 5

图 2.1 舵机实物图图 2.2 舵机安装图 舵机安装过程中有一点需要尤其注意,由于舵机不是360°可转的,因此必须保证车轮左右转 的极限在舵机的转角范围之内。 舵机安装完毕之后就可以对小车的转角进行控制了,但是由于玩具车的车体设计往往限制了小 车的转角,因此可以对小车进行局部的“破坏”来增大前轮的转角,要知道在比赛中追求速度的同 时一个大的转角对小车的可控性会有一个很大的提升,如图2.3 所示,就是对增加小车转角的一个 改造,这是我在去年小车比赛中的用法。将阻碍前轮转角的一部分用烙铁直接烫掉。 但是这种做法也有风险,由于你的改造会破坏小车的整体 7

结构,有可能会对小车的硬件结构造 成破坏,因此如果你的小车在改造之后显得过于脆弱的话那你就要对你的小车采取些加固措施了。 3.4 舵机转向模块设计 舵机是小车转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳定性高等特 点,无论是在硬件还是软件舵机设计是小车控制部分的重要组成部分,舵机的主要工作流程 为:控制信号→控制电路板→电机转动→齿轮组减速→舵盘转动→位置反馈电位计→控制电路板反馈。图 3.11 为舵机的实物图。 7

舵机控制程序

舵机控制程序 Final revision on November 26, 2020

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,

获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信

号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 图1 舵机的控制要求 单片机实现舵机转角控制 可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件 的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV 以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都

远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断。这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。 具体的设计过程: 例如想让舵机转向左极限的角度,它的正脉冲为2ms,则负脉冲为20ms- 2ms=18ms,所以开始时在控制口发送高电平,然后

舵机的工作原理

基于AT89C2051单片机的多路舵机控制器设计 摘要舵机是机器人、机电系统和航模的重要执行机构。舵机控制器为舵机提供必要的能源和控制信号。本文提出一种以外部中断计数为基础的PWM波形实现方法。该方法具有简单方便,成本低,可实现多路独立PWM输出的优点。 关键词A T89C205l 舵机控制器外部中断PWM 舵机是一种位置伺服的驱动器。它接收一定的控制信号,输出一定的角度,适用于那些需要角度不断变化并可以保持的控制系统。在微机电系统和航模中,它是一个基本的输出执行机构。 1 舵机的工作原理 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA66881。的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送人电机驱动集成电路BA6686,以驱动电机正反转。当电机转速一定时,通过级联减速齿轮带动电位器R。,旋转,直到电压差为O,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。 2 舵机的控制方法 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。 3 舵机控制器的设计 (1)舵机控制器硬件电路设计 从上述舵机转角的控制方法可看出,舵机的控制信号实质是一个可嗣宽度的方波信号(PWM)。该方波信号可由FPGA、模拟电路或单片机来产生。采用FPGA成本较高,用模拟电路来实现则电路较复杂,不适合作多路输出。一般采用单片机作舵机的控制器。目前采用单片机做舵机控制器的方案比较多,可以利用单片机的定时器中断实现PWM。该方案将20ms的周期信号分为两次定时中断来完成:一次定时实现高电平定时Th;一次定时实现低电平定时T1。Th、T1的时间值随脉冲宽度的变换而变化,但,Th+T1=20ms。该方法的优点是,PWM信号完全由单片机内部定时器的中断来实现,不需要添加外围硬件。缺点是一个周期中的PWM信号要分两次中断来完成,两次中断的定时值计算较麻烦;为了满足20ms 的周期,单片机晶振的频率要降低;不能实现多路输出。也可以采用单片机+8253计数器的实现方案。该方案由单片机产生计数脉冲(或外部电路产生计数脉冲)提供给8253进行计数,由单片机给出8253的计数比较值来改变输出脉宽。该方案的优点是可以实现多路输出,软件设计较简单;缺点是要添加l片8253计数器,增加了硬件成本。本文在综合上述两个单片机舵机控制方案基础上,提出了一个新的设计方案,如图4所示。 该方案的舵机控制器以A T89C2051单片机为核心,555构成的振荡器作为定时基准,单片机通过对555振荡器产生的脉冲信号进行计数来产生PWM信号。该控制器中单片机可以产生8个通道的PWM信号,分别由AT89C2051的P1.0~Pl.7(12~19引脚)端口输出。输出的8路PWM信号通过光耦隔离传送到下一级电路中。因为信号通过光耦传送过程中进行了反相,因此从光耦出来的信号必须再经过反相器进行反相。方波信号经过光耦传输后,前沿和后沿会发生畸变,因此反相器采用CD40106施密特反相器对光耦传输过来的信号进行整形,产生标准的PWM方波信号。笔者在实验过程中发现,舵机在运行过程中要从电源

