第五章导电高分子及其电化学聚合

导电高分子材料的应用、研究状况及发展趋势(精)

导电高分子材料的应用、研究状况及发展趋势 熊伟 武汉纺织大学化工学院 摘要:与传统导电材料相比较 , 导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键字:导电高分子分类制备现状 Abstract : Compared with conventional conductive materials, conductive polymer material has many unique properties. Conducting polymers can be us ed as radar absorbing materials, electromagnetic shielding materials, antistatic materials. Describes the structure of conductive polymer materials, types and conducting mechanism, synthesis methods, the application of conductive poly mer materials, research status and development trend. Keywords : conductive polymer categories preparation status 1 导电高分子的结构、种类 按照材料结构和制备方法的不同可将导电高分子材料分为两大类 :一类是结构型 (或本征型导电高分子材料,另一类是复合型导电高分子材料 [3]。 结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料。 根据加入基体聚合物中导电成分的不同 , 复合型导电高分子材料可分为两类 :填充复合型导电高分子材料和共混复合型导电高分子材料 [5]。

人教版高中化学选修5第五章《进入合成有机高分子化合物的时代》测试题(word无答案)

人教版高中化学选修5第五章《进入合成有机高分子化合物的时代》 测试题 一、单选题 (★) 1 . 下列物质中,不属于合成材料的是 A .塑料 B .人造纤维 C .合成橡胶 D .黏合剂 (★) 2 . 塑料经改造后能像金属一样具有导电性,要使塑料聚合物导电,其内部的碳原子之间必 须交替地以单键和双键结合(再经掺杂处理)。目前导电聚合物已成为物理学家和化学家研究的重要领域。由上述分析,下列聚合物经掺杂处理后可以制成“导电塑料”的是( ) A .CH 2— CH=CH —CH 2 B . C . D . (★) 3 . 化学与材料、生活和环境密切相关。下列有关说法中正确的是( ) A .煤炭经蒸馏、气化和液化等过程,可获得清洁能源和重要的化工原料 B .医药中常用酒精来消毒,是因为酒精能够使细菌蛋白发生变性 C .“海水淡化”可以解决淡水供应危机,向海水中加入明矾可以使海水淡化 D .新型材料聚酯纤维、光导纤维都属于有机高分子化合物 (★) 4 . 随着工业的高速发展,橡胶的产量和性能已不能满足工业生产的需要。近年来,人们合成了一种无机耐火橡胶,它的结构简式可能是 A . B .

C.D. (★) 5 . 丙烯在一定条件下发生加聚反应的产物为( ) A.B. C.D. (★) 6 . 合成具有美白作用的化妆品原料Z的反应原理如下: 下列叙述不正确的是() A.X、Z均能与Na2CO3 溶液反应 B.X可作缩聚反应单体,Y可作加聚反应单体 C.X、Y、Z 均能使溴水褪色,但是原理不完全相同 D.该反应的反应类型为取代反应 (★) 7 . 青蒿酸是合成青蒿素的原料,可以由香草醛合成: 下列叙述正确的是( ) A.青蒿酸分子C15H14O2 B.在一定条件,香草醛可与HCHO发生缩聚反应 C.两种物质分别和H2反应,最多消耗H2 依次为4 mol和3 mol

导电聚合物复合材料

导电聚合物复合材料综述 及其在金属管道防腐方面的应用 摘要 本文主要讨论了复合型导电聚合物材料的分类情况、研究现状和存在问题等,并对于用于金属管道防腐方面的导电聚合物涂料的研究和制备提出了初步的思路和设计方案。 关键字:导电;聚合物;复合材料 引言 聚合物材料易成型,易加工,耐腐蚀,比强度高,由于具有优良的特性,在新一代材料中的应用受到了极大的重视,但由于其本身电阻率多处于10-10-lO-20S/m之间,属于绝缘体材料,使其在电子材料领域的应用受到限制,为使其电阻率得到可观规模的下降,并可以广泛应用于能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术中,有关新型的、具有导电性能的聚合物材料研究具有深刻意义。 1.导电聚合物材料的分类 按照结构与组成,导电聚合物材料可分为两大类:一类是本身或经过掺杂处理后具有导电功能的聚合物材料,称为结构型导电高分子材料;另一类是以聚合物材料为基体添加具有高导电性能的有机、无机、金属等导电填料,经过各种手段使其在基体中分散从而形成具有导电性的复合材料,称为复合型导电聚合物材料,又称导电聚合物复合材料。 对于结构型导电聚合物材料,由于分子主链上刚性共轭双键结构和分子间强范德华力作用力,使结构型导电聚合物通常不熔化不溶解。这些特殊的物理性质导致其加工性能差,限制了其的使用和生产。相比之下,导电复合材料可在较大尺度上控制材料性能,而且成本低、品种繁多,易加工和工业化生产,已经被广泛应用于电子、电器、纺织和煤炭开采等领域。此外,导电聚合物复合材料还具有一些特殊的物理现象,如绝缘体向半导体的突变,电阻率对温度、压力、气体浓度敏感性,电流-电压非线性行为,电流噪音等,从而得到广泛的研究与应用。 导电聚合物复合材料主要是由高电导率的导电填料和绝缘性的聚合物基体组成,其中导电填料提供载流子,通过导电填料之间的相互作用来实现载流子在聚合物复合材料中的迁移。将导体或半导体无机材料分散到高分子材料基体中,

