高三物理电场磁场的能量转化

高三物理电场磁场的能量转化
高三物理电场磁场的能量转化

电场、磁场和能量转化

1.命题趋势

电场、磁场和能量的转化是中学物理重点内容之一,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;在试题的选材、条件设置等方面将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。

2.知识概要

能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表:

如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E初=E末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE减=ΔE增;③各种形式的能量的增量(ΔE=E末-E初)的代数和为零,即ΔE1+ΔE2+…ΔE n=0。

电磁感应现象中,其他能向电能转化是通过安培力的功来量度的,感应电流在磁场中受到的安培力作了多少功就有多少电能产生,而这些电能又通过电流做功转变成其他能,如电阻上产生的内能、电动机产生的机械能等。从能量的角度看,楞次定律就是能量转化和守恒定律在电磁感应现象中的具体表现。电磁感应过程往往涉及多种能量形势的转化,因此从功和能的观点入手,分析清楚能量转化的关系,往往是解决电磁感应问题的重要途径;在运用功能关系解决问题时,应注意能量转化的来龙去脉,顺着受力分析、做功分析、能量分析的思路严格进行,并注意功和能的对应关系。

3.点拨解疑

【例题1】(1989年高考全国卷)如图1所示,一个质量为m,电量为-q的小物体,可在水平轨道x上运动,O端有一与轨道垂直的固定墙,轨道处在场强大小为E,方向沿Ox轴正向的匀强磁场中,小物体以初速度v0从点x0沿Ox轨道运动,运动中受到大小不变的摩擦力f作用,且f

电、磁场中的

功和能电场中的功

和能

电势能由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电

势能的零点。重要的不是电势能的值,是其变化量

电场力的功与路径无关,仅与电荷移动的始末位置有关:W=qU

电场力的功和电势能的变化

电势能→其他能

其他能→电势能

转化

转化

磁场中的功

和能

洛伦兹力不做功

安培力的功

→机械能,如电动机

做负功:机械能→电能,如发电机

转化

转化

物体与墙壁碰撞时不损失机械能,求它在停止前所通过的总路程?

【点拨解疑】 首先要认真分析小物体的运动过程,建立物理图景。开始时,设物体从x 0点,以速度v 0向右运动,它在水平方向受电场力qE 和摩擦力f ,方向均向左,因此物体向右做匀减速直线运动,直到速度为零;而后,物体受向左的电场力和向右的摩擦力作用,因为qE >f ,所以物体向左做初速度为零的匀加速直线运动,直到以一定速度与墙壁碰撞,碰后物体的速度与碰前速度大小相等,方向相反,然后物体将多次的往复运动。

但由于摩擦力总是做负功,物体机械能不断损失,所以物体通过同一位置时的速度将不断减小,直到最后停止运动。物体停止时,所受合外力必定为零,因此物体只能停在O 点。

对于这样幅度不断减小的往复运动,研究其全过程。电场力的功只跟始末位置有关,而跟路径无关,所以整个过程中电场力做功 0q E x W E =

根据动能定理 k E W ?=总, 得: 2

00210mv fs qEx -=- f

mv qEx s 222

00+=∴。

点评:该题也可用能量守恒列式:电势能减少了0qEx ,动能减少了

2

02

1mv ,内能增加了fs , ∴ 2

0021mv qEx fs += 同样解得f

mv qEx s 222

00+=。

【例题2】 如图2所示,半径为r 的绝缘细圆环的环面固定在水平面上,场强为E 的匀强电场与环面平行。一电量为+q 、质量为m 的小球穿在环上,可沿环作无摩擦的

圆周运动,若小球经A 点时,速度v A 的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用,试计算:

(1)速度v A 的大小;

(2)小球运动到与A 点对称的B 点时,对环在水平方向的作用力。

【点拨解疑】 (1)在A 点,小球在水平方向只受电场力作用,根据牛顿第二定律得: r

v m qE A

2=

所以小球在A 点的速度m

qEr

v A =

。 (2)在小球从A 到B 的过程中,根据动能定理,电场力做的正功等于小球动能的增加量,即

222

1212A B mv mv qEr -=

, 小球在B 点时,根据牛顿第二定律,在水平方向有r

v m qE N B

B 2

=-

解以上两式,小球在B 点对环的水平作用力为:qE N B 6=。

点评:分析该题,也可将水平的匀强电场等效成一新的重力场,重力为Eq ,A 是环上的最高点,B 是最低点;这样可以把该题看成是熟悉的小球在竖直平面内作圆周运动的问题。

【例题3】(2002年理综全国卷)如图3所示有三根长度皆为l =1.00 m 的不可伸长的绝缘轻线,其中

两根的一端固定在天花板上的 O 点,另一端分别挂有质量皆为m =1.00×2

10-kg 的带电小球A 和B ,它们的电量分别为一q 和+q ,q =1.00×7

10-C .A 、B 之间用第三根线连接起来.空间中存在大小为E =1.00×106N/C 的匀强电场,场强方向沿水平向右,平衡时 A 、B 球的位置如图所示.现将O 、B 之间的线烧断,由于有空气阻力,A 、B 球最后会达到新的平衡位置.求最后两球的机械能与电势能的总和与烧断前相比改变了多少.(不计两带电小球间相互作用的静电力)