航模舵机控制原理详解

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。 其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。 3. 舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms 范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度; 2.5ms-----------180度; 这只是一种参考数值,具体的参数,请参见舵机的技术参数。 小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。如果需要更快速的反应,就需要更高的转速了。 要精确的控制舵机,其实没有那么容易,很多舵机的位置等级有1024个,那么,如果舵机的有效角度范围为180度的话,其控制的角度精度是可以达到180/1024度约0.18度了,从时间上看其实要求的脉宽控制精度为2000/1024us约2us。如果你拿了个舵机,连控制精度为1度都达不到的话,而且还看到舵机在发抖。在这种情况下,只要舵机的电压没有抖动,那抖动的就是你的控制脉冲了。而这个脉冲为什么会抖动呢?当然和你选用的脉冲发生器有

舵机控制

舵机控制实验 舵机是一种位置伺服的驱动器,主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。其工作原理是由接收机或者单片机发出信号给舵机,其内部有一个基准电路,产生周期为20ms,宽度为1.5ms 的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。经由电路板上的IC 判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回信号,判断是否已经到达定位。适用于那些需要角度不断变化并可以保持的控制系统。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。一般舵机旋转的角度范围是0 度到180 度。 舵机有很多规格,但所有的舵机都有外接三根线,分别用棕、红、橙三种颜色进行区分,由于舵机品牌不同,颜色也会有所差异,棕色为接地线,红色为电源正极线,橙色为信号线。

舵机的转动的角度是通过调节PWM(脉冲宽度调制)信号的占空比来实现的,标准PWM(脉冲宽度调制)信号的周期固定为20ms (50Hz),理论上脉宽分布应在1ms到2ms 之间,但是,事实上脉宽可由0.5ms 到2.5ms 之间,脉宽和舵机的转角0°~180°相对应。有一点值得注意的地方,由于舵机牌子不同,对于同一信号,不同牌子的舵机旋转的角度也会有所不同。 了解了基础知识以后我们就可以来学习控制一个舵机了,本实验所需要的元器件很少只需要舵机一个、跳线一扎就可以了。 RB—412 舵机*1 面包板跳线*1 扎 用Arduino 控制舵机的方法有两种,一种是通过Arduino 的普通数字传感器接口产生占空比不同的方波,模拟产生PWM 信号进行舵机定位,第二种是直接利用Arduino 自带的Servo 函数进行舵机的控制,

电动液压舵机的工作原理及使用管理

毕业专题论文 电动液压舵机的工作原理及运行管理 The working principle and management of the electro-hydraulic steering gear 学生姓名张学印 所在专业轮机工程 所在班级轮机1062 申请学位学士学位 指导教师陈波职称讲师副指导教师职称

目录 摘要 ......................................................................................................................................... I ABSTRACT ................................................................................................................................... II 引言 .. (1) 1 舵机的工作要求及工作原理 (1) 1.1对舵机的工作要求 (1) 1.2阀控型液压舵机工作原理 (2) 1.2.1 工作原理 (2) 1.2.2 压力控制 (3) 1.2.3 补油、放气和舵角指示 (4) 1.3泵控型液压舵机工作原理 (5) 1.3.1 工作原理 (5) 1.3.2 主油路的锁闭 (6) 1.3.3 工况选择 (6) 1.3.4 压力保护、补油、放气和舵角指示 (7) 2 潜在故障分析 (7) 2.1液压系统故障 (8) 2.1.1 可能引起的故障及分析 (8) 2.1.2 预防措施 (8) 2.2电子系统故障 (9) 2.2.1 通信故障 (9) 2.2.2 遥控故障 (9) 2.2.3 预防措施 (9) 2.3电力系统故障 (9) 2.3.1 主要故障及危害 (9) 2.3.2 预防措施 (10) 3 舵机的工作要求及日常管理 (10) 3.1舵机的日常管理 (10) 3.1.1 系统的清洗和充油 (10) 3.1.2 舵机的试验和调整 (10) 3.2舵机日常管理注意事项 (11) 结束语 (11) 鸣谢 (12) 参考文献 (13)

