单极倒立摆系统的极点配置与状态观测器设计报告

单极倒立摆系统的极点配置与状态观测器设计报告
单极倒立摆系统的极点配置与状态观测器设计报告

实验 6 极点配置与全维状态观测器的设计(优.选)

实验 6 极点配置与全维状态观测器的设计 一、实验目的 1. 加深对状态反馈作用的理解。 2. 学习和掌握状态观测器的设计方法。 二、实验原理 在MATLAB 中,可以使用acker 和place 函数来进行极点配置,函数的使用方法如下:K = acker(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。 K = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵。 [K,PREC,MESSAGE] = place(A,B,P) A,B为系统系数矩阵,P为配置极点,K为反馈增益矩阵,PREC 为特征值,MESSAGE 为配置中的出错信息。 三、实验内容 1.已知系统 (1)判断系统稳定性,说明原因。 (2)若不稳定,进行极点配置,期望极点:-1,-2,-3,求出状态反馈矩阵k。 (3)讨论状态反馈与输出反馈的关系,说明状态反馈为何能进行极点配置? (4)使用状态反馈进行零极点配置的前提条件是什么? 1. (1) (2) 代码: a=[-2 -1 1;1 0 1;-1 0 1]; b=[1,1,1]'; p=[-1,-2,-3]'; K=acker(a,b,p) K = -1 2 4 (3)讨论状态反馈与输出反馈的关系, 说明状态反馈为何能进行极点配置?

在经典控制理论中,一般只考虑由系统的输出变量来构成反馈律,即输出反馈。在现代控制理论的状态空间分析方法中,多考虑采用状态变量来构成反馈律,即状态反馈。从状态空间模型输出方程可以看出,输出反馈可视为状态反馈的一个特例。状态反馈可以提供更多的补偿信息,只要状态进行简单的计算再反馈,就可以获得优良的控制性能。 (4)使用状态反馈配置极点的前提是系统的状态是完全可控的。 2.已知系统 设计全维状态观测器,使观测器的极点配置在12+j,12-j 。 (1)给出原系统的状态曲线。 (2)给出观测器的状态曲线并加以对比。(观测器的初始状态可以任意选取)观察实验结果,思考以下问题: (1)说明反馈控制闭环期望极点和观测器极点的选取原则。 (2)说明观测器的引入对系统性能的影响。 (1)A=[0 1;-3 -4]; B=[0;1]; C=[2 0]; D=[]; G=ss(A,B,C,D); x=0:0.001:5; U=0*(x<0)+1*(x>0)+1*(x==0); X0=[0 1]'; T=0:0.001:5; lsim(G,U,T,X0);

单级倒立摆系统的极点配置与状态观测器设计

单级倒立摆系统的极点配置与状态观测器设计 14122156 杨郁佳 (1)倒立摆的运动方程并将其线性化 选取小车的位移z ,及其速度z g 、摆的角位置θ及其角速度θg 作为状态变量,即T x z z θθ??=??? ?g g 则系统的状态空间模型为 01000100000010()1000mg M M x u M m g Ml Ml x ????????????-????=+????????+-????????????g []1000y x = 设M=2kg ,m=0.2kg ,g=9.81m/2 s ,则单级倒立摆系统的状态方程为 (1010) 01010 01020.500013030 011040.54x x x x u x x x x ??????????????????-????????=+????????????????-???????????? []12100034x x y x x ???? ??=?????? (2)状态反馈系统的极点配置。 首先,使用MATLAB ,判断系统的能控性矩阵是否为满秩。 MATLAB 程序如下:

A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0]; B=[0; 0.5; 0; -0.5]; C=[1 0 0 0]; D=0; rct=rank(ctrb(A,B)) [z,p,k]=ss2zp(A,B,C,D) MATLAB程序执行结果如下: 系统能控,系统的极点为 1=0 λ 2=0 λ 3=3.3166 λ 4=-3.3166 λ 可以通过状态反馈来任意配置极点,将极点配置在 1=-3 λ* 2=-4 λ* 3=-5 λ* 4=-6 λ*