【点拨解疑】图(1)中虚线表示A 、B 球原来的平衡位置,实线表示烧断后重新达到平衡的位置,其中α、β分别表示OA 、AB 与竖直方向的夹角。A 球受力如图(2)所示:重力mg ,竖直向下;电场力qE ,水平向左;细线OA 对A 的拉力T 1,方向如图;细线AB 对A 的拉力T 2,方向如图。由平衡条件得

qE T T =+βαsin sin 21① βαcos cos 21T mg T +=②

B 球受力如图(3)所示:重力mg ,竖直向下;电场力qE ,水平向右;细线AB 对B 的拉力T 2,方向如图。由平衡条件得

qE

T =βsin 2③

mg a T =cos 2④

联立以上各

式并代入数据,得 0=α⑤

45=β⑥

由此可知,A 、B 球重新达到平衡的位置如图(4)所示。

与原来位置相比,A 球的重力势能减少了 )60sin 1(

-=mgl E A ⑦ B 球的重力势能减少了 )45cos 60sin 1( +-=mgl E B ⑧ A 球的电势能增加了 W A =qElcos 60°⑨

B 球的电势能减少了 )30sin 45(sin -=qEl W B ⑩ 两种势能总和减少了 B A A B E E W W W ++-= 代入数据解得 J W 2

108.6-?=

【例题4】(2003年全国理综卷)如图5所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m 。两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω。在t =0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t =5.0s ,金属杆甲的加速度为a =1.37m/s 2,问此时

B 图3

图 4

两金属杆的速度各为多少?

【点拨解疑】设任一时刻t 两金属杆甲、乙之间的距离为x ,速度分别为v 1和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变

t l v v lx t t v t v x S ?-=-+?+?-=?)(])[(2112

由法拉第电磁感应定律,回路中的感应电动势t

S

B E ??=

回路中的电流 R

E i 2=

杆甲的运动方程ma Bli F =-

由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量0(=t 时为0)等于外力F 的冲量211mv mv F +=

联立以上各式解得)](2[21211ma F F B R m F v -+= )](2[212

212ma F I

B R m F v --= 代入数据得s m v s

m v /85.1/15.821==

【例题5】 如图所示,间距为L 的两根长直平行导轨M 、N 所在平面与水平面夹角为θ,磁感应强度为B 的匀强磁场垂直轨道平面。横跨的导体棒cd 因为摩擦而处于静止状态,其质量为M 。另一根导体棒ab 质量为m ,由静止开始沿轨道无摩擦由上方滑下,当沿轨道下滑距离为S 时,达到最大速度。在ab 下滑过程中,cd 棒始终保持静止。两棒电阻匀为R ,导轨电阻不计。求: (1)当ab 棒达到最大速度后,cd 棒受到的摩擦力;

(2)从ab 棒开始下滑到达到最大速度的过程中,ab 与cd 棒上产生的总热量。

【点拨解疑】(1)设ab 最大速度为m v ,对ab 棒有L BI mg m =θsin

而 R BLv I m m 2= 所以 2

2s i n 2L

B m g R

v m θ= 对cd 棒有θθsin )(sin g m M L BI Mg f m +=+=

(2)22

1m mv mgh Q -

= 4

42

223222s i n 2s i n )s i n 2(2

1s i n L

B R g m m g L

B m g R m m g s Q θθθθ-=-?= 这道题也是一个典型的习题。要注意该过程中的功能关系:重力做功的过程是重力势能向动能和电能转化的过程;安培力做功的过程是机械能向电能转化的过程;合外力(重力和安培力)做功的过程是动能增加的过程;电流做功的过程是电能向内能转化的过程。达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为内能。这时重力的功率等于电功率也等于热功率。

图 5

进一步讨论:如果在该图上端电阻右边安一只电键,让ab 下落一段距离后再闭合电键............,那么闭合电键后ab 的运动情况又将如何?(无论何时闭合电键,ab 可能先加速后匀速,也可能先减速后匀速,但最终稳定后的速度总是一样的.............

)。

针对训练

1. 如图6所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。将线圈以向右的速度v 匀速拉出磁场,求:①拉力F 大小;②拉力的功率P ;③拉力做的功W ;④线圈中产生的电热Q ;⑤通过线圈某一截面的电荷量q 。

2.如图7所示,水平的平行虚线间距为d =50cm ,其间有B=1.0T 的匀强磁场。一个正方形线圈边长为l =10cm ,线圈质量m=100g ,电阻为R =0.020Ω。开始时,线圈的下边缘到磁场上边缘的距离为h =80cm 。将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。取g =10m/s 2,求:?线圈进入磁场过程中产生的电热Q 。?线圈下边缘穿越磁场过程中的最小速度v 。?线圈下边缘穿越磁场过程中加速度的最小值a 。

3.(2001年上海卷)如图8所示,有两根和水平方向成。角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为及一根质量为m 的金属杆从轨道上由静止滑下。经过足够长的时间后,金属杆的速度会趋近于一个最大速度几,则

(A )如果B 增大,v m 将变大 (B )如果α变大,v m 将变大 (C )如果R 变大,v m 将变大 (D )如果m 变小,v m 将变大

4.(2001年上海卷)半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计

(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ′ 的瞬时(如图9所示)MN 中的电动势和流过灯L 1的电流。

(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′ 以OO ′ 为轴向上翻转90o,若此时磁场随时间均匀变化,其变化率为ΔB /Δt =4T/s ,求L 1的

6

图 7

8

功率。

5.如图10所示,电动机牵引一根原来静止的、长L为1m、质量m为0.1kg的导体棒MN上升,导体棒的电阻R为1Ω,架在竖直放置的框架上,它们处于磁感应强度B为1T的匀强磁场中,磁场方向与框架平面垂直。当导体棒上升h=3.8m时,获得稳定的速度,导体棒上产生的热量为2J,电动机牵引棒时,电压表、电流表的读数分别为7V、1A,电动机内阻r为1Ω,不计框架电阻及一切摩擦,求:

(1)棒能达到的稳定速度;

(2)棒从静止至达到稳定速度所需要的时间。

6.两根相距d=0.20米的平行金属长导轨固定在同一水平面内,

并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2特,导轨上

面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25欧,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大

小都是V=5.0米/秒,如图13所示.不计导轨上的摩擦.