舵机精简讲解

舵机 ------孟令军2014.8.13 -------更多请关注我的百度文库 》》什么是舵机? 【舵机定义】 舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。能够利用简单的输入信号比较精确的转动给定角度的电机系统。 它是一个可以调制偏转角度的电机,从而用于一些车、体机器人的方向调制。 伺服马达三条线中白色的线是控制线,接到控制芯片上。中间的是SERVO工作电源线(红色),一般工作电源是5V。第三条是地线。 》》如何选择舵机呢?? 【参数】 ⑴转速 转速由舵机无负载的情况下转过60°角所需时间来衡量,常见舵机的速度一般在 0.11/60°~0.21S/60°之间。 ⑵转矩 舵机扭矩的单位是KG·CM,这是一个扭矩单位。可以理解为在舵盘上距舵机轴中心水平距离1CM 处,舵机能够带动的物体重量。 ⑶电压 较高的电压可以提高电机的速度和扭矩,舵机推荐的电压一般都是4.8V或6V。 ⑷尺寸、重量和材质 舵机的功率(速度×转矩)和舵机的尺寸比值可以理解为该舵机的功率密度,一般同样品牌的舵机,功率密度大的价格高。 塑料齿轮的舵机在超出极限负荷的条件下使用可能会崩齿,金属齿轮的舵机则可能会电机过热损毁或外壳变形。所以材质的选择并没有绝对的倾向,关键是将舵机使用在设计规格之内。 所以:选择舵机需要在计算自己所需扭矩和速度,并确定使用电压的条件下,选择有150%左右甚至更大扭矩富余的舵机。 》》舵机如何调控???

【模拟舵机及其控制原理】 工作原理是控制电路接收信号源的控制脉冲,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。 模拟舵机需要一个外部控制器(遥控器的接收机)产生脉宽调制信号(可以用pwm模块)来告诉舵机转动角度,脉冲宽度是舵机控制器所需的编码信息。舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。 具体电机内部是怎么运作的,笔者在此不多写了,因为我们是学怎么用他的,如果想深究,可以讨论。 【数字舵机及其控制原理】 1、防抖。(模拟舵机调制不稳定,比如我期望得到2.5V的电压位置,但第一次得到的是2.3V,经过1个调节周期后,电位器转过的位置已经是2.6V了,这样控制电路就会给电机一个方向脉冲调节,电机往回转,又转过头,然后有向前调节,以至于出现不停的震荡) 2、响应速度快。(数字舵机可以以很高的频率进行调节,这个周期和角度会变得非常小,也能用PID进行调节) 如果想用数字舵机的可以研究PID算法。 -------------------下期学习PID算法--------------