倒立摆状态空间极点配置控制实验实验报告

《现代控制理论》实验报告 状态空间极点配置控制实验 一、实验原理 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。 1.状态空间分析 对于控制系统X = AX + Bu 选择控制信号为:u = ?KX 式中:X 为状态向量( n 维)u 控制向量(纯量) A n × n维常数矩阵 B n ×1维常数矩阵 求解上式,得到 x(t) = (A ? BK)x(t) 方程的解为: x(t) = e( A?BK )t x(0) 状态反馈闭环控制原理图如下所示: 从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。 2.极点配置的设计步骤 1) 检验系统的可控性条件。 2) 从矩阵 A 的特征多项式 来确定 a1, a2,……,an的值。 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 其中 M 为可控性矩阵, 4) 利用所期望的特征值,写出期望的多项式 5) 需要的状态反馈增益矩阵 K 由以下方程确定: 二、实验内容 针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。 三、实验步骤及结果 1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输 入的系统状态方程为: 可以取1 l 。则得到系统的状态方程为: 于是有:

直线一级倒立摆的极点配置转化为: 对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。 2.采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。 1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。 倒立摆极点配置原理图 2) 计算特征值 根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中: 其中,μ 3,μ 4 使一对具有的主导闭环极点,μ 1 ,μ 2 位于 主导闭环极点的左边,因此其影响较小,因此期望的特征方程为: 因此可以得到: 由系统的特征方程: 因此有 系统的反馈增益矩阵为: 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 式中: M = 0 1.0000 0 0 1.0000 0 0 0 0 0.7500 0 5.5125 0.7500 0 5.5125 0 W = 0 -7.3500 -0.0000 1.0000 -7.3500 -0.0000 1.0000 0 -0.0000 1.0000 0 0 1.0000 0 0 0 于是可以得到: T = -7.3500 -0.0000 1.0000 0 0 -7.3500 -0.0000 1.0000 0 -0.0000 0.7500 0 -0.0000 0 -0.0000 0.7500 T’= -7.3500 0 0 -0.0000 -0.0000 -7.3500 -0.0000 0 1.0000 -0.0000 0.7500 -0.0000 0 1.0000 0 0.7500

7状态空间设计法极点配置观测器解析

第7章线性定常离散时间状态空间设计法 7.1引言 7.2状态反馈配置极点 7.3状态估值和状态观测器 7.4利用状态估值构成状态反馈以配置极点 7.5扰动调节 7.6无差调节

7.1 引言 一个被控对象: (1)()()()() ():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n +=+?? =?????? 7.1 当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声 ● 给定输入的指令信号 ● 输出 如图7.1所示。 给d L (k )扰动 图7.1 控制系统示意图 根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。 调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。包括指令变化时的动态过程,和负载扰动下的动态过程。但是这二者往往是矛盾的,需要折衷考虑。 伺服问题的设计目标是对指令信号的快速动态跟踪。 本章研究基于离散时间状态空间模型的设计方法。 7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。 7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。 7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。 7.5简单地讨论扰动调节问题。 7.6状态空间设计时的无差调节问题。

7.2 状态反馈配置极点 工程被控对象如式7.1,考虑状态反馈 ()()()u k v k Lx k =+ 7.2 如图7.2所示。式7.2带入式7.1,得 (1)()()()() ()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+?? =??=+? 7.3 整理得 ()(1)()() ()()x k F GL x k Gv k y k Cx k +=++?? =? 7.4 (k ) v (k ) 图7.2 状态反馈任意配置闭环系统的极点 闭环系统的特征方程为 []det ()0zI F GL -+= 7.5 问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有 []1det ()()0n i i zI F GL z λ=-+=-=∏ 7.6 定理:状态反馈配置极点

直线一级倒立摆控制器设计 自动控制理论课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书 课程名称:自动控制理论 设计题目:直线一级倒立摆控制器设计院系:电气工程系 班级:0806152 设计者:段大坤 学号:1082710118 指导教师:郭犇 设计时间:2011.6.13-2011.6.20 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