(1)求作用于每条金属细杆的拉力的大小.

(2)求两金属细杆在间距增加0.40米的滑动过程中共产生的热量7 .如图所示,两光滑平行导轨MN、PQ水平放置在匀强磁场中,磁场与导轨所在平面垂直,金属棒ab可沿导轨自由移动,导轨左端M、P接一定值电阻,金属和导轨电阻均不计,现将金属棒沿导轨由静止向右拉,若保持拉力F恒定,经过时间t1后速度变为v,加速度为a1,最终以速度

2v作匀速运动;若保持拉力F的功率恒定,经过时间t2后,速度为v,加速度

为a2,最终也以速度2v作匀速运动,求:(1)金属棒产生的最大电功率是多少?

(2)a1和a2各是多少?

8(04全国理综)如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L0、M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。(1)由b向a方向看到的装置如图2所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;

(3)求在下滑过程中,ab杆可以达到的速度最大值。

9.(04全国理综) 图中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应

强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2。x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于

金属杆x 1y 1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

参考答案

1.解析:

V BL E 2=,R E I =,2BIL F =,

V R V L B F ∝=∴222;2V FV P ∝=;V R V L L B FL W ∝==12221;V W Q ∝=;无关。与v R

t R E t I q ?Φ

==

?= 特别要注意电热Q 和电荷q 的区别,其中 q 与速度无关!

2.解:?由于线圈完全处于磁场中时不产生电热,所以线圈进入磁场过程中产生的电热Q 就是线圈

从图中2位置到4位置产生的电热,而2、4位置动能相同,由能量守恒Q =mgd=0.50J

?3位置时线圈速度一定最小,而3到4线圈是自由落体运动因此有 v 02-v 2=2g (d-l ),得v =22m/s

?2到3是减速过程,因此安培力R

v

l B F 22=减小,由F -mg =ma 知加速度减小,到3位置时加速度

最小,a=4.1m/s 2

3. B 、C

4.解析:(1)E 1=B 2a v =0.2×0.8×5=0.8V ① I 1=E 1/R =0.8/2=0.4A ②

c d 2 2

x y 2

(2)E 2=ΔФ/Δt =0.5×πa 2×ΔB /Δt =0.32V ③ P 1=(E 2/2)2/R =1.28×102W

5.解析:(1)电动机的输出功率为:62

=-=r I IU P 出W

电动机的输出功率就是电动机牵引棒的拉力的功率,所以有Fv P =出 其中F 为电动机对棒的拉力,当棒达稳定速度时L I B mg F '+= 感应电流R

BLv

R E I ==

' 由①②③式解得,棒达到的稳定速度为2=v m/s

(2)从棒由静止开始运动至达到稳定速度的过程中,电动机提供的能量转化为棒的机械能和内能,由能量守恒定律得:Q mv mgh t P ++

=2

2

1出 解得 t =1s

6. 解:(1)当两金属杆都以速度v 匀速滑动时,每条金属杆中产生的感应电动势分别为 ε1=ε=Bdv ① 由闭合电路的欧姆定律,回路中的电流强度

I=(ε1+ε1)/2r ② 因拉力与安培力平衡,作用于每根金属杆的拉力的大小为 F 1=F 2=IBd ③

由①②③式并代入数据得 F 1=F 2=(B 2d 2v)/r=[(0.2)2×(0.2)2

×5.0]÷0.25N=3.2×10-2N

(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量 Q=I 2

×2r×(△L÷2v) 代入数据得 Q=1.28×10-2焦

7.解析(1)由于金属棒均向右做加速度运动,速度均由0→v →2v ,在速度为2v 以后做匀速运动。所以在速度为2v 时,这种情况下的感应电动势最大,为E m =2BLv ,此时,回路中的感应电流也最大,为:I m =E m /R=2BLv/R 。金属棒产生的最大电功率为:P m =E m I m =4B 2L 2v/R 。

(2)设金属棒质量为m ,第一次水平拉力恒为F 1,第二闪水平拉力变为F 2,恒定功率为P ,速度为V 时,棒中感应电动势E 1=BLv ,安培力为:f 1=BLI 1=BLE 1/R=B 2L 2v/R ①

速度为2v 时棒中感应电动势E 2=2BLv 安培力为f 2=BLI 2=BLE 2/R=B 2L 2v/R ② 第一次恒力F 1拉棒,对棒应用牛顿定律,在速度为v 时有:F 1-f 1=ma 1 ③ 在速度为2v 时有:F 1-f 1=0 ④ 由①②③④联立解得:a 1=B 2L 2v/mR

第二次以恒定功率P 拉棒,此恒定功率就是速度2v 时的最大电功率值,即:P= 4B 2L 2v/R ⑤ 当速度为v 时有:P=F 2v ⑥ 又有F 2-f 1=ma 2 ⑦ 由⑤⑥解得F 2= 4B 2L 2v/R ⑧ 由①⑦⑧解得a 2= 3B 2L 2v/R 8. (1)

重力mg ,竖直向下

支撑力N ,垂直斜面向上 安培力F ,沿斜面向上

(2)当ab 杆速度为v 时,感应电动势E=BLv,此时电路电流 R

BLv R E I ==

ab 杆受到安培力R

v

L B BIL F 22==

根据牛顿运动定律,有

R v L B mg F mg ma 22sin sin -=-=θθ mR v

L B g a 22sin -=θ

(3)当

θsin 22m g R v

L B =时,ab 杆达到最大速度v m 2

2sin L B mgR v m θ

=

9解:设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。

由法拉第电磁感应定律,回路中的感应电动势的大小

v l l B )(12-=ε ①

回路中的电流 R

I ε

=

电流沿顺时针方向。两金属杆都要受到安培力作用,作用于杆11y x 的安培力为

I Bl f 11= ③

方向向上,作用于杆22y x 的安培力 I Bl f 22= ④ 方向向下。当杆作为匀速运动时,根据牛顿第二定律有

02121=-+--f f g m g m F ⑤

解以上各式,得 )()(1221l l B g

m m F I -+-=

R l l B g

m m F v 2

12221)