液压舵机

第六节液压舵机 1056 平衡舵是指舵叶相对于舵杆轴线。 A.实现了静平衡 B.实现了动平衡 C.前后面积相等 D.前面有一小部分面积 1057 平衡舵有利于。 A.减小舵叶面积 B.减少舵机负荷 C.增大转船力矩 D.增快转舵速度1058 舵叶上的水作用力大小与无关。 A.舵角 B.舵叶浸水面积 C.舵叶处流速 D.舵杆位置 1059 舵机转舵扭矩的大小与有关。 A.水动力矩 B.转船力矩C.舵杆摩擦扭矩 D.A与C 1060 舵叶的平衡系数过大会造成。 A.回舵扭矩增大 B.转舵速度变慢 C.船速下降 D.转舵扭矩增大 1061 船舶倒航时的水动力矩不会超过正航时的水动力矩,因为倒航时。 A.最大航速低 B.水压力中心距舵杆距离近 C.倒航使用舵角小 D.A+ B 1062 采用平衡系数恰当的平衡舵主要好处是。 A.舵杆轴承径向负荷降低 B.转舵速度提高 C.常用舵角和最大航角时转航为拒皆降低 D.常用舵角时转舵扭矩不降低,最大舵角时降低 1063 舵的转船力矩。 A.与航速无关 B.与舵叶浸水面积成正比 C.只要舵角向90度接近,则随之不断增大 D.与舵叶处水的流速成正比 1064 关于舵的下列说法错的是。 A.船主机停车,顺水漂流前进,转航不会产生舵效。 B.转舵会增加船前进阻力。 C.转舵可能使船横倾和纵倾。 D.舵效与船途无关 1065 船正航时下列情况中舵的水动力矩帮助舵叶离开中位。 A. 平衡舵小舵角时 B.平衡舵大舵角时 C.不平衡舵小舵角时 D.不平衡舵大舵角时 1066 正航船舶平衡舵的转舵力矩会出现较大负扭矩的是。 A.小舵角回中 B.小舵角转离中位 C.大舵角回中 D.大舵角转离中位1067 限定最大舵角的原因主要是。 A.避免舵机过载 B.避免工作油压太高 C.避免舵机尺度太大 D.转船力矩随着舵角变化存在最大值 1068 某船若吃水和航速相同,在最大舵角范围内操舵,正航与倒航所需转舵力矩。 A.相同 B.前者大 C.后者大 D.因船而异 1069 舵机公称转舵扭矩是按正航时确定,因为。 A.大多数情况船正航 B.正航最大舵角比倒航大 C.同样情况下正航转舵扭矩比倒航大D.正航最大航速比倒航大得多 1070 舵机在正航时的转舵扭矩一般比倒航大,因为。 A.倒航舵上水压力的力臂较短 B.同样航速倒航时舵上水压力较小 C.A十B D.倒航最大航速比正航小得多 1071 下列关于舵的水动力矩和转船力矩的说法对的是。 A.与船速成正比 B.与船速平方成正比 C.与舵叶处水流速度成正比 D.与舵叶处水流速度平方成正比 1072 舵机公称转舵扭矩是指转舵扭矩。 A.平均 B.工作油压达到安全阀开启时 C. 船最深航海吃水、最大营运航速前进,最大舵角时的 D.船最深航海吃水、经济航速前进,最大舵角时的

舵机原理及其使用详解

舵机的原理,以及数码舵机VS模拟舵机 一、舵机的原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。 有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的:

收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20ms(即频率为50Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

液压舵机操作实验

实验三液压舵机的操作实验 一、实验内容 1、液压舵机遥控系统操舵试验与调整。 2. 电子式随动操舵系统操舵实验。 二、实验要求 通过实验,熟悉典型液压航机及遥控系统的组成和工作原理,掌握操舵方法。 三、实验设备 YD100 -1.6 / 28型液压舵机1套 D D1型电子随动操舵仪1台 (一)YD100 - 1.6 / 28型液压舵机 该舵机由广西梧州华南船舶机械厂制造。现装于辅机实验室内。 其主要技术数据如下: 型号:Y D100- 1.6/ 2 8 公称力矩: 1.6 t m(15.6 KN.M) 转舵时间:28 sec 最大转角正负35度 工作压力:100 kg/cm2 (9.81MPa) 安全阀调整压力:110kg/cm2 (10.8MPa) 电动机型号:JO2H-12-4(Y80L2一4) 电动机功率:0.8 kW 电动机转速: 1500 r.p.m. 电动机电压。380 V 油泵型号;10 SCYI4一1 油泵排量;10 m L/r 最大工作压力:320 kg/cm2(31.4MPa) 电磁阀型号: 34 E 1M-B10H-T