导电高分子

导电高分子 常州轻工职业技术学院常州1013263211 摘要:通过对导电高分子的学习,让我对导电高分子的类型、掺杂、导电机理、导电高分子材料的应用、发展有了近以步的了解。此文章是我对这些内容的概括。 关键词:类型、掺杂、导电机理、导电高分子材料的应用。 一、概括: 一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10S/m以上的聚合物材料。高分子导电材料具有密度小、易加工、耐腐蚀、可大面积成膜以及电导率可在十多个数量级的范围内进行调节等特点,不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。高分子材料长期以来被作为优良的电绝缘体,直至1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。 二、导电高分子的导电机理[1] 1.载流子是由孤立子、极化子、双极化子等自由基离子构成的 2.极化子和孤立子的存在和跃迁使高分子链具有了导电性 三、导电高分子的领军人物: 导电聚合物(聚乙炔)由日本科学家白川英树最先发现,美国科学家 Heeger 和MacDiarmid 也是这一研究领域的先驱。这三位科学家由于在导电聚合物研究中的突出贡献,共同获得了2000年的诺贝尔化学奖。

美国物理学家美国化学家日本化学家 Heeger MacDiarmid Shirakawa 四、导电高分子的主要类型 除了最早的聚乙炔(PA)外,主要有聚吡咯(PPY)、聚噻吩(PTH)、聚对苯乙烯(PPV)、聚苯胺(PANI)以及他们的衍生物,其中聚苯胺结构多样、掺杂机制独特、稳定性高技术应用前景广泛,在目前的研究中备受重视,其中聚乙炔的所能达到的电导率在已发现的导电聚合物中是最高的,达到了105S/cm量级,接近Pt和Fe的室温电导率 五、电高分子的掺杂 1.什么是导电高分子的掺杂呢? 纯净的导电聚合物本身并不导电,必须经过掺杂才具备导电性 掺杂是将部分电子从聚合物分子链中迁移出来从而使得电导率由绝缘体级别跃迁至导体级别的一种处理过程 导电聚合物的掺杂与无机半导体的掺杂完全不同 2.导电高分子的掺杂与无机半导体的掺杂的对比 3.目前掺杂的方式主要有两种: 3.1氧化还原掺杂:可通过化学或电化学手段来实现。化学掺杂会受到磁场的影响,遗 憾的是目前为止还没有发现外加磁场对聚合物的室温电导率有明显的影响 3.2质子酸掺杂:一般通过化学反应来完成,近年发现也可通过光诱导施放质子的方 法来完成 3.3还有掺杂—脱掺杂—再掺杂的反复处理方法,这种掺杂方法可以得到比一般方法更 高的电导率和聚合物稳定性 六、导电高分子材料的应用 导电聚合物特殊的结构以及优异的物理化学性能,使得其在能源(二次电池、太阳能电池、固体电池),光电器件,晶体管,镇流器,发光二极管(LED),传感器(气体和生物),电磁屏蔽,隐身技术以及生命科学等方面都有诱人的应用前景 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料.第一个高导电性的高分子材料是经碘掺杂处理的聚乙炔,其后又相继开发了聚吡咯、聚对苯撑、聚苯硫醚、聚苯胺等导电高分子材料

导电高分子材料的简介

导电高分子材料的简介、应用和发展前景 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键词:导电高分子制备方法导电机理性能应用发展趋势 1.简介 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料。导电高分子又称导电聚合物,自从1976年,美国宾夕法尼亚大学的化学家Mac Diarmid领导的研究小组首次发现掺杂后的聚乙炔(Poly acetylene,简称PA)具有类似金属的导电性(导电高分子的导电性如图);1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。人们对共轭聚合物的结构和认识不断深入。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。 现有的研究成果表明,发展导电高分子兼具有机高分子材料的性能及半导体和金属的电性能, 具有密度小,易加工成各种复杂的形状,耐腐蚀,可大面积成膜及可在十多个数量级的范围内进行调节等特点,因此高分子导电材料不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。 1.1导电高分子材料的分类 按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。复合型导电材料是由高分子和导电剂(导电填料)通过不同的复合工艺而构成的材料。结构型结构型导电高分子又称本征型导电高分子(Intrinsically conducting polymer,简称ICP),是指高分子材料本身或经过少量掺杂处理而具有导电性能的材料,其电导率可达半导体甚至金属导体的范围。 1.2 高分子导电材料的制备方法 复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子进行混合,另一种则是将各种导电填料填充到基体高分子中。结构型导电聚合物一般用电子高度离域的共轭聚合物经过适当电子给体或受体进行掺杂后制得。 1.3 导电机理