()(-+-=

⑦ 作用于两杆的重力的功率的大小 gv m m P )(21+= ⑧ 电阻上的热功率 R I Q 2= ⑨ 由⑥、⑦、⑧、⑨式,可得 g m m R l l B g

m m F P )()

()(212

12221+-+-=

⑩ R l l B g m m F Q 2

1221])

()([

-+-= ○

11 9.

高三物理电场专题复习

电场复习指导意见 20XX 年课标版考试大纲本章特点 概念多、抽象、容易混淆。电场强度、电场力、电势、电势差、电势能、 电场力做功。 公式多。在帮助学生理解公式的来龙去脉、物理意义、适用条件的同时,可将其归类。 正负号含义多。在静电场中,物理量的正负号含义不同,要帮助学生正确理解物理量的正负值的含义。 知识综合性强。要把力学的所有知识、规律、解决问题的方法和能力应用 内 容要求说明 54.两种电荷.电荷守恒 55.真空中的库仑定律.电荷量 56.电场.电场强度.电场线.点电荷的场 强.匀强电场.电场强度的叠加 57.电势能.电势差.电势.等势面 58.匀强电场中电势差跟电场强度的关系 59.静电屏蔽 60.带电粒子在匀强电场中的运动 61.示波管.示波器及其应用 62.电容器的电容 63.平行板电容器的电容,常用的电容器 Ⅰ Ⅱ Ⅱ Ⅱ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ 带电粒子在匀强 电场中运动的计算,只 限于带电粒子进入电场时速度平行或垂直于场强的情况

到电场当中 具体复习建议 一.两种电荷,电荷守恒,电荷量(Ⅰ) 1.两种电荷的定义方式。(丝绸摩擦玻璃棒,定义玻璃棒带正点;毛皮 摩擦橡胶棒,定义橡胶棒带负电) 2.从物质的微观结构及物体带电方法 接触带电(所带电性与原带电体相同) 摩擦起电(两物体带等量异性电荷) 感应带电(两导体带等量异性电荷) 3.由于物体的带电过程就是电子的转移过程,所以带电过程中遵循电荷守恒。每个物体所带电量应为电子电量(基本电量)的整数倍。 4.知道相同的两金属球绝缘接触后将平分两球原来所带净电荷量。(注意电性)

二.真空中的库仑定律(Ⅱ)1.r r q kq F 2 2112 或 2 2121 12r q kq F F 方向在两点电荷连线上,满足同性相斥,异性相吸。2.规律在以下情况下可使用:(1)规定为点电荷;(2)可视为点电荷; (3)均匀带电球体可用点电荷等效处理,绝缘均匀带电球体间的库仑力可用库仑定律 2 21r q kq F 等效处理,但r 表示 两球心之间的距离。(其它形状的带电体不可用电荷中心等效) (4)用点电荷库仑定律定性分析绝缘带电金属球相互作用力的情况 两球带同性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 两球带异性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 3.点电荷库仑力参与下的平衡模型(两质量相同的带电通草球模型) 4.两相同的绝缘带电体相互接触后再放回原处 (1)相互作用力是斥力或为零(带等量异性电荷时为零) L mg F T α mgtg l q kq 2 2 1) sin 2(3 2 21sin 4cos l q kq mg T

2020年高三物理一轮复习课件:电场能的性质 (共26张)

范文 2020年高三物理一轮复习课件:电场能的性质(共 1/ 17

26张PPT) 2020届高三物理一轮复习电场能的性质

[想一想] 如图所示,电荷沿直线AB、折线ACB、曲线AB运动,静电力做的功为多少?静电力做功与路径是否有关?若B点为零势能点,则+q在A点的电势能为多少?提示:静电力做功为W=qEd,与路径无关,电势能为Ep=qEd。 3/ 17

[记一记] 1.静电力做功 (1)特点:静电力做功与路径无关,只与初末位置有关。 (2)计算方法①W=qEd,只适用于匀强电场,其中d为沿电场方向的距离。 ②WAB=qUAB,适用于任何电场。 2.电势能 (1)定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时静电力所做的功。 (2)静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量,即WAB=EpA-EpB=-ΔEp。

试一试 1.如图所示,在真空中有两个带正电的点电荷,分别置于M、N两点。 M处正电荷的电荷量大于N处正电荷的电荷量,A、B为M、N连线的中垂线上的两点。 现将一负点电荷q由A点沿中垂线移动到B点,在此过程中,下列说法正确的是 ( ) A.q的电势能逐渐减小 B.q的电势能逐渐增大 C.q的电势能先增大后减小 D.q的电势能先减小后增大解析:负电荷从A到B的过程中,电场力一直做负功,电势能增大,所以A、C、D均错,B对。 答案:B 5/ 17

[想一想] 某静电场的电场线分布如图所示,试比较图中P、Q两点的电场强度的大小,及电势的高低。 提示:根据电场线的疏密可判断P点场强大于Q点场强;由于沿着电场线的方向电势逐渐降低。 P点电势高于Q点电势。

高考必备:高中物理电场知识点总结大全

高中物理电场知识点总结大全 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点 的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

