神经网络算法详解

神经网络算法详解
神经网络算法详解

神经网络算法详解

第0节、引例

本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.360docs.net/doc/4613186395.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集:

有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

一种解决方法是用已有的数据训练一个神经网络用作分类器。

如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

第一节、神经网络基本原理

1. 人工神经元( Artificial Neuron )模型

人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1. 人工神经元模型

图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:

若用X表示输入向量,用W表示权重向量,即:

X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式:

若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。

图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。

2. 常用激活函数

激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

(1) 线性函数 ( Liner Function )

(2) 斜面函数 ( Ramp Function )

(3) 阈值函数 ( Threshold Function )

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。

(4) S形函数 ( Sigmoid Function )

该函数的导函数:

(5) 双极S形函数

该函数的导函数:

S形函数与双极S形函数的图像如下:

图3. S形函数与双极S形函数图像

双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S 形函数值域是(0,1)。

由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)

3. 神经网络模型

神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:

(1) 前馈神经网络(Feedforward Neural Networks )

前馈网络也称前向网络。这种网络只在训练过程会有反馈信号,而在分类过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号,因此被称为前馈网络。感知机( perceptron)与BP神经网络就属于前馈网络。

图4 中是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为隐含层,第三层称为输出层(输入单元不是神经元,因此图中有2层神经元)。

图4. 前馈神经网络

对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,F1~F3表示神经网络3层的激活函数。

那么神经网络的第一层神经元的输出为:

O1 = F1( XW1 )

第二层的输出为:

O2 = F2 ( F1( XW1 ) W2 )

输出层的输出为:

O3 = F3( F2 ( F1( XW1 ) W2 ) W3 )

若激活函数F1~F3都选用线性函数,那么神经网络的输出O3将是输入X的线性函数。因此,若要做高次函数的逼近就应该选用适当的非线性函数作为激活函数。

(2) 反馈神经网络(Feedback Neural Networks )

反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。

图5. 反馈神经网络

(3) 自组织网络 ( SOM ,Self-Organizing Neural Networks )

自组织神经网络是一种无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

图6. 自组织网络

4. 神经网络工作方式

神经网络运作过程分为学习和工作两种状态。

(1)神经网络的学习状态

网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为有导师学习( Supervised Learning )与无导师学习( Unsupervised Learning )两类。

有导师学习算法将一组训练集( training set )送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有导师学习算法的主要步骤包括:

1)从样本集合中取一个样本(Ai,Bi);

2)计算网络的实际输出O;

3)求D=Bi-O;

4)根据D调整权矩阵W;

5)对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。

BP算法就是一种出色的有导师学习算法。

无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。

Hebb学习律是一种经典的无导师学习算法。

(2) 神经网络的工作状态

神经元间的连接权不变,神经网络作为分类器、预测器等使用。

下面简要介绍一下Hebb学习率与Delta学习规则。

(3) 无导师学习算法:Hebb学习率

Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接权会被加强,否则被减弱。

为了理解Hebb算法,有必要简单介绍一下条件反射实验。巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。以后如果响铃但是不给食物,狗也会流口水。

图7. 巴甫洛夫的条件反射实验

受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。

Hebb学习律可表示为:

其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。若yi与yj同时被激活,即yi与yj同时为正,那么Wij将增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。

(4) 有导师学习算法:Delta学习规则

Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输出与期望输出差别来调整连接权,其数学表示如下:

其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i 的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj 为0或-1(根据激活函数而定)。a是表示学习速度的常数。假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。

Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输入为正的连接的权重,增大所有输入为负的连接的权重。反之,若神经元实际输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的连接的权重。这个增大或减小的幅度就根据上面的式子来计算。

(5)有导师学习算法:BP算法

采用BP学习算法的前馈型神经网络通常被称为BP网络。

图8. 三层BP神经网络结构

BP网络具有很强的非线性映射能力,一个3层BP神经网络能够实现对任意非线性函数进行逼近(根据Kolrnogorov定理)。一个典型的3层BP神经网络模型如图7所示。

BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。

第二节、神经网络实现

1. 数据预处理

在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化?

数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理?