复合型导电高分子材料的应用及发展前景

复合型导电高分子材料的应用及发展前景 【摘要】介绍了复合型导电高分子的特性、共混和填充复合型导电高分子的制备方法、开发现状及其技术进展。 【关键词】复合型导电高分子;导电性能;共混;填充 1、前言 通常,高分子材料的体积电阻率约为1010~1020Ω〃cm 之间,因而被大量用作绝缘材料。随着现代电子工业和作息技术等产业革命迅速发展,越来越需要具有导电功能高分子材料。导电高分子由于其具有重量轻、易加工各种复杂形状以及电阻率在较大范围内可调等特点,在防静电、电磁屏蔽、微波吸收、电化学及催化等领域得到广泛的应用(1)。导电高分子按其结构组成和制备方法的不同可分为结构型和复合型两大类。目前,复合型导电高分子材料所采用的复合方法主要有两种:一种是将亲水性聚合物或结构导电高分子与基本高分子进行共混,另一种则是将各种导电填料填充到基体高分子中(2)。 2、共混复合型高分子 2.1 与亲水性聚合物共混 作为亲水性聚合物,目前以聚氧化乙烯(PEO)的共聚物占多数,这可能与PEO 同基体高分子相容性较好有关。此外,还有降乙二醇-甲基丙烯酸酯类共聚物等.(3)日本Asahi 公司将ABS、Hips 与亲水性PA 共混制得两种高性能抗静电复合材料AdionA 和AdionH,尤其是后者在相对湿度较低的条件下也表现出较强的抗静电能力,且不受水洗和擦试等影响。在相对湿度为50%温度为23℃的环境中保存4 年后,抗静电性能无变化,机械性能不低于普通HIPS,其它性能则与普通HIPS 相同(4)。三洋化成工业公司开发的以聚醚为主的特殊嵌段共聚物与PMMA、ABS和PA 等基本高分子组成的共混物也具有永久抗静电效果,且相溶性较Goodrich 公司研制的永久性抗静电母料STAT-RITE C.2300非常引人注目,其化学组成可能是以PEP-ECH(表氯醇)共聚物为主要成分的高分子合金。当添加量为15%-20%时,与PVC/PC、PET 及PS系列基体高分子制成的复合材料具有永久性抗静电能力,且价格低廉,热稳定性好(5)。 许多学者研究了基本高分子与亲水性聚合物PEO(或其共聚物)组成的共混体系的形态结构。结果表明,亲水性聚合物在特殊相溶剂存在下,经较低的剪切拉伸后,在基体高分子表面形成微细的筋状,即层状分散结构,而中心结构则接近球状分布(6)。 2.2 与结构型导电高分子共混 这种共混技术就是采用机械或化学方法将结构型导电高分子和基本高分子进行复合,这是一条使结构型导电高分子走向实用体的有效途径。若将结构型导电高分子和基体高分子达到微观尺度内的共混,则可以获得具有互穿或部分互穿网络结构的复合型导电高分子,通常采用化学法或电化学法进行制备(10)。 3、填充复合导电高分子 这种导电高分子通常是将不同的无机导电填料掺入到普通的基体高分子中,经各种成型加工方法复合制得。导电填料的品种很多,常用的可分成炭系和金属系两大类。炭系填料包括炭黑、石墨和碳纤维等;金属系主要有铝、铜、镍、铁等金属粉末、金属片和金属纤维。此外,还有镀金属的纤维和云母片等。目前研究和应用较多的是由炭黑颗粒和金属纤维填充制成的复合型导电高分子(11)。3.1 炭黑填充型导电高分子