2019版必修3第十二章电路中的能量转化

电路中的能量转化 如图 12.1-3 ,当电动机接上电源后,会带动风扇转 动,这里涉及哪些功率?功率间的关系又如何? 【例题】一台电动机,线圈的电阻是0.4 Ω, 当它两端所加的电压为220V 时,通过的电流是 5A。这台电动机发热的功率与对外做功的功率各 是多少?分析本题涉及三个不同的功率:电动机消 耗的电功率 P 电、电动机发热的功率 P 热和对外做 功转化为机械能的功率 P 机。三者之间遵从能量守恒定律,即 P 电= P机+ P热解由焦耳定律可知,电动机发热的功率为 P热 =I2R=52×0.4W=10W电动机消耗的电功率为 P电= UI= 220× 5W= 1100W 根据能量守恒定律,电动机对外做功的功率为 P机= P电- P热= 1100W -10W =1090W 这台电动机发热的功率为10W,对外做功的功率为 1090W 。 练习与应用 1.试根据串、并联电路的电流、电压特点推导:串联电路和并联电路各导体消耗的电功率与它们的电阻有什么关系?

2.电饭锅工作时有两种状态:一种是锅内的水烧干以前的加热状 态,另一种是水烧干以后的保温状 态。图 12.1-4 是电饭锅的电路图, R1是电阻, R2是加热用的电 阻丝。( 1)自动开关 S接通和断开时,电饭锅分别处于哪种状 在保态?说明理由。(2 )要使电饭锅温状态下的功率是加热状态的 一半, R1R2 应该是多少?

3.四个定值电阻连成图 12.1-5 所示的电路。 RA 、 RC 的规格为 “ 10V4W ”,RB 、RD 的规格为“ 10V2W ”。请按消耗功率大小的顺序 排列这四个定值电阻,并说明理由。 4.如图 12.1-6 ,输电线路两端的电压 U 为 220V ,每条输电线的电阻 R 为 5Ω,电热水器 A 的电 阻 RA 为 30 Ω。求电热水器 A 上的电压和它消耗的功率。如果再并联一个电阻 RB 为 40Ω的电热水壶 B , 则 电热水器 和电热水壶消耗的功率各是多少? 闭合电路的欧姆定律练习与应用 1.某个电动势为 E 的电源工作时,电流为 I ,乘积 EI 的单位是什么?从电动势的意义来考 虑, EI 表 示 什么? 2.小张买了一只袖珍手电筒, 里面有两节干电池。 他取出手电筒中的小灯泡, 看到上面标有“ 2.2V0.25A ” 的字样。小张认为,产品设计人员的意图是使小灯泡在这两节干电池的供电下正常发光。由此,他 推算出了每节干电池的内阻。如果小张的判断是正确的,那么内阻是多少? 提示:串联电池组的电动势等于各个电池的电动势之和,内阻等于各个电池的内阻之和。 3.许多人造地球卫星都用太阳电池供电(图 12.2-7 )。太阳电池由许多片电池板组成。某电池板不接 负载时的电压是 600μV ,短路电流是 30 μA 。这块电池板的内阻是多少? 4.电源的电动势为 4.5V 、外电阻为 4.0Ω时,路端电压为 4.0V 。如果在外电 路并联一个 6.0Ω的电阻,路端电压是多少?如果 6.0Ω的电阻串联在外电 路中,路端电压又是多少? 5.现有电动势为 1.5V 、内阻为 1.0Ω的电池多节,准备用几节这样的电池串联起来对一个工作电压为 6.0V 、工作电流为 0.1A 的用电器供电。问:最少需要用几节这种电池?电路还需要一个定值电阻来 分压,请计算这个电阻的阻值。 6.图 12.2-8 是汽车蓄电池供电简化电路图。当汽车启动S 闭合,电动机工作,车

第37课时 闭合电路中的能量转化 含容电路 故障分析(A)