电磁阀流量:40L/min 电磁阀最大工作压力:210 kg/cm2(20.59 MPa) 溢流阀型号:Y E-B10 C 电磁阀流量:40 L/min 溢流阀最大工作压力:140 kg/cm2(13.73MPa) 注:转舵时间系指单机而言,双机组工作时,转舵速度可提高一倍。 1.转舵机构 舵机的转舵机构是采用柱塞式油缸,柱塞的往复运动通过拨叉机构转换为舵柄的转动。所以,舵机的输出力矩与工作油压的关系为(见图3—1)。 πd2R△P M= Z η 4 cos2a 式中:Z——油缸对数(Z=1) d——柱塞直径(d=10cm) R——舵杆中线到油缸中心线的垂直距离(R=18cm) △P——油缸压差(△P=P1—P2) η——推舵装置机械效率(η≈0.8) a——舵的转角 舵机力矩特性M=f(a)如图3—2所示。舵机公称力矩系指舵机转动舵杆的最大力矩,即舵的转角为35°时舵机的输出力矩。. 该舵机的转舵机构主要由油缸、柱塞、舵柄、边舵柄、拉杆等组成,如图3—3所示。 2.轴向柱塞式油泵 该舵机的油泵为手动变量轴向柱塞泵,其工作原理如图3-4所示。它由湖南邵阳液压件厂生产。 泵的传动轴(19)通过花键与缸体(16)连接,且带动缸体(16)旋转,使

BEC详解

BEC详解 BEC 本文转自SZRCCLUB BEC详解 一、基础 BEC为英文Battery Eliminate Circuit的首字母简写,直接翻译为“电池消除电路”。在模型中一般用于动力电路以外的电子设备供电。因为电动模型需要动力电和设备电2种供电方式,设备供电一般供电为5-6V,所以使用专用的接收供电(一般为4节电池)。接线 示意图见图一。 动力供电一般比设备供电的电压高。为了减轻模型重量和体积,在动力供电设备(一般为电子调速器,简称电调)中集成了BEC电路。BEC就是为取消专用的接收供电电池,直接由动力电池供电而专设的简单电路。接线示意图见图二。

二、使用 一般电调厂家为降低成本和减轻重量,对电调内部整合的BEC电路都采用线性稳压电路。线性稳压电路的特性是在输入电流=输出电流的条件下,将电压降到设定的输出电压。如下 图三。 这里可以看出: BEC的输入功率=11V*2A=22W BEC的输出功率=5V*2A=10W 无用功率=22-10=12W,效率=10/22≈45.5% 这12W就完全变成了BEC的热量散发掉了。这也就是电调发热量比较大的重要原因之一。 而且,动力输入电压越高,效率越低。 为了解决发热量和效率问题,国外开始采用开关式BEC(也有的简称UBEC,),开关BEC 与线性BEC最大的不同是采用的功率转换电路,输出功率=效率系数*输入功率,这个公式中的效率系数一般可以达到85%以上,而且输入和输出的电压变化对效率系数的影响不大。 假设效率系数=80%,其他按上面的条件,可以算出: BEC的输出功率=5V*2A=10W BEC的输入功率=10/0.85=11.76W=11V*1.07A 无用功率=11.76-10=1.76W(只有线性BEC的15%左右)