选修5有机化学基础 第五章 常考知识点强化总结

第五章 进入合成有机高分子化合物的时代 第一节 合成高分子化合物的基本方法 一、合成高分子化合物的基本反应类型 1.加成聚合反应(简称加聚反应) (1)特点 ①单体分子含不饱和键(双键或三键); ②单体和生成的聚合物组成相同; ③反应只生成聚合物。 (2)加聚物结构简式的书写 将链节写在方括号内,聚合度n 在方括号的右下角。由于加聚物的端基不确定,通常用“—” 表示。如聚丙烯的结构式。 (3)加聚反应方程式的书写 ①均聚反应:发生加聚反应的单体只有一种。如 ②共聚反应:发生加聚反应的单体有两种或多种。如 2.缩合聚合反应(简称缩聚反应) (1)特点 ①缩聚反应的单体至少含有两个官能团; ②单体和聚合物的组成不同; ③反应除了生成聚合物外,还生成小分子; ④含有两个官能团的单体缩聚后生成的聚合物呈线型结构。 (2)缩合聚合物(简称缩聚物)结构简式的书写 要在方括号外侧写出链节余下的端基原子或原子团。如 (3)缩聚反应方程式的书写 单体的物质的量与缩聚物结构式的下角标要一致;要注意小分子的物质的量:一般由一种单体进行缩聚反应,生成小分子的物质的量为(n -1);由两种单体进行缩聚反应,生成小分子的物质的量为(2n -1)。 ①以某分子中碳氧双键中的氧原子与另一个基团中的活泼氢原子结合成水而进行的缩聚反应。 ②以醇羟基中的氢原子和酸分子中的羟基结合成水的方式而进行的缩聚反应。 ③以羧基中的羟基与氨基中的氢原子结合成H 2O 的方式而进行的缩聚反应。 特别提醒 单体与链节不同,如 单体是CH 2===CH 2,链节为—CH 2—CH 2—, 加聚物与单体结构上不相似,性质不同,不为同系物。如 分子中无。

人教版高中化学选修五 第五章 第三节 功能高分子材料B卷

人教版高中化学选修五第五章第三节功能高分子材料B卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共12题;共24分) 1. (2分)(2016·遂宁模拟) 化学与生活和工农业生产密切相关,下列说法不正确的是() A . Fe2O3俗称铁红,常用作红色油漆和涂料 B . 二氧化硫具有漂白性,可用来增白纸浆、草帽辫、食品等,还可用于杀菌消毒 C . 废旧钢材焊接前,分别用饱和Na2CO3 , NH4Cl溶液处理焊点 D . 聚丙烯酸钠树脂广泛应用于植物移栽及制作尿不湿 【考点】 2. (2分)“神舟”飞船上的太阳能帆板采用了大量先进的复合材料,以便在尽可能提高发电效能的同时,减轻其自身质量,其身价达到了上千万元.下列说法不符合事实的是() A . 复合材料的使用可以使太阳能帆板承受超高温 B . 复合材料的使用可以使“神舟”飞船质量变轻 C . 复合材料的使用可以使太阳能帆板承受超高强度的改变 D . 复合材料的使用可以使太阳能帆板承受温差造成的热胀冷缩的难题 【考点】 3. (2分)人们用人工器官代替不能治愈的病变器官.目前人们已经制成的人工器官有()①心脏②皮肤③骨骼④肝⑤肾⑥眼⑦喉. A . ①②③ B . ①②⑥

C . ②③⑥ D . 全部 【考点】 4. (2分)研究有机物一般经过以下几个基本步骤:分离、提纯→确定实验式→确定分子式→确定结构式,以下用于研究有机物的方法错误的是() A . 蒸馏常用于分离提纯液态有机混合物 B . 燃烧法是研究确定有机物成分的有效方法 C . 核磁共振氢谱通常用于分析有机物的相对分子质量 D . 对有机物分子红外光谱图的研究有助于确定有机物分子中的官能团 【考点】 5. (2分)高分子分离膜可以让某些物质有选择地通过而将物质分离,下列应用不属于高分子分离膜的应用范围的是() A . 分离工业废水,回收废液中的有用成分 B . 食品工业中,浓缩天然果汁,乳制品加工和酿酒 C . 将化学能转换成电能,将热能转换成电能 D . 海水淡化 【考点】 6. (2分) (2019高三上·贵阳期末) 某有机化合物M的结构简式如下图所示,有关该化合物的叙述正确的是()

导电高分子材料综述

课题名称:导电高分子材料的研究进展及发展趋势 检索主题词:导电高分子材料 检索工具:万方数据知识服务平台 检索途径及步骤:登录学校图书馆网站,从“中文资源”分类中找到“万方数据资源(主网站)”,选择“高级检索”,规定好想要检索的文献类型,出版时间,主题等进行检索。 导电高分子材料的研究进展及发展趋势综述 高材1208 2012012247 曹凯 摘要:介绍了导电高分子材料的类型,分析了导电材料的导电机理,对其在实际中的应用进行了研究和总结,并且在此基础上展望了导电高分子材料的未来发展趋势。 关键词:导电;高分子材料;机理;应用;发展 引言: 近年来, 导电高分子的研究取得了较大的进展, 科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究, 已成为一门相对独立的学科。按导电性质的不同,导电高分子材料分为复合型和结构型两种。前者是利用向高分子材料中加人各种导电填料来实现导电,而后者是通过改变高分子结构来实现导电。在社会的发展中,需要这种材料的地方有很多,这也使得对进行加工和应用的研究受到了人们着重地关注。 1导电高分子材料分类 按照材料的结构与组成,可将导电高分子材料分为两大类。一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。 1.1复合型导电高分子材料 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。几乎所有的聚合物都可制成复合型导电高分子材料。其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。 1.2结构型导电高分子材料 结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料本身具有“固有”的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点。 2电高分子材料的导电机理 2.1复合型高分子材料导电机理 复合型导电高分子材料导电性主要取决于填料的分散状态”J。根据渗流理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后,就会形成连续的导电通路。这时离子