第37课时 闭合电路中的能量转化 含容电路 故障分析(A 卷) 考测点导航 1、电源的功率和效率。 ⑴功率:①电源的功率(电源的总功率)P E =EI ②电源的输出功率P 出=UI ③电源内部消耗的功率P r =I 2 r ⑵电源的效率:%100?= ε η··I U I 2、根据能量的转化和守恒定律,在闭合电路中应有 ,即内出总P P P += 2I I U I r ε=+··· 3、电源的输出功率(在纯电阻电路中) 电源输出功率随外电阻变化的图线如图37—A--1所示,而当外电路电阻等于内电阻时,电源的输 出功率最大。即r P r R m 42 ε= =时当 4、恒定电流中有关电容器问题,在中学阶段一般只研究稳态情况,电容器的“隔直”性质决定了恒定电流电路中含有电容器的支路具有断路的特点。 5、关于电路的故障的分析与排除 电路出现的故障有两个原因:(1)短路;(2)断路(包括接线断或接触不良、电器损坏等情况)。 一般检测故障用电压表. 如果电压表示数为0,说明电压表上无电流通过,可能在并联路段之外有断路,或并联段内有短路.如果电压表有示数,说明电压表上有电流通过,则在并联段之外无断路,或并联段内无短路. 典型题点击 1、(2003江苏)在如图37—A--2所示的电路中,电源的电 动势ε=3.0V ,内阻r =1.0Ω, 电阻R 1=10Ω,R 2=10Ω,R 3=30Ω,R 4=35Ω;电容器的电容C =uF ,电容器原来不带电.求接通电键K 后流过R 4的总电量。(本题主要考查闭合电路中的电容问题) 2、如图37—A--3所示理想伏特表和安培表与电阻R 1、R 2、R 3连接的电路中,已知:R 3=4Ω,安 培表读数为0.75A ,伏特表读数为2V ,由于某一电阻断路,使安培表读数为0.8A ,而伏特表读数为3.2V 。(1)哪一只电阻发生断路。(2)电源电动势和内阻各为多大? (本题主要考查闭合电路的欧姆定律和故障问题的处理) 3、如图37—A--4,电源电动势=9.0V 内阻r=1.0Ω R 1=0.5Ω,求R 2 阻值多大时, (1) 电源输出的电功率 最大?最大输出功率是多少? 此时效率? (2)电阻R 1的电功率最大?最大电功率是多少? (3)滑动变阻器R 2的电功率最大? 最大电功率是多少?(本题主要考查纯电阻电路的电功率的计算,注意考虑等效电源的处理) 4、在图37—A--5所示电路中,ε为电源电动势,r 为电源内阻,R 1为可变电阻,R 0、R 2、R 3、R 皆为固定电阻,当调大R 1时,试定 性推论R 2、R 3、R 0及R 上的功率将如何变化?(本题主要考查电压、电流、电阻和欧姆定律,考查推理能力) 新活题网站 一、选择题 1、将两个阻值不同的电阻R 1、R 2分别单独与同一电源连接,如果在相同的时间内,R 1、R 2发出的热量相同,则电源内阻为[ ] (A ) 12 2 R R + (B )1212R R R R + (C (D ) 12 12 R R R R + (本题主要考查闭合电路的欧姆定律中的电热问题,本题还可以从U —I 图象上来理解) 2、电源的电动势和内阻都保持一定,在外电路的电阻逐渐减小的过程中,下面说法中正确的是 [ ] (A)电源的路端电压一定逐渐变小 (B)电源的输出功率一定逐渐变小 (C)电源内部消耗的功率一定逐渐变大 (D)电源的供电效率一定逐渐变小 (本题主要考查闭合电路的欧姆定律中的动态变化分析问题及有关基本概念) 3、如图37—A--6所示,A 、B 两盏电灯完全相同,当滑动变阻器的滑头向左移动时,则[ ] (A )A 灯变亮,B 灯变亮 (B )A 灯变暗,B 灯变亮 (C )A 灯变亮,B 灯变暗 (D )A 灯变暗,B 灯变暗 (本题主要考查闭合电路的欧姆定律中的动态变化分 析中的功率问题) 图37—A--4 图37—A--1 图37—A--5 图37—A--2 图37—A--3 图37—A--6

2021届高三物理一轮复习电磁学静电场电场能的性质电势差静电力做功与电势差的关系专题练习 (1)

2021届高三物理一轮复习电磁学静电场电场能的性质电势差静电力做功与 电势差的关系专题练习 一、填空题 1.在电场中把92.010C -?的正电荷从A 点移到B 点,静电力做功71.510J -?,再把这个电荷从B 点移到C 点时,克服静电力做功74.010-?J .求电势差AB U =______、BC U =______、AC U =______、 2.若将一个电量为3.0×10?10C 的正电荷,从零电势点移到电场中M 点要克服电场力做功9.0×10?9J ,则M 点的电势是______ V ;若再将该电荷从M 点移到电场中的N 点,电场力做功1.8×10?8J ,则M 、N 两点间的电势差U MN =______V 3.如图所示为一个点电荷电场的电场线(实线)和等势线(虚线),两相邻等势线间的电势差为4 V ,有一个带电荷量为q 、1.0×10-8C 的负电荷从A 点沿不规则曲线移到B 点,静电力做功为_____ J. 4.细胞膜的厚度约等于800nm、1nm=10-9m ),当膜的内外层之间的电压达0.4V 时,即可让一价钠离子渗透.设细胞膜内的电场为匀强电场,则钠离子在渗透时, 膜内电场强度约为 ________ V/m, 每个钠离子沿电场方向透过膜时电场力做的功等于 ____________J. 5.带电量6310C -+?的粒子先后经过电场中的A、B 两点,克服电场力做功,4610J -?,已知B 点的电势为50V ,则: (1)A、B 两点间的电势差为AB U =_____________、 (2)A 点的电势A ?=_____________、 (3)电势能的变化P E ?=_____________、 (4)把电量为6310C --?的电荷放在A 点,其电势能为P E =_____________、 6.如图是一匀强电场的电场线(未标出方向),电场中有a 、b 、c 三点,a 、b 相距4cm 、b 、c 相距10cm 、ab

高三物理电场

(高三物理)电场

————————————————————————————————作者:————————————————————————————————日期:

高考试题汇编——电场部分 1.I1[2012·浙江卷]用金属箔做成一个不带电的圆环,放在干燥的绝缘桌面上.小明同学用绝缘材料做的笔套与头发摩擦后,将笔套自上向下慢慢靠近圆环,当距离约为0.5cm 时圆环被吸引到笔套上,如图所示.对上述现象的判断与分析,下列说法正确的是( ) A .摩擦使笔套带电 B .笔套靠近圆环时,圆环上、下部感应出异号电荷 C .圆环被吸引到笔套的过程中,圆环所受静电力的合力大于圆环的重力 D .笔套碰到圆环后,笔套所带的电荷立刻被全部中和 2.I1[2012·江苏卷] 真空中,A 、B 两点与点电荷Q 的距离分别为r 和3r ,则A 、B 两点的电场强度大小之比为( ) A .3∶1 B .1∶3 C .9∶1 D .1∶9 3.[2012·海南卷]如图1,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里.一带电粒子以某一速度沿水平直线通过两极板,若不计重力,下列四个物理量中哪一个改变时,粒子运动轨迹不会改变?( ) A .粒子速度的大小 B .粒子所带的电荷量 C. 电场强度 D .磁感应强度 4.I1[2012·安徽卷]如图8所示,半径为R 的均匀带电圆形平板,单位面积带电荷量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出:E =2π kσ[1-x (R 2+x 2) 1 2 ],方向沿x 轴.现考虑单位面积带电荷量为σ0的无限大均匀带电平板,从其 中间挖去一半径为r 的圆板,如图9所示.则圆孔轴线上任意一点Q (坐标为x )的电场强度为( ) A .2πkσ0x (r 2+x 2)12 B .2πkσ0r (r 2+x 2)12 C .2πkσ0x r D .2πkσ0r x 5.I2[2012·天津卷]两个固定的等量异号点电荷所产生电场的等势面如图中虚线所示,一带负电的粒子以某一速度从图中A 点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子只受静电力作用,则粒子在电场中( ) A .做直线运动,电势能先变小后变大 B .做直线运动,电势能先变大后变小 C .做曲线运动,电势能先变小后变大 D .做曲线运动,电势能先变大后变小 6.I2[2012·山东卷]图中虚线为一组间距相等的同心圆,圆心处固定一带正电的点电荷.一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运动轨迹,a 、b 、c 三点是实线与虚线的交点.则该粒子( ) A .带负电 B .在c 点受力最大 C .在b 点的电势能大于在c 点的电势能 D .由a 点到b 点的动能变化大于由b 点到c 点的动能变化 图8 图1