舵机工作原理

转叶式液压舵机产品介绍 上海海事大学摘编2010-01-18 关键字:液压舵机浏览量:627 大型船舶几乎全部采用液压舵机。电动舵机仅仅用于一些小型船舶上。液压舵机是利用液体的不可压缩性及流量、流向的可控性达到操舵的目的。转叶式液压舵机是一种新型的液压舵机。它与其他类型的舵机相比,具有体积小、重量轻、结构简单、制造容易、维护保养方便等一系列优点。 一、国内外研究现状: 转叶式液压舵机至今已有近60年的历史,但这种新舵机并非所有从事船舶制造的国家都能生产,目前只有少数几个国家掌握了这门设计和生产技术。例如:德国、挪威、俄罗斯和日本等他们从二次世界大战后50年代初开始先后研究和生产这种新舵机。 德国AEG通用电气公司生产转叶式液压舵机已闻名世界并占垄断地位,产品较多,是目前远洋船舶上所经常选用的设备之一。该公司生产四种不同系列,分为RD型;RDC型;RC型;RB型。最高压力12.5MPa;最大扭矩890吨米。由于采用翻边式结构,金属条密封形式,结构合理,翻边受力变形量小,可使用较高压力,容积效率也较高。但是安装工艺较复杂(与端盖式比较),不过RBZ(RB)系列组装化程度较高,安全阀,电动机,油泵机组均安装在转叶油缸两侧,可整体套入舵轴(与舵轴联接方式均为套装式)。大大简化了船上安装工作量。英国布朗公司、日本三井公司、三菱公司和美国等国家凭德国AEG公司专利进行成批生产各种系列的转叶式液压舵机。挪威FRYDENBO公司生产的转叶式液压舵机,工作压力2.5MPa,安全阀调节压力为5MPa,最大扭矩为600吨米。液压系统是以螺杆泵做主泵的定量泵系统。由手动和电动液压操纵组成一体。该公司产品的特点是采用端盖式带凹形橡胶密封,与舵轴联接形式为套装式,转叶舵机固定在船壳底座上,无缓冲装置,由于其使用压力较低,采用高粘度油液,故使用可靠,安装、维护保养简单。俄罗斯于1959年在目前的乌克兰境内试制了首台转叶式液压舵机,并在1962年装在船上考验其性能,而后进行了批量生产。这种舵机的结构形式为端盖式,金属条密封,工作压力小于6.5MPa。与舵轴联接方式为对接式。 我国自1969年在广州研制成功第一台转叶式舵机以来,由于这种舵机具有一系列优点,因此发展很快。现在这种舵机品种规格很多,结构不一。有翻边式结构(江南造船厂);端盖

舵机详解

舵机详解 舵机(英文叫Servo):它由直流电机、减速齿轮组、传感器和控制电路组成的一套自动控制系统。通过发送信号,指定输出轴旋转角度。舵机一般而言都有最大旋转角度(比如180度。)与普通直流电机的区别主要在,直流电机是一圈圈转动的,舵机只能在一定角度内转动,不能一圈圈转(数字舵机可以在舵机模式和电机模式中切换,没有这个问题)。普通直流电机无法反馈转动的角度信息,而舵机可以。用途也不同,普通直流电机一般是整圈转动做动力用,舵机是控制某物体转动一定角度用(比如机器人的关节)。 舵机的形状和大小多的让人眼花缭乱,大致可以分为下面这几种(如图所示) 最右边的是常见的标准舵机,中间两个小的是微型舵机,左边魁梧的那个是大扭力舵机。图上这几种舵机都是三线控制。 制作机器人常用的舵机有下面几种,而且每种的固定方式也不同,如果从一个型号换成一个型号,整个机械结构都需要重新设计。 第一种是MG995,优点是价格便宜,金属齿轮,耐用度也不错。缺点是扭力比较小,所以负载不能太大,如果做双足机器人之类的这款舵机不是很合适,因为腿部受力太大。做做普通的六足,或者机械手还是不错的。

第二种是SR 403,这款舵机是网友xqi2因MG995做双足机器人抖动太厉害,摸索找到的,经过测试。制作双足机器人不错~~~至少不抖了。优点是扭力大,全金属齿轮,价格也还算便宜。缺点嘛。。。做工很山寨。。。其他缺点等待反馈

第三种就是传说中的数字舵机AX12+,这个是久经考验的机器人专用舵机。除了价格高,使用RS485串口通信(控制板就得换数字舵机专用控制板),其他都是优点。

下图是一个普通模拟舵机的分解图,其组成部分主要有齿轮组、电机、电位器、电机控制板、壳体这几大部分。 电机控制板主要是用来驱动电机和接受电位器反馈回来的信息。电机嘛,动力的来源了,这个不用太多解释。电位器这里的作用主要是通过其旋转后产生的电阻的变化,把信号发送回电机控制板,使其判断输出轴角度是否输出正确。齿轮组的作用主要是力量的放大,使小功率电机产生大扭矩。

舵机控制原理以及分类作用

一、舵机的原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。 有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的: 收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,