人教版高中化学选修五 第五章 第三节 功能高分子材料A卷

人教版高中化学选修五第五章第三节功能高分子材料A卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共12题;共24分) 1. (2分) (2018高一下·桂林期末) 下列物质中不属于有机合成材料的是() A . 合成纤维 B . 合成橡胶 C . 玻璃 D . 塑料 2. (2分)研究成果表明,塑料经改造后能像金属一样具有导电性。要使塑料聚合物导电,其内部的碳原子之间必须交替地以单键和双键结合(再经掺杂处理)。目前导电聚合物已成为物理学家和化学家研究的重要领域。由上述分析,下列聚合物经掺杂处理后可以制成“导电塑料”的是() A . B . C . D . 3. (2分)(2019·全国Ⅱ卷) “春蚕到死丝方尽,蜡炬成灰泪始干”是唐代诗人李商隐的著名诗句,下列关于该诗句中所涉及物质的说法错误的是() A . 蚕丝的主要成分是蛋白质 B . 蚕丝属于天然高分子材料 C . “蜡炬成灰”过程中发生了氧化反应

D . 古代的蜡是高级脂肪酸酯,属于高分子聚合物 4. (2分) (2018高二下·鞍山开学考) 有机物的结构用核磁共振仪处理后,得到右图所示的核磁共振氢谱,则该有机物可能是() A . C2H5OH B . C . D . 5. (2分) (2019高二上·深圳期末) 高分子材料的合成与应用使我们的生活变得更加丰富多彩。下列关于高分子材料的说法正确的是() A . 聚乙烯结构中存在碳碳双键 B . 聚乙烯可由乙烯通过取代反应制得 C . 聚乙烯与聚氯乙烯都是合成高分子材料 D . 聚氯乙烯可由氯气与乙烯通过加聚反应制得 6. (2分) (2018高一下·大同期末) 下列说法正确的是() A . 60I和80I属于同素异形体 B . 16O2和18O2互为同位素 C . CH3CH(CH3)CH2CH3和C(CH3)4互为同分异构体 D . 与属于同系物 7. (2分) (2015高三上·清远期末) 下列说法不正确的是()

有机导电高分子材料

有机导电高分子材料——聚苯胺 聚苯胺(PAn)是目前研究最为广泛的导电高分子材料之一,具有原料易得、合成简便、耐高温及抗氧化性能良好等优点,是目前公认的最具有应用潜力的导电高分子材料之一。PAn还有独特的掺杂机制,优异的物理化学性能,良好的光、热稳定性,使其拥有许多独特的应用领域。目前正应用于许多高新技术如抗静电技术、太阳能电池、全塑金属防腐技术、船舶防污技术、传感器器件、电化学和催化材料、隐身技术、电致变色等,而且对这些技术的应用探索也已取得了重要进展,并逐步向实用化迈进,显示了PAn极其广阔且诱人的发展前景。 物质的能带结构决定其电学性质,物质的能带由各分子或原子轨道重叠而成,分为价带和导带[1]。通常是价带宽度大于10.0eV时,电子很难激发到导带,物质在室温下是绝缘体;而当价带宽度为1.0eV时,电子可通过热、振动或光等方式激发到导带,物质为半导体;经掺杂的PAn,其π成键轨道组成的价带与π反键轨道组成的导带之间的能带宽度(价带)为1.0eV左右,所以PAn 有半导体特性。PAn 的导电机理与其他导电高聚物的掺杂机制完全不同:它是通过质子酸掺杂,质子进入高聚物链上,使链带正电,

为维持电中性,对阴离子也进入高聚物链,掺杂后链上电子数目不发生变化,其导电性能不仅取决于主链的氧化程度,而且与质子酸的掺杂程度有关。PAn用质子酸掺杂时优先在分子链的亚胺氮原子上发生质子化,生成荷电元激发态极化子,使PAn 链上掺杂价带上出现空穴,即P型掺杂,使分子内醌环消失,电子云重新分布,氮原子上正电荷离域到大共轭键中,使PAn 呈现出高导电性。 国内外已相继开展了导电高聚物雷达吸波材料的研究,并取得了一定的进展。聚苯胺吸波材料[20]主要分为掺杂型聚苯胺吸波材料、聚苯胺/无机复合吸波材料、聚苯胺/聚合物复合吸波材料、聚苯胺微管复合吸波材料。掺杂态聚苯胺属于电损耗型介质,其吸波特性与掺杂剂、掺杂度、制备工艺等条件有密切关系,尤其是与材料的电磁性质——电磁参数有直接关系,对微波呈现较好的吸收性能,但掺杂聚苯胺仍存在吸收小、吸收频带窄等缺点,不能满足应用的需要;利用磁性物质物理再掺杂和聚苯胺化学原位聚合法把聚苯胺和高磁感软磁材料以适当的形式复合制备聚苯胺/无机复合吸波材料,具有良好的吸波特性;根据逾渗理论,可将聚苯乙烯、环氧树脂、聚氨酯、乙丙橡胶、聚酰胺等作为有机基体,利用原位聚合法和机械共混