高三物理专题复习电场

专题四静电场 1、某静电场的电场线分布如图所示,P、Q为该电场中的两点, 下列说法正确的是 A.P点电势高于Q点电势 B.P点场强小于Q点场强 C.将负电荷从P点移动到Q点,其电势能减少 D.将负电荷从P点移动到Q点,电场力做负功 2、水平线上的O点放置一点电荷,图中画出电荷周围对称分布的 几条电场线,如图所示。以水平线上的某点O'为圆心画一个圆,与 电场线分别相交于a、b、c、d、e,则下列说法正确的是( ) A.b、e两点的电场强度相同B.a点电势低于c点电势 C.b、c两点间电势差等于e、d两点间电势差D.电子沿圆周由d到b,电场力做正功3、图中虚线为一组间距相等的同心圆,圆心处固定一带负电的点电荷。 一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运 动轨迹,a、b、c三点是实线与虚线的交点。则该粒子() A.带负电B.在c点受力最大 C.在b点的电势能大于在c点的电势能 D.由a点到b点的动能变化小于有b点到c点的动能变化 4、如图所示,虚线是两个等量点电荷所产生的静电场中的一簇等势 线,若不计重力的带电粒子从a点射入电场后恰能沿图中的实线运 动,b点是其运动轨迹上的另一点,则下述判断正确的是 A.由a到b的过程中电场力对带电粒子做正功 B.由a到b的过程中带电粒子的电势能在不断减小 C.若粒子带正电,两等量点电荷均带正电 D.若粒子带负电,a点电势高于b点电势 5、一质子从A点射入电场,从B点射出,电场的等差等势面和 质子的运动轨迹如图所示,图中左侧前三个等势面彼此平行,不 计质子的重力。下列说法正确的是 A.A点的电势高于B点的电势 B.质子的加速度先不变,后变小 C.质子的动能不断减小 D.质子的电势能先减小,后增大 6、如图,在点电荷Q产生的电场中,将两个带正电的检验电荷q1、 q2分别置于A、B两点,虚线为等势线。取无穷远处为零电势点, 若将q1、q2移动到无穷远的过程中外力克服电场力做的功相等,则 下列说法正确的是 A.B点电势高于A点电势B.q1在A点的电势能大于q2在B点的电势能 C.点电荷Q带负电D.q1的电荷量大于q2的电荷量 7、如图所示,虚线为某一带电粒子只在电场力作用下的运动轨迹,M、N为运动轨迹上两

2021年高考物理 电场能的性质题型归纳 (带答案)

2021年高考物理电磁场模型解题技巧 2.巧解电场能的性质问题 知识点一 电势能、电势 1.电势能 (1)电场力做功的特点 电场力做功与路径无关,只与初、末位置有关. (2)电势能 ①定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时电场力所做的功. ②电场力做功与电势能变化的关系:电场力做的功等于电势能的减少量,即AB pA pB p W E E ΔE =-=- 2.电势 (1)定义:试探电荷在电场中某点具有的电势能E p 与它的电荷量q 的比值. (2)定义式:p E φq . (3)矢标性:电势是标量,有正、负之分,其正(负)表示该点电势比零电势高(低). (4)相对性:电势具有相对性,同一点的电势因选取零电势点的不同而不同. 3.等势面 (1)定义:电场中电势相等的各点组成的面. (2)四个特点

①等势面一定与电场线垂直. ②在同一等势面上移动电荷时电场力不做功. ③电场线方向总是从电势高的等势面指向电势低的等势面. ④等差等势面越密的地方电场强度越大,反之越小. 知识点二 电势差 1.定义:电荷在电场中,由一点A 移到另一点B 时,电场力做功与移动电荷的电荷量的比值. 2.定义式:AB U AB W q =. 3.电势差与电势的关系:U AB =φA -φB ,U AB =-U BA . 4.影响因素:电势差U AB 由电场本身的性质决定,与移动的电荷q 及电场力做的功W AB 无关,与零电势点的选取无关. 知识点三 匀强电场中电势差与电场强度的关系 匀强电场中两点间的电势差等于电场强度与这两点沿电场线方向的距离的乘积.即U =Ed ,也可以写作E U d =。 技巧一 巧判电势高低及电势能大小 1.电势高低的判断方法