1.1数学模型建立 数学模型的建立过程需要用到以下参数: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ摆杆与垂直向上方向的夹角 θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下),其中 θπφ=+ 分析小车水平方向所受的合力可得: Mx F bx N =-- (1) 由摆杆水平方向受力分析可得: 2 2(sin )d N m x l dt θ=+ (2) 即 2cos sin N mx ml ml θθθθ=+-(3) 将(3)代入(1)可得系统的第一个运动方程: 2()cos sin M m x bx ml ml F θθθθ+++-= (4) 对摆杆垂直方向的合力进行分析可得: ()2 2cos d P mg m l dt θ-=- (5) 即: 2sin cos P mg ml ml θθθθ-=+(6) 力矩平衡方程如下: sin cos Pl Nl I θθθ--=(7) 将(6)(7)合并可得第二个运动方程:

2()sin cos I ml mgl mlx θθθ++=- (8) 1、微分方程模型 由于θπφ=+,当摆杆与垂直向上方向之间的夹角φ和1(弧度)相比很小时,即1 φ时,可进行如下近似处理:cos 1θ=-,sin θφ=-,2 ( )0d dt θ=。用u 代表被控对象的输入力F ,将模型线性化可得系统的微分方程表达式: 2 ()()I ml mgl mlx M m x bx ml u φφφ?+-=?? ++-=?? (9) 2、传递函数模型 设初始条件为0,,对(9)进行拉普拉斯变换可得: 222 22 ()()()()()()()()() I ml s s mgl s mlX s s M m X s s bX s s ml s s U s ?+Φ-Φ=??++-Φ=??(10) 输出为角度φ,解方程组(10)的第一个方程可得: 22()()[]()I ml g X s s ml s +=-Φ (11) 或2 22(()()s mls X s I ml s mgl Φ= +-)(12) 令小车加速度v x =则有 22()()()s ml V s I ml s mgl Φ=+- 将(11)式代入方程组(10)的第二个方程可得 222 222()()()[]()[]()()()I ml g I ml g M m s s b s s ml s s U s ml s ml s +++-Φ+-Φ-Φ= 以u 为输入量,以摆杆摆角φ为输出的传递函数为: 2 2 432()()()() ml s s q b I ml M m mgl bmgl U s s s s s q q q Φ=+++--

状态反馈与状态观测器

实验七 状态反馈与状态观测器 一、实验目的 1. 掌握用状态反馈进行极点配置的方法。 2. 了解带有状态观测器的状态反馈系统。 二、实验原理 1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。在改善与提高系统性能时不增加系统零、极点,所以不改变系统阶数,实现方便。 2. 已知线形定常系统的状态方程为 x Ax Bu y cx =+=为了实现状态反馈,需要状态变 量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。解决的方法是用计算机构成一个与实际系统具有同样动态方程的模拟系统,用模拟系统的状态向量 ?()x t 作为系统状态向量()x t 的估值。状态观测器的状态和原系统的状态之间存在着误差,而引起误差的原因之一是无法使状态观测器的初态等于原系统的初态。 引进输出误差?()()y t y t -的反馈是为了使状态估计误差尽可能快地衰减到零。状态估计的误差方程为 误差衰减速度,取决于矩阵(A-HC )的特征值。 3. 若系统是可控可观的,则可按极点配置的需要选择反馈增益阵k ,然后按观测器的动态要求选择H ,H 的选择并不影响配置好的闭环传递函数的极点。因此系统的极点配置和观测器的设计可分开进行,这个原理称为分离定理。 三、实验内容 1. 设控制系统如6.1图所示,要求设计状态反馈阵K ,使动态性能指标满足超调量%5%σ≤,峰值时间0.5p t s ≤。

单级倒立摆控制的极点配置方法

一级倒立摆控制的极点配置方法 摘要 倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。 本文通过极点配置, 实现了用现代控制理论对一级倒立摆的控制。利用牛顿第二定律及相关的动力学原理等建立数学模型,对小车和摆分别进行受力分析,并采用等效小车的概念,列举状态方程,进行线性化处理想, 最后通过极点配置,得到变量系数阵。利用Simulink建立倒立摆系统模型,特别是利用Mask封装功能, 使模型更具灵活性,给仿真带来很大方便。实现了倒立摆控制系统的仿真。仿真结果证明控制器不仅可以稳定倒立摆系统,还可以使小车定位在特定位置。 关键词:倒立摆,数学建模,极点配置