第五章 高聚物的流变性

第五章 高聚物的流变性 热塑性塑料成型过程一般需经历加热塑化、流动成型和冷却固化三个基本步骤。加热塑化:经过加热使固体高聚物变成粘性流体;流动成型:借助注塑机或挤塑机的柱赛或螺杆的移动,以很高的压力将粘性流体注入温度较低的闭合模具内,或以很高的压力将粘性流体从所要求的形状的口模挤出,得到连续的型材。冷却固化:是用冷却的方法使制品从粘流态变成玻璃态。 聚合物的粘流发生在g T 以上,热塑料、合成纤维和合成橡胶的加工成型都是在粘流态下进行的.由于大多数高分子的f T 都低于300℃,经一般无机材料低得多,给加工成型带来很大方便,这也是高分子得以广泛应用的一个重要原因. 5.1牛顿流体与非牛顿流体 牛顿流体:粘度不随剪切应力和剪切速率的大小而改变,始终保持常数的流体,通称为~。 非牛顿流体:凡是不符合牛顿流体公式的流体,统称为非牛顿流体。 牛顿流体: d dt γ σηηγ== 非牛顿流体: 'n a K σγηγ == 式中γ 为剪切速率,n 为非牛顿性指数(n<1称为假塑性); a η为表观粘度,表观粘度比高聚物真正的粘度(零剪切粘度0η小). 剪切变稀:大多数高聚物熔体和浓溶液属假塑性流体,其粘度随剪切速率的增加而减小,即所谓~。 剪切变稠:膨胀性流体与假塑性流体相反,随着剪切速率的增大,粘度升高,即发生~。 宾汉流体:或称塑性流体,具有名符其实的塑性行为,即在受到的剪切应力小于某一临界值Y σ是不发生流动,相当于虎克固体,而超过Y σ后,则可像牛顿液体一样流动。 触变(摇溶)液体:在恒定剪切速率下粘度随时间增加而降低的液体。 摇凝液体:在恒定剪切速率下粘度随时间而增加的液体。 5.2高聚物粘性流动的主要特点 1. 高分子流动是通过链段的位移运动来实现的,粘流活化能与相对分子质量无关. 2. 一般不符合物顿液体定律,即不是牛顿流体,而是非牛顿流体,常是假塑性流体.这是由于流动时链段沿流动方向取向,取向的结果使粘度降低. 3. 粘流时伴有高弹形变。高弹形变的恢复也是一个松驰过程,恢复的快慢一方面与高分子链本身的柔顺性有关,柔性好,恢复得快,另一方面也与高聚物所处的温度有关,温度高,恢复快。

导电高分子材料

导电高分子材料 导电高分子材料概述 摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。 关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties such as high conductivity that different from traditional polymeric materials.This paper reviews the classification of conductive polymers, research progress,Preparation methods and Conductive polymeric materials applied as the conductive material, electrode materials, display materials, electronic devices, electromagnetic shielding materials and the application of catalytic materials. Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010,1020Ω?cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。 1.导电聚合物的分类

导电高分子材料

导电高分子材料概述 摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。 关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties such as high conductivity that different from traditional polymeric materials.This paper reviews the classification of conductive polymers, research progress,Preparation methods and Conductive polymeric materials applied as the conductive material, electrode materials, display materials, electronic devices, electromagnetic shielding materials and the application of catalytic materials. Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010~1020Ω?cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。 1.导电聚合物的分类 导电高分子材料按结构和制备方法不同可分为结构型导电高分子材料和复合型导电高分子材料两大类。根据结构特征和导电机理不同可分成三类:载流子为自由电子的电子导电聚合物、载流子为能在聚合物分子间迁移的正负离子的离子导电聚合物、以氧化还原反应为电子转移机理的氧化还原型导电聚合物。 1.1结构型导电高分子材料 结构型(又称作本征型)导电高分子[2]是指高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料由于其结构的特点,能够提供载流子而具有导电性,经掺杂后,电导率可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。 1.2复合型导电高分子材料 复合型导电高分子材料[3]是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 1.3电子导电聚合物 电子导电聚合物是导电聚合物中种类最多,研究最早的一类导电材料,在电子导电聚合物的导电过程中载流子是聚合物中的自由电子或空穴。高分子聚合物中的π键可以提供有限离域,当高分子聚合物中具有共轭结构时,π电子体系增大,电子的离域性增强,共轭体系越大,离域性也越大,电子的可移动范围也就