<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

(3) 归一化算法

一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:

<1>y = ( x - min )/( max - min )

其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到[ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

<2>y = 2 * ( x - min ) / ( max - min ) - 1

这条公式将数据归一化到[ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

(4) Matlab数据归一化处理函数

Matlab中归一化处理数据可以采用premnmx ,postmnmx ,tramnmx 这3个函数。

<1> premnmx

语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

参数:

pn:p矩阵按行归一化后的矩阵

minp,maxp:p矩阵每一行的最小值,最大值

tn:t矩阵按行归一化后的矩阵

mint,maxt:t矩阵每一行的最小值,最大值

作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

<2> tramnmx

语法:[pn] = tramnmx(p,minp,maxp)

参数:

minp,maxp:premnmx函数计算的矩阵的最小,最大值

pn:归一化后的矩阵

作用:主要用于归一化处理待分类的输入数据。

<3> postmnmx

语法:[p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

参数:

minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值

mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值

作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。

2. 使用Matlab实现神经网络

使用Matlab建立前馈神经网络主要会使用到下面3个函数:

newff :前馈网络创建函数

train:训练一个神经网络

sim :使用网络进行仿真

下面简要介绍这3个函数的用法。

(1) newff函数

<1>newff函数语法

newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。

语法:net = newff ( A, B, {C} ,‘trainFun’)

参数:

A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

B:一个k维行向量,其元素为网络中各层节点数;

C:一个k维字符串行向量,每一分量为对应层神经元的激活函数;

trainFun :为学习规则采用的训练算法。

<2>常用的激活函数

常用的激活函数有:

a) 线性函数 (Linear transfer function)

f(x) = x

该函数的字符串为’purelin’。

b) 对数S形转移函数( Logarithmic sigmoid transfer function )

该函数的字符串为’logsig’。

c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

也就是上面所提到的双极S形函数。

该函数的字符串为’ tansig’。

Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。

<3>常见的训练函数

常见的训练函数有:

traingd :梯度下降BP训练函数(Gradient descent backpropagation)

traingdx :梯度下降自适应学习率训练函数

<4>网络配置参数

一些重要的网络配置参数如下:

net.trainparam.goal :神经网络训练的目标误差

net.trainparam.show :显示中间结果的周期

net.trainparam.epochs :最大迭代次数

net.trainParam.lr :学习率

(2) train函数

网络训练学习函数。

语法:[ net, tr, Y1, E ] = train( net, X, Y )

参数:

X:网络实际输入

Y:网络应有输出

tr:训练跟踪信息

Y1:网络实际输出

E:误差矩阵

(3) sim函数

语法:Y=sim(net,X)

参数:

net:网络

X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

Y:输出矩阵Q×N,其中Q为网络输出个数

(4) Matlab BP网络实例

我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。

使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应该样本属于某一品种的可能性大小)的前向网络。

Matlab程序如下:

%读取训练数据

[f1,f2,f3,f4,class] = textread('trainData.txt' , '%f%f%f%f%f',150);

%特征值归一化

[input,minI,maxI] = premnmx( [f1 , f2 , f3 , f4 ]') ;

%构造输出矩阵

s = length( class) ;

output = zeros( s , 3 ) ;

for i = 1 : s

output( i , class( i ) ) = 1 ;

end

%创建神经网络

net = newff( minmax(input) , [10 3] , { 'logsig''purelin' } , 'traingdx' ) ;

%设置训练参数

net.trainparam.show = 50 ;

net.trainparam.epochs = 500 ;

net.trainparam.goal = 0.01 ;

net.trainParam.lr = 0.01 ;

%开始训练

net = train( net, input , output' ) ;

%读取测试数据

[t1 t2 t3 t4 c] = textread('testData.txt' , '%f%f%f%f%f',150);

%测试数据归一化

testInput = tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ;

%仿真

Y = sim( net , testInput )

%统计识别正确率

[s1 , s2] = size( Y ) ;

hitNum = 0 ;

for i = 1 : s2

[m , Index] = max( Y( : , i ) ) ;

if( Index == c(i) )

hitNum = hitNum + 1 ;

end

end

sprintf('识别率是%3.3f%%',100 * hitNum / s2 )

以上程序的识别率稳定在95%左右,训练100次左右达到收敛,训练曲线如下图所示:

图9. 训练性能表现

(5)参数设置对神经网络性能的影响

我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率,

<1>隐含层节点个数

隐含层节点的个数对于识别率的影响并不大,但是节点个数过多会增加运算量,使得训练较慢。

<2>激活函数的选择

激活函数无论对于识别率或收敛速度都有显著的影响。在逼近高次曲线时,S形函数精度比线性函数要高得多,但计算量也要大得多。

<3>学习率的选择

学习率影响着网络收敛的速度,以及网络能否收敛。学习率设置偏小可以保证网络收敛,但是收敛较慢。相反,学习率设置偏大则有可能使网络训练不收敛,影响识别效果。

bp神经网络及matlab实现讲解学习

b p神经网络及m a t l a b实现

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数 ( Sigmoid Function ) 该函数的导函数:

BP神经网络算法步骤

B P神经网络算法步骤 SANY GROUP system office room 【SANYUA16H-

传统的BP 算法简述 BP 算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi ,rt 。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 (3)计算新的连接权及阀值,计算公式如下: (4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。 第一步,网络初始化 给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计 算精度值 和最大学习次数M 。 第二步,随机选取第k 个输入样本及对应期望输出 ()12()(),(),,()q k d k d k d k =o d ()12()(),(),,()n k x k x k x k =x 第三步,计算隐含层各神经元的输入和输出 第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k a δ 第五步,利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ 第六步,利用输出层各神经元的()o k δ和隐含层各神经元的输出来修正连接权值()ho w k 第七步,利用隐含层各神经元的()h k δ和输入层各神经元的输入修正连接权。 第八步,计算全局误差211 1(()())2q m o o k o E d k y k m ===-∑∑ ε

人工神经网络算法

https://www.360docs.net/doc/4613186395.html,/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 标签:杂谈 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计 算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个 体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那 么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就

浅谈神经网络分析解析

浅谈神经网络 先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东西,可以一下子看出它的一些基本特征。可是计算机呢?它看到的只是一堆数字而已,因此要让机器从事物的特征中找到规律,其实是一个如何在数字中找规律的问题。 例:假如有一串数字,已知前六个是1、3、5、7,9,11,请问第七个是几? 你一眼能看出来,是13。对,这串数字之间有明显的数学规律,都是奇数,而且是按顺序排列的。 那么这个呢?前六个是0.14、0.57、1.29、2.29、3.57、5.14,请问第七个是几? 这个就不那么容易看出来了吧!我们把这几个数字在坐标轴上标识一下,可以看到如下图形: 用曲线连接这几个点,延着曲线的走势,可以推算出第七个数字——7。 由此可见,回归问题其实是个曲线拟合(Curve Fitting)问题。那么究竟该如何拟合?机器不

可能像你一样,凭感觉随手画一下就拟合了,它必须要通过某种算法才行。 假设有一堆按一定规律分布的样本点,下面我以拟合直线为例,说说这种算法的原理。 其实很简单,先随意画一条直线,然后不断旋转它。每转一下,就分别计算一下每个样本点和直线上对应点的距离(误差),求出所有点的误差之和。这样不断旋转,当误差之和达到最小时,停止旋转。说得再复杂点,在旋转的过程中,还要不断平移这条直线,这样不断调整,直到误差最小时为止。这种方法就是著名的梯度下降法(Gradient Descent)。为什么是梯度下降呢?在旋转的过程中,当误差越来越小时,旋转或移动的量也跟着逐渐变小,当误差小于某个很小的数,例如0.0001时,我们就可以收工(收敛, Converge)了。啰嗦一句,如果随便转,转过头了再往回转,那就不是梯度下降法。 我们知道,直线的公式是y=kx+b,k代表斜率,b代表偏移值(y轴上的截距)。也就是说,k 可以控制直线的旋转角度,b可以控制直线的移动。强调一下,梯度下降法的实质是不断的修改k、b这两个参数值,使最终的误差达到最小。 求误差时使用累加(直线点-样本点)^2,这样比直接求差距累加(直线点-样本点) 的效果要好。这种利用最小化误差的平方和来解决回归问题的方法叫最小二乘法(Least Square Method)。 问题到此使似乎就已经解决了,可是我们需要一种适应于各种曲线拟合的方法,所以还需要继续深入研究。 我们根据拟合直线不断旋转的角度(斜率)和拟合的误差画一条函数曲线,如图:

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

神经网络与遗传算法

5.4 神经网络与遗传算法简介 在本节中,我们将着重讲述一些在网络设计、优化、性能分析、通信路由优化、选择、神经网络控制优化中有重要应用的常用的算法,包括神经网络算法、遗传算法、模拟退火算法等方法。用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。这些算法都有着很深的理论背景,本节不准备详细地讨论这些算法的理论,只对算法的原理和方法作简要的讨论。 5.4.1 神经网络 1. 神经网络的简单原理 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。所以说, 人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作出状态相应而进行信息处理。它是根据人的认识过程而开发出的一种算法。假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给这个网络输入和相应的输出来“训练”这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。这样,当训练结束后,我们给定一个输入,网络便会根据自己已调节好的权值计算出一个输出。这就是神经网络的简单原理。 2. 神经元和神经网络的结构 如上所述,神经网络的基本结构如图5.35所示: 隐层隐层2 1 图5.35 神经网络一般都有多层,分为输入层,输出层和隐含层,层数越多,计算结果越精确,但所需的时间也就越长,所以实际应用中要根据要求设计网络层数。神经网络中每一个节点叫做一个人工神经元,他对应于人脑中的神经元。人脑神经元由细胞体、树突和轴突三部分组成,是一种根须状蔓延物。神经元的中心有一闭点,称为细胞体,它能对接受到的信息进行处理,细胞体周围的纤维有两类,轴突是较长的神经纤维,是发出信息的。树突的神经纤维较短,而分支众多,是接收信息的。一个神经元的轴突末端与另一神经元的树突之间密

神经网络算法详解

神经网络算法详解 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.360docs.net/doc/4613186395.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ] 则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function )

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

神经网络详解

一前言 让我们来看一个经典的神经网络。这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。后文中,我们统一使用这种颜色来表达神经网络的结构。 图1神经网络结构图 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定; 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别; 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。 除了从左到右的形式表达的结构图,还有一种常见的表达形式是从下到上来

表示一个神经网络。这时候,输入层在图的最下方。输出层则在图的最上方,如下图: 图2从下到上的神经网络结构图 二神经元 2.结构 神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。 下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。 注意中间的箭头线。这些线称为“连接”。每个上有一个“权值”。

图3神经元模型 连接是神经元中最重要的东西。每一个连接上都有一个权重。 一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。 我们使用a来表示输入,用w来表示权值。一个表示连接的有向箭头可以这样理解: 在初端,传递的信号大小仍然是a,端中间有加权参数w,经过这个加权后的信号会变成a*w,因此在连接的末端,信号的大小就变成了a*w。 在其他绘图模型里,有向箭头可能表示的是值的不变传递。而在神经元模型里,每个有向箭头表示的是值的加权传递。 图4连接(connection) 如果我们将神经元图中的所有变量用符号表示,并且写出输出的计算公式的话,就是下图。

神经网络算法简介

神经网络算法简介 () 人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式。 神经网络是一种运算模型[1],由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 神经元示意图: ●a1~an为输入向量的各个分量 ●w1~wn为神经元各个突触的权值 ●b为偏置 ●f为传递函数,通常为非线性函数。以下默认为hardlim() ●t为神经元输出 ●数学表示

●为权向量 ●为输入向量,为的转置 ●为偏置 ●为传递函数 可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。 单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。 该超平面的方程: 权向量 偏置 超平面上的向量 单层神经元网络是最基本的神经元网络形式,由有限个神经元构成,所有神经元的输入向量都是同一个向量。由于每一个神经元都会产生一个标量结果,所以单层神经元的输出是一个向量,向量的维数等于神经元的数目。示意图: 通常来说,一个人工神经元网络是由一个多层神经元结构组成,每一层神经元拥有输入(它的输入是前一层神经元的输出)和输出,每一层(我们用符号记做)Layer(i)是由Ni(Ni代表在第i层上的N)个网络神经元组成,每个Ni上的网络