THE POLE PLACEMENT CONTROL TO A SINGLE INVERTED PENDULUM Abstract Inverted pendulum system is multivariable, nonlinear, strong-coupling and instability naturally. The research of inverted pendulum has many important realistic meaning in the research such as, the walking of biped robot, the lunching process of rocket and flying control of helicopter, and many correlative productions has applications in the field of technology of space flight and subject of robot. Through the pole placement method, the control of the inverted pendulum is realized. We get the mathematic model according to the second law of Newton and the foundation of the dynamics, analysis the force of the cart and pendulum, and adopt the concept of "the equivalent cart”. During writing the equitation of the system, the equitation has been processed by linear. At last,we get coefficient of the variability. The simulation of inverted pendulum system is done by the SIMULINK Tool box. Specially Mask function is applied, it makes simulation model more agility, the simulation work become more convenient. The result shows that it not only has quite goods ability, but also is able to make the cart of the pendulum moving to the place where it is appointed by us in advance along the orbit. Key words: inverted pendulum, mathematic model, pole placement

倒立摆系统的状态空间极点配置控制设计

摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。 关键词:倒立摆、极点配置、MATLAB仿真 引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器 1.数学模型的建立 倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 1.1微分方程的数学模型 在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:

图1:直线一级倒立摆模型 设系统的相关参数定义如下: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆质量 F:加在小车上的力 x:小车位置 Φ:摆杆与垂直方向上方向的夹角 θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下) 如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

线性系统极点配置和状态观测器基于设计(matlab) - 最新版本

一. 极点配置原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可控的,则可引入状态反馈调节器,且: 这时,闭环系统的状态空间模型为: ()x A BK x Bv y Cx =-+?? =? 二. 状态观测器设计原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可观的,则可引入全维状态观测器,且: ??(y y)??x Ax Bu G y Cx ?=++-??=?? 设?x x x =-,闭环系统的状态空间模型为: ()x A GC x =- 解得: (A GC)t (0),t 0x e x -=≥ 由上式可以看出,在t 0≥所有时间内,如果(0)x =0,即状态估计值x 与x 相等。如果(0)0x ≠,两者初值不相等,但是()A GC -的所有特征值具有负实部,这样 x 就能渐进衰减至零,观测器的状态向量?x 就能够渐进地逼近实际状态向量x 。状态逼近的速度取决于G 的选择和A GC -的特征配置。 三. 状态观测的实现 为什么要输出y 和输入u 对系统状态x 进行重构。 u Kx v =-+

证明 输出方程对t 逐次求导,并将状态方程x Ax Bu =+代入整理,得 2(n 1)(n 2)(n 3)21n n y Cx y CBu CAx y CBu CABu CA x y CBu CABu CA Bu CA x -----=??-=??--=????----=? 将等号左边分别用z 的各分量12,, ,n z z z 表示,有 121(n 1)(n 2)(n 3) 2 n n n y C z y CBu CA z z y CBu CABu x Qx z CA y CBu CABu CA Bu -----?? ???????? -?? ????? ? ? ?????==--==?? ????????????????????----?? ? 如果系统完全能观,则 rankQ n = 即 1?(Q Q)T T x Q z -= (类似于最小二乘参数估计) 综上所述,构造一个新系统z ,它是以原系统的输出y 和输入u ,其输出经过变 换1(Q Q)T T Q -后得到状态向量?x 。也就是说系统完全能观,状态就能被系统的输入输出以及各阶倒数估计出来。 四. 实例 给定受控系统为 再指定期望的闭环极点为12,341,1,2i λλλ*** =-=-±=-,观测器的特征值为 12,33,32i λλ=-=-±,试设计一个观测器和一个状态反馈控制系统,并画出系统 的组成结构图。 []0100000101000100 05 021000x x u y x ???? ????-????=+????????-???? =