导电高分子复合材料的导电网络构筑与性能

导电高分子复合材料的导电网络构筑与性能 【论文学科】高分子材料论文 【论文级别】硕士论文,硕士毕业论文,硕士研究生论文 【中文关键词】导电网络论文; 界面张力论文; 自组装论文; 双渗流论文; 桥接作用论文; 渗流阈值论文; 阻温特性论文 【中文题名】导电高分子复合材料的导电网络构筑与性能 【英文题名】Design of the Conductive Network in Conductive Polymer Composites and Its Effect on Electrical Properties 【所属分类】工程科技I,材料科学,复合材料 【英文关键词】Electrical conductive network; Interfacial tension; Self-assemble; Double percolation; Bridging effect; Percolation threshold; Resistivity-temperature character 【中文摘要】降低材料的导电填料含量、提高导电性同时改善材料的电性能稳定性是目前高分子基导电复合材料研究的重要方向。对导电复合材料来说,体系的电性能最终是由其所形成的导电网络所控制。因此,设计有效的导电网络是改善材料电性能的根本途径之一。本文以导电网络的设计与构筑为中心,研究了导电复合材料中导电网络的形成及其对材料电性能的影响。本文首先通过界面张力的选择设计,将热力学诱导的聚合物相自组装和填料选择性分布两者相结合,籍此来构筑填料选择性分布在聚合物相界面的 导电网络。发现在CB或MCNT填充PMMA/EAA/PP体系中,由界面张力所控制,能够实现以PMMA、PP为双连续相,聚合物EAA相分布于PMMA╱PP相界面的“三明治”状三连续相结构。同时,导电填料优先分布在EAA 相中。两者相结合,体系可以形成CB或MCNT选择性分布于PMMA/PP相界面的自组装导电网络。这种特殊的导电网络结构的形成,降低了体系的渗流(来源:ABC论文9c网https://www.360docs.net/doc/459046455.html,)阈值,提高了室温电导率。其次,本文以两种不同形态的导电填料同时填充双组分聚合物体系,考察了导电网络的形成及其对材料室温电阻率和阻温特性的影响。结果表明,由于双渗流导电网络的存在及聚合物导电相区——碳纤维的相互桥接作用,体系的体积电导率得到了提高,NTC效应被抑制,电阻热循环稳定性也更好。(来 源:ABCb636论文网https://www.360docs.net/doc/459046455.html,) 【英文摘要】 One of the major research challenges in the development of conducting polymer composite materials is reducing the filler content as much as possible while improving the electrical conductivity and the stability of electrical properties. In this field, the design of the electrical conductive network plays a key role. This dissertation focuses on the design of the electrical conductive network and studying on its influence of the electrical properties of composite.First, a new approach for the selective localization of filler at the interface of polymers phase was reported. This approach relies upon two aspects: the thermodynamically induced phase self-assembly in ternary polymer blends and the thermodynamically induced selective localization of filler in polymer phase. In CB or MCNT filled PMMA/EAA /PP composites, PP and PMMA form two continuous networks, while EAA incorporated with filler forms a continuous sheath structure at the interface of PP/PMMA. Thus, the conductive filler selectively locates

高中化学选修5第五章《进入合成有机高分子化合物的时代》单元测试

化学选修5第五章《进入合成有机高分子化合物的时代》测试 一、单选题(每小题只有一个正确答案) 1.下列物质中,不属于合成材料的是 A.塑料 B.人造纤维 C.合成橡胶 D.黏合剂 2.塑料经改造后能像金属一样具有导电性,要使塑料聚合物导电,其内部的碳原子之间必须交替地以单键和双键结合(再经掺杂处理)。目前导电聚合物已成为物理学家和化学家研究的重要领域。由上述分析,下列聚合物经掺杂处理后可以制成“导电塑料”的是() A.CH2—CH===CH—CH2 B. C. D. 3.化学与材料、生活和环境密切相关。下列有关说法中正确的是() A.煤炭经蒸馏、气化和液化等过程,可获得清洁能源和重要的化工原料 B.医药中常用酒精来消毒,是因为酒精能够使细菌蛋白发生变性 C.“海水淡化”可以解决淡水供应危机,向海水中加入明矾可以使海水淡化 D.新型材料聚酯纤维、光导纤维都属于有机高分子化合物 4.随着工业的高速发展,橡胶的产量和性能已不能满足工业生产的需要。近年来,人们合成了一种无机耐火橡胶,它的结构简式可能是