输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

电磁舵机制作详解

电磁舵机制作详解 朋友做了个微型飞机,缺个电磁舵,论坛已经有不少介绍电磁舵原理以及制作的文章,这在我归纳一下,尽量把整个过程说得更详细,希望对各位制作小飞机的朋友有帮助 先说下原理, 电流的磁效应(动电会产生磁):任何通有电流的导线,都可以在其周围产生磁场的现象,称为电流的磁效应. 非磁性金属通以电流,却可产生磁场,其效果与磁铁建立的磁场相同. 通有电流的长直导线周围产生的磁场. 在通电流的长直导线周围,会有磁场产生,其磁力线的形状为以导线为圆心一封闭的同心圆,且磁场的方向与电流的方向互相垂直. 根据安培定则(又称右手定则) 用右手握住导线,大拇指指向电流的方向(所以必须是直流电,电流的方向,在导线中是由正极流到负极),其余四指所指的方向,即为磁力线的方向或磁针N极所受磁力的方向 以右手握住线圈,四指指向导线上电流的方向,则大拇指所指即为磁力线方向

电生磁是导线里自由电子的定向移动造成的。 通电导线磁性强弱跟下列因素有关: (1)电流大小.通电导线中的电流越大,磁性越强;电流增大,磁性增强. (2)匝数多少.当通电导线中的电流一定时,匝数越多,磁性越强;匝数增加,磁性增强. 通电导线磁极方向与电流方向有关 以上两种方式都可以产生电磁,由于微型机电流都比较小,因为我们利用第二种方式(线圈的方式)来产生电磁有电磁了,下面来看看怎么利用电磁使舵面转动 先找个线圈,在线圈内部放个永久磁铁,然后让线圈通电产生磁场,线圈内部的永久磁铁因为电磁场产生偏转,带动舵面

一般做成一下这样的比较多,因为这样制作比较简单,原理是一样的,因为磁场是立体,但磁性相对来说不如前者强 日常生活做利用这电磁原理最典型的就是喇叭,所以要做电磁舵机也有很多现成的配件,不需要自己绕线圈。耳机里面就有线圈了,不过得串多几个,还有光区的光头那

舵机原理

舵机原理 2009-11-09 19:03 1、概述 舵机最早出现在航模运动中。在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。举个简单的四通飞机来说,飞机上有以下几个地方需要控制: 1.发动机进气量,来控制发动机的拉力(或推力); 2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动; 3.水平尾舵面,用来控制飞机的俯仰角; 4.垂直尾舵面,用来控制飞机的偏航角; 遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。舵机因此得名:控制舵面的伺服电机。 不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。由此可见,凡是需要操作性动作时都可以用舵机来实现。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿 轮组、位置反馈电位计5k、直流电机、控制电路板等。 工作原理:控制电路板接受来自信号线的控制信号(具体信 号待会再讲),控制电机转动,电机带动一系列齿轮组,减 速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相 连的,舵盘转动的同时,带动位置反馈电位计,电位计将输 出一个电压信号到控制电路板,进行反馈,然后控制电路板 根据所在位置决定电机的转动方向和速度,从而达到目标停 止。 舵机的基本结构是这样,但实现起来有很多种。例如电机就 有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动 和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速 之分,体积有大中小三种之分等等,组合不同,价格也千差 万别。例如,其中小舵机一般称作微舵,同种材料的条件下 是中型的一倍多,金属齿轮是塑料齿轮的一倍多。需要根据 需要选用不同类型。 舵机的输入线共有三条,红色中间,是电源线,一边黑色的 是地线,这辆根线给舵机提供最基本的能源保证,主要是电 机的转动消耗。电源有两种规格,一是4.8V,一是6.0V, 分别对应不同的转矩标准,即输出力矩不同,6.0V对应的要 大一些,具体看应用条件;另外一根线是控制信号线,Futaba 的一般为白色,JR的一般为桔黄色。另外要注意一点,SANWA 的某些型号的舵机引线电源线在边上而不是中间,需要辨 认。但记住红色为电源,黑色为地线,一般不会搞错。

相关文档
最新文档