基于MATLAB的状态观测器设计

基于MATLAB 的状态观测器设计 预备知识: 极点配置 基于状态反馈的极点配置法就是通过状态反馈将系统的闭环极点配置到期望的极点位置上,从而使系统特性满足要求。 1. 极点配置原理 假设原系统的状态空间模型为: ???=+=Cx y Bu Ax x 若系统是完全可控的,则可引入状态反馈调节器,且: Kx u input -= 这时,闭环系统的状态空间模型为: ???=+-=Cx y Bu x )BK A (x 2. 极点配置的MATLAB 函数 在MATLAB 控制工具箱中,直接用于系统极点配置的函数有acker()和place()。调用格式为: K=acker(A,C,P) 用于单输入单输出系统 其中:A ,B 为系统矩阵,P 为期望极点向量,K 为反馈增益向量。 K=place(A,B,P) (K,prec,message)=place(A,B,P) place()用于单输入或多输入系统。Prec 为实际极点偏离期望极点位置的误差;message 是当系统某一非零极点偏离期望位置大于10%时给出的警告信息。 3. 极点配置步骤: (1)获得系统闭环的状态空间方程; (2)根据系统性能要求,确定系统期望极点分布P ; (3)利用MATLAB 极点配置设计函数求取系统反馈增益K ; (4)检验系统性能。 已知系统模型 如何从系统的输入输出数据得到系统状态?

初始状态:由能观性,从输入输出数据确定。 不足:初始状态不精确,模型不确定。 思路:构造一个系统,输出逼近系统状态 称为是的重构状态或状态估计值。实现系统状态重构的系统称为状态观 测器。 观测器设计 状态估计的开环处理: 但是存在模型不确定性和扰动!初始状态未知! 应用反馈校正思想来实现状态重构。 通过误差来校正系统:状态误差,输出误差。 基于观测器的控制器设计 系统模型 若系统状态不能直接测量, 可以用观测器来估计系统的状态。 L是观测器增益矩阵,对偏差的加权。 真实状态和估计状态的误差向量 误差的动态行为:

一阶倒立摆课程设计报告

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系):英才学院专业:自动化班号: 任务起至日期: 2011 年8 月22 日至 2011 年9 月9 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)的超调量小于20度(0.35弧度) (4)稳态误差小于2%。

工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。 工作计划安排: 第3周:(1)建立直线一级倒立摆的线性化数学模型; (2)倒立摆系统的PID控制器设计、Matlab仿真; (3)倒立摆系统的极点配置控制器设计、Matlab仿真。 第4周:实物调试; 撰写课程设计论文。 同组设计者及分工: 各项工作独立完成 指导教师签字 年月日教研室主任意见:

状态反馈与极点配置报告

自 动 控 制 原 理 (课程设计)

一、题目 用MATLAB创建用户界面,并完成以下功能: (1)由用户输入被控系统的状态空间模型、闭环系统希望的一组极点; (2)显示未综合系统的单位阶跃响应曲线; (3)显示采用一般设计方法得到的状态反馈矩阵参数; (4)显示闭环反馈系统的单位阶跃响应曲线; (5)将该子系统嵌入到寒假作业中程序中。 分别对固定阶次和任意阶次的被控系统进行设计。分别给出设计实例。 二、运行结果 界面:如图 由用户输入被控系统的状态空间模型、闭环系统希望的一组极点 例如,输入 010 001 034 A ?? ?? =?? ?? -- ?? , 1 B ?? ?? =?? ?? ?? ,[] 2000 C=,0 D=,闭环系统 希望的一组极点:22j -+、22j --、5 -如图所示:

被控系统的单位阶跃响应曲线 闭环系统的单位阶跃响应曲线

状态反馈矩阵显示 三、讨论 该闭环控制系统的状态反馈与极点配置设计系统可用于任意阶次的控制系统。在此之前,我还做了一个固定阶次的控制系统状态反馈与极点配置的Matlab 控制台程序(见附录二)。 该系统的利用状态反馈进行极点任意配置所采用的方法为一般方法,其步骤如下: ①判断受控系统是否完全能控; ②由给定的闭环极点要求确定希望的闭环特征多项式的n个系数 ~ i a; ③确定原受控系统的特征多项式系数i a; ④确定系统状态反馈矩阵 ~ ~~ ~ [,,,] 12n f f f F=的诸元素~~1 1i i i f a a - =- -; ⑤确定原受控系统化为能控标准形的变换阵的逆1 P-, ⑥确定受控系统完成闭环极点配置任务的状态反馈阵 ~ 1 F F P-=。 四、参考文献 [1]黄家英.《自动控制原理》.高等教育出版社,2010.5 [2]唐向红,郑雪峰.《MATLAB及在电子信息类》.电子工业出版社,2009.6 [3]吴大正,高西全.《MATLAB新编教程》.机械工业出版社,2008.4 五、附录 function varargout = tufeiqiang(varargin) %TUFEIQIANG M-file for tufeiqiang.fig % TUFEIQIANG, by itself, creates a new TUFEIQIANG or raises the existing % singleton*. % % H = TUFEIQIANG returns the handle to a new TUFEIQIANG or the handle to % the existing singleton*. % % TUFEIQIANG('Property','Value',...) creates a new TUFEIQIANG using