介绍遗传算法神经网络

课程设计作业——翻译 课题:介绍遗传算法神经网络 穆姣姣 0808490233 物流08-班

介绍遗传算法神经网络 理查德·坎普 1. 介绍 一旦一个神经网络模型被创造出来,它常常是可取的。利用这个模型的时候,识别套输入变量导致一个期望输出值。大量的变量和非线性性质的许多材料模型可以使找到一个最优组输入变量变得困难。 在这里,我们可以用遗传算法并试图解决这个问题。 遗传算法是什么?遗传算法是基于搜索algo-rithms力学的自然选择和遗传观察到生物的世界。他们使用两个方向(\适者生存”),在这种条件下,探索一个强劲的功能。重要的是,采用遗传算法,这不是必需要知道功能的形式,就其输出给定的输入(图1)。 健壮性我们这么说是什么意思呢?健壮性是效率和效能之间的平衡所使用的技术在许多不同的环境中。帮助解释这个问题,我们可以比其他搜索和优化技术,如calculus-based,列举,与随机的求索。 方法Calculus-based假设一个光滑,无约束函数和要么找到点在衍生为零(知易行难)或者接受一个方向梯度与当地日当地一所高中点(爬山)。研究了这些技术已经被重点研究、扩展、修改,但展现自己缺乏的鲁棒性是很简单的。 考虑如图2所示的功能。利用Calculus-based在这里发现极值是很容易的(假定派生的函数可以发现…!)。然而,一个更复杂的功能(图3)显示该方法是当地——如果搜索算法,在该地区的一个开始,它就会错过低高峰目标,最高的山峰。 图1 使用网络神经算法没必要知道它的每一项具体功能。 一旦一个局部极大时,进一步改进需要一个随机的重启或类似的东西。同时,假设一个函数光滑,可导,并明确知道很少尊重现实。许多真实世界充满了间断模型和设置在嘈杂的多通道搜索空间(图4)。 虽然calculus-based方法在某些环境中至非常有效的,但内在的假

BP神经网络的基本原理-一看就懂

5.4 神经网络的基本原理 ()网络是1986年由和为首的科学家小组提 出,是一种按误差逆传播算法训练的多层前馈网 络,是目前应用最广泛的神经网络模型之一。网 络能学习和存贮大量的输入-输出模式映射关 系,而无需事前揭示描述这种映射关系的数学方 程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。神经网络模型拓扑结构包括输入层()、隐层( )和输出层( )(如图5.2所示)。 5.4.1 神经元 图5.3给出了第j个基本神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最重要的功能:加权、求和与转移。其中x1、x2……分别代表来自神经元1、2…i…n的输入;1、2……则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;为阈值;f(·)为传递函数;为第j个神经元的输出。 第j个神经元的净输入值为: (5.12)

其中: 若视,,即令及包括及,则 于是节点j的净输入可表示为: (5.13)净输入通过传递函数()f (·)后,便得到第j个神经元的输出: (5.14)式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 网络 算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的

状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f1(·),输出层的传递函数为f2(·),则隐层节点的输出为(将阈值写入求和项中): 1,2,…… q (5.15)输出层节点的输出为: 1,2,…… m (5.16)至此网络就完成了n维空间向量对m维空间的近似映射。

神经网络算法

神经网络算法 神经网络 思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面: (1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。 (2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。 (3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。 (4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。 纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。 人工神经网络 人脑的工作原理 人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger 等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。 神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细

数学建模bp神经网络讲解学习

数学建模B P神经网 络论文

BP 神经网络 算法原理: 输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,, ,n x x x x = 隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo = 期望输出向量: ()12,, ,q do d d d = 输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2, k m =

激活函数: ()f ? 误差函数:21 1(()())2q o o o e d k yo k ==-∑ 算法步骤: Step1.网络初始化 。给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。 Step2.随机选取第k 个输入样本()12()(),(), ,()n x k x k x k x k =及对应期望输出 ()12()(),(),,()q d k d k d k d k =o Step3.计算隐含层各神经元的输入()1 ()()1,2, ,n h ih i h i hi k w x k b h p ==-=∑和输出 ()()(())1,2, ,h h ho k f hi k h p ==及输出层各神经元的输入 ()1 ()()1,2, p o ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2, ,o o yo k f yi k o p == Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。 o ho o ho yi e e w yi w ???=??? (()) () ()p ho h o o h h ho ho w ho k b yi k ho k w w ?-?==??∑ 2 1 1((()()))2(()())()(()())f (()) () q o o o o o o o o o o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=?-?'==--??'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。