A. B. C. D. 5.丙烯在一定条件下发生加聚反应的产物为() A. B. C. D. 6.合成具有美白作用的化妆品原料Z的反应原理如下: 下列叙述不正确的是() A.X、Z均能与Na2CO3溶液反应 B.X可作缩聚反应单体,Y可作加聚反应单体 C.X、Y、Z均能使溴水褪色,但是原理不完全相同 D.该反应的反应类型为取代反应 7.青蒿酸是合成青蒿素的原料,可以由香草醛合成: 下列叙述正确的是() A.青蒿酸分子C15H14O2 B.在一定条件,香草醛可与HCHO发生缩聚反应 C.两种物质分别和H2反应,最多消耗H2依次为4mol和3mol D.可用FeCl3溶液或NaHCO3溶液鉴别化合物香草醛和青蒿酸 8.下列对乙烯和聚乙烯的描述中,不正确的是()

有机导电高分子材料的导电机制

有机导电高分子材料的导电机制 摘要: 探讨了结构型导电高分子的导电机制,分别从电子型导电和离子型导电的基本概念及载流子的运动等方面对两种不同的导电方式进行了详细地分析。并展望其发展前景。 关键词: 导电高分子; 电子电导; 离子电导; 导电机制 “导电高分子”已不再是一个陌生的名词, 各国科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究, 已使其成为一门相对独立的学科[1~4]。 高分子材料由于具有良好的机械性能,作为结构材料得到了广泛的应用。目前有机高分子材料基本上已覆盖了绝缘体、半导体、金属和超导体的范围。有机化合物中电子种类主有R电子和P电子。R电子是成键电子,键能较高,离域性很小,被称为定域电子; P电子是两个成键原子中p电子相互重叠后产生的。当P电子孤立存在时具有有限离域性,电子可以在两个原子核周围运行。在电场作用下P电子可以在局部做定向移动,随着P电子共轭体系的增大,离域性显著增加[5]。导电原理: 电子导电聚合物的特征是分子内含有大的共轭P电子体系。随着P电子共轭体系的增大,离域性增强,当共轭结构达到足够大时,化合物才可提供电子或空穴等载流子,然后在电场的作用下,载流子可以沿聚合物链作定向运动,从而使高分子材料导电。所以说有机高分子材料成为导体的必要条件是: 应有能使其内部某些电子或空穴具有跨键离域移动能力的大P键共轭结构。 一、P电子与能带理论 但事实上,根据电导率的大小,仅具有大P键共轭结构的聚合物还不能称为导电体,只能算作半导体材料,原因在于聚合物分子中各P键分子轨道之间还存在着一定的能级差。在电场力作用下,电子在聚合物内部的迁移必须跨越这个能级差才能导电,能级差的存在使得P电子不能在聚合物中完全自由地跨键移动,因而其导电能力受到影响,导电率不高。 有机化学和半导体科学分别利用分子轨道理论和半导体能带理论来解释能级差。在聚合物链状结构中,每一个结构单元(-CH-)中的C原子外层有4个价电子,其中有3个电子构成3个sp3杂化轨道,分别与H或相邻的C原子形成R键,剩下一个p电子。即每-CH-结构单元p电子轨道中只有一个电子,互相重叠形成一个成键轨道P和一个空轨道P3,由于它们的能级不同,使原有p电子能带分裂为一个全充满带和一个空带。两个能带之间存在较大的能隙,p电子只有越过这个能级差才能进行导电,能级差的大小决定了共轭型聚合物的导电能力高低,正是这个能级差的存在决定了聚合物不是一个良导体而是半导体。现代结构分析证明相邻的两个键的键长和键能是存在差别的,即有能带分裂。相邻的CH基团彼此相向移动,形成了长、短键交替排列的结构,称为Peierls畸变。 在半导体理论中,主要考虑电子与晶格之间的相互作用,绝缘体中电子能量表现为连续的分布,形成价带(填充轨道) 和导带(空轨道),价带和导带之间存在能隙Eg。Eg表示激发一个电子从价带到导带的P→P3跃迁必需的能量。所以基态中的电子只有取得≥Eg的能量才能跃迁到导带,成为可迁移的自由电子,从而发生电导。而金属中价带仅被电子填充一半,Fermi能量位于其顶部,在高于绝对零度的温度下,Fermi能级的电子非常容易进入空轨道,从而进行导电。(Fermi能是金属基态中的最高被填充轨道的能量。) 二、掺杂与导电 通过上述分析我们知道,提高电子导电聚合物的主要途径就是减少能级差,而实现手段就是对聚合物实行掺杂来改变能带中电子的占有情况,压制Peierls过程,减小能级差。“掺杂”就是在共轭结构高分子上发生电荷转移或氧化还原反应,目的是为了在聚合物的空轨道中加入电子,或从占有轨道中拉出电子,进而改变现有P电子能带的能级,出现能量居中的半充满能带,减小能带间的能量差,使电子或空穴迁移时的阻碍减小。掺杂主要有两种方式: p-型掺杂和n-型掺杂。p-型掺杂使载流子多数为空穴,掺杂剂主要有:碘、溴、三氯化铁、五

相关文档
最新文档