基于极点配置的控制器设计与仿真

计算机控制理论与设计作业 题目:基于极点配置方法的直流调速系统的控制器设计

摘要 本文目的是用极点配置方法对连续的被控对象设计控制器。基本思路是对连续系统进行数学建模,将连续模型进行离散化,针对离散的被控对象,用极点配置的方法分别在用状态方程和传递函数两种描述方法下设计前馈和反馈控制器,并用MATLAB仿真。文中具体以直流调速系统作为研究对象,对直流调速系统的组成和结构进行了分析,把各个部分进行数学建模,求出其传递函数,组成系统结构框图,利用自控原理的知识对结构图化简,求出被控对象的传递函数和状态方程,进一步得将其离散化。第一种是通过极点配置设计方法的原理,用状态方程设计被控对象的控制律,因为直流调速系统存在噪声,实际状态不可测,故选择了全阶的观测器,又因为采样时间小于计算延时,所以选择了预报观测器。利用所学知识对此闭环系统设计前馈和反馈控制器[1]。第二种利用传统的离散传递函数,从代数多项式的角度进行复合控制器的设计,在保证系统稳定的情况下,分析系统的可实现性,稳定性,静态指标,动态指标,抗干扰等方面性能研究前馈反馈相结合控制器设计。重点是保证被控对象的不稳定的零极点不能被抵消。最后利用MATLAB的Simulink进行仿真,观察系统的输出的y和u和收敛性,并加入扰动看其抗干扰性能,得出结论。 经研究分析,对于直流调速系统,基于极点配置设计的前馈反馈相结合的控制器,具有良好的稳定性能和抗干扰性能。运行结果符合实际情况。 关键词:极点配置;状态方程;直流调速系统;代数多项式;Matlab;

1绪论 1.1论文的背景及意义 在工业生产和日常生活中,自动控制系统分为确定性系统和不确定性系统两类,确定性系统是指系统的结构和参数是确定的,确定的输入下,输出也确定的一类系统。确定性系统相对于不确定性系统而言的。在确定的系统中所用的变量都可用确切的函数关系来描述,系统的运动特性可以完全确定。以确定性系统为研究对象的控制理论称为确定性控制理论。本文以直流调速系统为研究对象,利用极点配置的设计方法,包括利用状态空间模型和传递函数模型分别描述线性系统,采用闭环极点为指标的控制器设计的理论和方法,设计出前馈和反馈控制器,组建闭环控制系统,用Matlab进行仿真可以逼真地还原出实际系统。 1.2 论文的主要内容 本文直流电机的调速系统的模型作为研究对象,利用线性系统极点配置的设计方法,设计前馈反馈控制器。论文研究的主要内容: (1)阅读学习国内外期刊文献,研究了极点配置的基本原理和Matlab的实现方法。 (2)系统的说明直流电机的系统结构和工作原理并分析,建立直流调速系统的数学模型,将其进行离散化,并讨论其传递函数与状态方程之间的关系。 (3)分析极点配置控制器的设计原理,利用状态方程设计控制器。 (4)将被控对象的传递函数离散化,利用传递函数模型设计控制器。 (4)在MATLAB中建立闭环直流调速系统的模型,根据闭环极点配置的设计步骤编写程序,用Simulink搭建仿真系统,对闭环直流调速系统的输出进行仿真分析。 (5)对仿真结果分析。将仿真结果与实际直流调速系统的阶跃响应的各项参数相比较,得出结论。

状态空间设计与分析

状态空间分析及设计 姓名:周海波 学号:200740297(15) 班级:自控实验0701班 日期:2010-5-2

目录 一.系统能控性和能观性判定 二.主导极点法进行状态反馈极点配置 三.对称根轨迹法(SRL)进行状态反馈极点配置 四.主导极点法和SRL状态反馈极点配置对比 五.全维观测器设计和分析 1.观测器设计 2.分离定理验证 六.带全维观测器的状态反馈与直接状态反馈对比 七.降阶观测器和带降阶观测器的状态反馈系统的设计和分析八.全维观测器的状态反馈与降阶观测器的状态反馈对比 1.抗过程干扰能力 2.抗测量噪声能力 九.采用内模原则设计状态反馈系统 1.跟踪性能分析 2.抗干扰性能分析