BP神经网络详细讲解

PS:这篇介绍神经网络是很详细的,有一步一步的推导公式!神经网络是DL(深度学习)的基础。 如果对神经网络已经有所了解,可以直接跳到“三、BP算法的执行步骤“ 部分,算法框架清晰明了。 另外,如果对NN 很感兴趣,也可以参阅最后两篇参考博文,也很不错! 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。 1.2.1 神经网络的学习机理和机构 在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如BP网络,Hopfield网络,ART网络和Kohonen 网络中;BP网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Kohonen网络则无需教师信号就可以学习。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。 一、感知器的学习结构 感知器的学习是神经网络最典型的学习。 目前,在控制上应用的是多层前馈网络,这是一种感知器模型,学习算法是BP法,故是有教师学习算法。 一个有教师的学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部和输出部。

BP神经网络详细讲解

PS:这篇介绍神经网络就是很详细得,有一步一步得推导公式!神经网络就是DL(深度学习)得基础。 如果对神经网络已经有所了解,可以直接跳到“三、BP算法得执行步骤“ 部分,算法框架清晰明了。 另外,如果对NN 很感兴趣,也可以参阅最后两篇参考博文,也很不错! 学习就是神经网络一种最重要也最令人注目得特点。在神经网络得发展进程中,学习算法得研究有着十分重要得地位。目前,人们所提出得神经网络模型都就是与学习算法相应得。所以,有时人们并不去祈求对模型与算法进行严格得定义或区分。有得模型可以有多种算法.而有得算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出得学习规则以来,人们相继提出了各种各样得学习算法。其中以在1986年Rumelhart等提出得误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然就是自动控制上最重要、应用最多得有效算法。 1.2.1 神经网络得学习机理与机构 在神经网络中,对外部环境提供得模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师与无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习得。在主要神经网络如BP网络,Hopfield网络,ART网络与Kohonen 网络中;BP网络与Hopfield网络就是需要教师信号才能进行学习得;而ART网络与Kohonen网络则无需教师信号就可以学习。所谓教师信号,就就是在神经网络学习中由外部提供得模式样本信号。 一、感知器得学习结构 感知器得学习就是神经网络最典型得学习。 目前,在控制上应用得就是多层前馈网络,这就是一种感知器模型,学习算法就是BP法,故就是有教师学习算法。 一个有教师得学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部与输出部。

什么是神经网络算法

算法起源 在思维学中,人类的大脑的思维分为:逻辑思维、直观思维、和灵感思维三种基本方式。 而神经网络就是利用其算法特点来模拟人脑思维的第二种方式,它是一个非线性动力学系统,其特点就是信息分布式存储和并行协同处理,虽然单个神经元的结构及其简单,功能有限,但是如果大量的神经元构成的网络系统所能实现的行为确实及其丰富多彩的。其实简单点讲就是利用该算法来模拟人类大脑来进行推理和验证的。 我们先简要的分析下人类大脑的工作过程,我小心翼翼的在网上找到了一张勉强看起来舒服的大脑图片 嗯,看着有那么点意思了,起码看起来舒服点,那还是在19世纪末,有一位叫做:Waldege 的大牛创建了神经元学活,他说人类复杂的神经系统是由数目繁多的神经元组成,说大脑皮层包括100亿个以上的神经元,每立方毫米源数万个,汗..我想的是典型的大数据。他们 相互联系形成神经网络,通过感官器官和神经来接受来自身体外的各种信息(在神经网络算法中我们称:训练)传递中枢神经,然后经过对信息的分析和综合,再通过运动神经发出控制信息(比如我在博客园敲文字),依次来实现机体与外部环境的联系。 神经元这玩意跟其它细胞一样,包括:细胞核、细胞质和细胞核,但是它还有比较特殊的,比如有许多突起,就跟上面的那个图片一样,分为:细胞体、轴突和树突三分部。细胞体内有细胞核,突起的作用是传递信息。树突的作用是作为引入输入信息的突起,而轴突是作为输出端的突起,但它只有一个。 也就是说一个神经元它有N个输入(树突),然后经过信息加工(细胞核),然后只有一 个输出(轴突)。而神经元之间四通过树突和另一个神经元的轴突相联系,同时进行着信息传递和加工。我去...好复杂....