状态空间分析及设计 有以下系统 122201101011x x μ ???????????=?+?????????????i []100y x =要求:对系统设计状态反馈使得系统闭环阶跃响应的超调量小于5%,且在稳态误差值为1%范围内的调节时间小于4.6s. 一.系统能控性和能观性判定 由系统能控性判别矩阵: 224001013115rank B AB A B rank ???????==????????? 由系统能观性判别矩阵:21001223142C rank CA rank CA ????????=???=????????????? 所以系统既是能控的又是能观的。 二.主导极点法进行状态反馈极点配置1.当 4.61% 4.6s n t s ζω?== <%5%e πζσ?=<解得:0.691n ζζω>??>?取0.75 2n ζω==则:2222340 n n s s s s ζωω++=++=所以1,2 1.5 1.323s j =?±,取非主导极点38s =?,则期望特征多项式为: 232(34)(8)112832 s s s s s s +++=+++设[]123K k k k =又

系统稳定性分析 、利用MATLAB 实现极点配置、设计状态观测器

实验报告 实验名称系统稳定性分析、利用MATLAB实现极点配置、设计状态观测器系专业班 姓名学号授课老师 预定时间实验时间实验台号 一、目的要求 掌握系统稳定性的概念。学会使用MATLAB确定线性定常系统和非线性定常系统的稳定性。 掌握状态反馈和输出反馈的概念及性质。 掌握利用状态反馈进行极点配置的方法。学会用MATLAB求解状态反馈矩阵。 掌握状态观测器的设计方法。学会用MATLAB设计状态观测器。 熟悉分离定理,学会设计带有状态观测器的状态反馈系统。 二、原理简述 函数eig()的调用格式为V=eig(A)返回方阵A的特征值。 函数roots()的调用格式为roots(den),其中den为多项式的系数行向量。计算多项式方程的解。 函数pole()的调用格式为pole(G),其中G为系统的LTI对象。计算系统传递函数的极点。 函数zpkdata()的调用格式为[z,p,k]=zpkdata(G,’v’),其中G为系统LTI对象。返回系统的零点、极点和增益。 函数pzmap()的调用格式为pzmap(G),其中G为LTI对象。绘制系统的零点和极点。 对于线性定常连续系统x Ax,若A是非奇异矩阵,则原点是其唯一的平衡状态。统在原点处大范围渐近稳定的充分条件是:存在李氏函数v(x)x T px,且v(x)正定,v(x)负定。 如果SISO线性定常系统完全能控,则可通过适当的状态反馈,将闭环系统极点配置到 任意期望的位置。 MATLAB提供的函数acker()是用Ackermann公式求解状态反馈阵K。 MATLAB提供的函数place()也可求出状态反馈阵K。 如果线性定常系统完全能观测,则可构造全维(基本)观测器。全维(基本) 状态观测器的状态方程为观测器的反馈矩阵L为 其中为系统的能观测矩阵。 其中为期望的状态观测器的极点。观测器设计是极点配置的对偶问题,故可利用函数acker()和place()进行求解。

一级倒立摆MATLAB仿真、能控能观性分析、数学模型、极点配置

题目一: 考虑如图所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。倒立摆系统的参数包括:摆杆的质量(摆杆的质量在摆杆中心)、摆杆的长度、小车的质量、摆杆惯量等。 图倒立摆系统 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量 %≤10%,调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。 要求:1、建立倒立摆系统的数学模型 2、分析系统的性能指标——能控性、能观性、稳定性 3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定 是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的 分析方法进行参数的确定 4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状 态变量的时间响应图。 解: 1 建立一级倒立摆系统的数学模型 1.1 系统的物理模型 如图1所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为u。这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3外力的共同作用。

图1 一级倒立摆物理模型 1.2 建立系统状态空间表达式 为简单起见,本文首先假设:(1)摆杆为刚体 ;(2)忽略摆杆与支点之间的摩擦;( 3) 忽略小车与导轨之间的摩擦。 在如图一所示的坐标下,小车的水平位置是y,摆杆的偏离位置的角度是θ,摆球的水平位置为y+lsin θ。这样,作为整个倒立摆系统来说,在说平方方向上,根据牛顿第二定律,得到 u l y dt d m dt d M =++)sin (y 22 22θ (1) 对于摆球来说,在垂直于摆杆方向,由牛顿第二运动定律,得到 θθsin )sin y (m 22 mg l dt d =+ (2) 方程(1),(2)是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。则sin θ≈θ,cos θ≈1。在以上假设条件下,对方程线性化处理后,得倒 u ml M =++.. ..y m θ)( (3)

单级旋转倒立摆极点配置与二次型最优控制

第27卷第3期机电工程V01.27No.3 2010年3月JournalofMechanical&ElectricalEngineeringMar.2010 :::==========::======::==::=::=:======================================================单级旋转倒立摆极点配置与二次型最优控制 曾孟雄,方春娇,赵千惠 (三峡大学机械与材料学院,湖北宜昌443002) 摘要:为了使旋转倒立摆的旋臂与摆杆始终保持在垂直姿态,通过对单级旋转倒立摆系统结构和动力学分析,建立了合理的状态空间模型并进行了线性化处理,分别通过极点配置和二次型最优控制进行了控制优化,并在Matlab中进行了仿真分析,实现了对旋臂与摆杆的控制。研究结果表明,二次型最优控制具有更好的响应性能和算法简单等特点,在实际应用中具有重要意义。 关键词:倒立摆;极点配置;二次型最优控制 中图分类号:TPl3文献标识码:A文章编号:1001—4551(2010)03—0060—04Poleplacementandquadraticoptimalcontrolforthe .signal arm?driveninvertedpendulum ZENGMeng—xiong,FANGChun-jiao,ZHAOQian—hui (CollegeofMechanical&MaterialEngineering,ChinaThreeGorgesUniversity,Yichang443002,China) Abstract:Aimingatremainingofarotaryinvertedpendulumalways intheuprightposture,byanalyzingstructureanddynamicsofthesignalwtaryinvertedpendulum,arationalstate—spacemodelwasestablishedandtreatedwithlinearizationprocess.TheinveaedpendulumsystemWasconlroHed,respectively,bythepoleplacementandthequadraticoptimalcontrol,whichWagsimulatedandanalyzedinMatlab.Thecontrollingofthespiralarm andpendulumWaSrealized.Theresultsindicatethatthequadraticoptimalcontrolhasbetterrespondedperform。aliceandcharacters。suchassimplealgorithm.Ithasagreatsignifyinthepracticalapplication. Keywords:arnl—driveninvertedpendulum;poleplacement;quadraticoptimalcontrol 0引言 倒立摆系统是一个典型的多变量、非线性、绝对不稳定、高阶次和强耦合系统。倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法之有效性的典型方案。倒立摆系统的研究能有效反映控制中的非线性、鲁棒性、镇定、随动以及跟踪等典型问题。同时倒立摆的动态过程与人类的行走姿态类似,其平衡与火箭的发射姿态调整类似,因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整、海上钻井平台的稳定控制和飞行器着陆过程等领域中有重要意义¨引,研究倒立摆的精确控制策略对工业生产中复杂对象的控制有着重要的应用价值∞圳。 本研究主要探讨单级旋转倒立摆极点配置与二次型最优控制。 1单极旋转式倒立摆结构及数学模型1.1单级旋转倒立摆系统结构 倒立摆基本工作原理是用一种强有力的控制方法使倒立摆的摆杆和旋臂保持在垂直姿态。按摆杆数量,倒立摆系统分为一级(单级)、二级、三级等倒立摆,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。单级旋转倒立摆系统主要由控制对象(摆杆和旋臂)、机箱、直流力矩电机、支架和计算机组成,其基本结构图如图l所示。 倒立摆系统的输入为小车的旋臂和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感 收稿日期:2009—10—26 作者简介:曾盂雄(1957一),男,四川自贡人,教授。主要从事运动控制方面的研究.E-mail:mxiong@ctgu.edu.ca万方数据

相关文档
最新文档