神经网络算法的应用

神经网络算法的应用 别以为名字中带“网络”二字,神经网络就是一种设备,事实上神经网络是一种模拟人脑结构的算法模型。其原理就在于将信息分布式存储和并行协同处理。虽然每个单元的功能非常简单,但大量单元构成的网络系统就能实现非常复杂的数据计算,并且还是一个高度复杂的非线性动力学习系统。1 神经网络的结构更接近于人脑,具有大规模并行、分布式存储和处理、自组织、自适应和自学能力。神经网络的用途非常广泛,在系统辨识、模式识别、智能控制等领域都能一展身手。而现在最吸引IT巨头们关注的就是神经网络在智能控制领域中的自动学习功能,特别适合在需要代入一定条件,并且信息本身是不确定和模糊的情况下,进行相关问题的处理,例如语音识别。 神经网络的发展史 神经网络的起源要追溯到上世纪40年代,心理学家麦克库罗克和数理逻辑学家皮兹首先提出了神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人就是神经网络研究的先驱。随着计算机的高速发展,人们以为人工智能、模式识别等问题在计算机面前都是小菜一碟。再加上当时电子技术比较落后,用电子管或晶体管制作出结构复杂的神经网络是完全不可能的,所以神经网络的研究一度陷于低潮当中。到了20世纪80年代,随着大规模集成电路的发展,让神经网络的应用成为了可能。而且人们也看到了神经网络在智能控制、语音识别方面的潜力。但是这一技术的发展仍然缓慢,而硬件性能的发展以及应用方式的变化,再加上谷歌、微软、IBM等大公司的持续关注,神经网络终于又火了起来。本该在上世纪80年代就出现的诸多全新语音技术,直到最近才与我们见面,神经网络已经成为最热门的研究领域之一。 机器同声传译成真 在国际会议上,与会人员来自世界各地,同声传译就成了必不可少的沟通方式。但是到目前为止,同声传译基本上都是靠人来完成的,译员在不打断讲话者演讲的情况下,不停地将其讲话内容传译给听众。用机器进行同声传译,这个往往只出现在科幻电影中的设备,却成为了现实。 在2012年底天津召开的“21世纪的计算-自然而然”大会上,微软研究院的创始人里克·雷斯特在进行主题演讲时,展示了一套实时语音机器翻译系统。这个系统在里克.雷斯特用英文演讲时,自动识别出英文字词,再实时翻译成中文,先在大屏幕上显示出来,同时用电脑合成的声音读出。最令人惊奇的是,与常见的合成语音声调非常机械不同。在演示之前,雷斯特曾经给这套系统输入过自己长达1个多小时的录音信息,所以由电脑合成的中文语音并不是机械声,而是声调听上去和雷斯特本人一致。 这套实时语音机器翻译系统就是基于神经网络算法,由微软和多伦多大学历时两年共同研发。这个被命名为“深度神经网络”的技术,模仿由不同层次神经元构成的人脑,组成一个多层次的系统。整个系统共分为9层,最底层用来学习将要进行分析的语音有哪些特征,上一层就将这些分析进行组合,并得出新的分析结果,这样经过多次分析处理之后,增加识别的准确性。而最上面的一层用来分析出听到的声音究竟是哪个音组,再通过和已注明音组的语音库里的数据进行比对,从而将正确的结果反馈出来。经过如此复杂精密的处理之后,系统对于语音的识别能力就会有显着的提升,其性能优于以往的办法。 根据微软的测试,运用了这种“深度神经网络”技术的实时语音翻译器,相比旧系统出错率至少降低30%,最好的情况下能达到8个单词仅错1个,这是一个非常不错的成绩了。这个实时语音翻译器已经能支持包括普通话在内的26种语言,不过这个实时语音翻译器目前还不成熟,使用之前必须先在系统中输入1个小时以上的音频资料,让系统识别发言人声

BP神经网络的优缺点资料讲解

精品文档 BP神经网络的优缺点介绍 人工神经网络(Artificial Neural Network)又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果。最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具。神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用。多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点,但它也不是非常完美的, 为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开一些讨论。 首先BP神经网络具有以下优点: 1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。 2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。即BP神经网络具有高度自学习和自适应的能力。 3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类。也即BP神经网络具有将学习成果应用于新知识的能力。 4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。即BP神经网络具有一定的容错能力。 鉴于BP神经网络的这些优点,国内外不少研究学者都对其进行了研究,并运用网络解决了不少应用问题。但是随着应用范围的逐步扩大,BP神经网络也暴露出了越来越多的缺点和不足,比如: 精品文档

相关文档
最新文档