高三物理第二轮复习专题四电场和磁场

专题四 电场和磁场 一、电场和磁场中的带电粒子 1、知识网络 2、方法点拨: 分析带电粒子在电场、磁场中运动,主要是两条线索: (1)力和运动的关系。根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。 (2)功能关系。根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。因此要熟悉各种力做功的特点。 处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目的隐含条件来判断。 处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系。 3、典型例题 【例题1】如图1所示,图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外。O 是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向。已知先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到O 的距离为L ,不计重力及粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O 点射入磁场的时间间隔。 半径公式: qB mv R = 周期公式: qB m T π2= 带电粒子在电场磁场中的运动 带电粒子在电场中的运动 带电粒子在磁场中的运动 带电粒子在复合场中的运动 直线运动:如用电场加速或减速粒子 偏转:类似平抛运动,一般分解成两个分运动求解 圆周运动:以点电荷为圆心运动或受装置约束运动 直线运动(当带电粒子的速度与磁场平行时) 圆周运动(当带电粒子的速度与磁场垂直时) 直线运动:垂直运动方向的力必定平衡 圆周运动:重力与电场力一定平衡,由洛伦兹力提 供向心力 一般的曲线运动

高三物理一轮复习——电场能的性质学案和训练

高三物理一轮复习——电场能的性质学案和训练 [考试标准] 知识梳理 一、静电力做功和电势能 1.静电力做功 (1)特点:静电力做功与路径无关,只与电荷量和电荷移动过程始、末位置间的电势差有关. (2)计算方法 ①W =qEd ,只适用于匀强电场,其中d 为带电体在沿电场方向的位移. ②W AB =qU AB ,适用于任何电场. 2.电势能 (1)定义:电荷在电场中具有的势能,称为电势能. (2)说明:电势能具有相对性,通常把无穷远处或大地的电势能规定为零. 3.静电力做功与电势能变化的关系 (1)静电力做的功等于电荷电势能的减少量,即W AB =E p A -E p B . (2)通过W AB =E p A -E p B 可知:静电力对电荷做多少正功,电荷电势能就减少多少;电荷克服静电力做多少功,电荷电势能就增加多少. (3)电势能的大小:由W AB =E p A -E p B 可知,若令E p B =0,则E p A =W AB ,即一个电荷在电场中某点具有的电势能,数值上等于将其从该点移到零势能位置过程中静电力所做的功. 自测1 关于静电力做功和电势能的理解,下列说法正确的是( ) A .静电力做功与重力做功相似,均与路径无关 B .正电荷具有的电势能一定是正的,负电荷具有的电势能一定是负的 C .静电力做正功,电势能一定增加 D .静电力做功为零,电荷的电势能也为零 答案 A 二、电势 等势面 1.电势 (1)定义:电荷在电场中某一点的电势能与它的电荷量的比值. (2)定义式:φ=E p q .

(3)矢标性:电势是标量,有正负之分,其正(负)表示该点电势比零电势高(低). (4)相对性:电势具有相对性,同一点的电势因选取电势零点的不同而不同. 2.等势面 (1)定义:电场中电势相同的各点组成的面. (2)四个特点: ①在同一等势面上移动电荷时电场力不做功. ②电场线一定与等势面垂直,并且从电势高的等势面指向电势低的等势面. ③等差等势面越密的地方电场强度越大,反之越小. ④任意两个等势面都不相交. 自测2(2016·全国卷Ⅲ·15)关于静电场的等势面,下列说法正确的是() A.两个电势不同的等势面可能相交 B.电场线与等势面处处相互垂直 C.同一等势面上各点电场强度一定相等 D.将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功 答案B 解析若两个不同的等势面相交,则在交点处存在两个不同电势数值,与事实不符,A错;电场线一定与等势面垂直,B对;同一等势面上的电势相同,但电场强度不一定相等,C错;将一负电荷从电势较高的等势面移至电势较低的等势面,电场力做负功,D错. 三、电势差 1.定义:电荷在电场中由一点A移到另一点B时,电场力所做的功W AB与移动电荷的电荷量q的比值. 2.定义式:U AB=W AB q. 3.影响因素 电势差U AB由电场本身的性质决定,与移动的电荷q及电场力做的功W AB无关,与电势零点的选取无关. 4.电势差与电势的关系:U AB=φA-φB,U AB=-U BA. 5.匀强电场中电势差与电场强度的关系 (1)电势差与电场强度的关系式:U AB=E·d,其中d为电场中两点间沿电场方向的距离. (2)在匀强电场中,电场强度在数值上等于沿电场强度方向每单位距离上降低的电势. 自测3(多选)关于电势差的计算公式,下列说法正确的是() A.电势差的公式U AB=W AB q说明两点间的电势差U AB与电场力做功W AB成正比,与移动电荷 的电荷量q成反比

高考物理试题——电场专题(含标准答案)

高考物理试题——电场(课堂) (全国卷1)16.关于静电场,下列结论普遍成立的是( ) A .电场中任意两点之间的电势差只与这两点的场强有关 B .电场强度大的地方电势高,电场强度小的地方电势低 C .将正点电荷从场强为零的一点移动到场强为零的另一点,电场力做功为零 D .在正电荷或负电荷产生的静电场中,场强方向都指向电势降低最快的方向 (全国卷2)17. 在雷雨云下沿竖直方向的电场强度为V/m.已知一半径为1mm 的雨滴在此电场中不会下落,取重力加速度大小为10m/,水的密度为kg/。这雨滴携带的电荷量的最小值约为( ) A .2 C B. 4 C C. 6 C D. 8 C (天津卷)5.在静电场中,将一正电荷从a 点移到b 点,电场力做了负功,则( ) A .b 点的电场强度一定比a 点大 B .电场线方向一定从b 指向a C .b 点的电势一定比a 点高 D .该电荷的动能一定减小 (天津卷)12.(20分)质谱分析技术已广泛应用 于各前沿科学领域。汤姆孙发现电子的质谱装置示意 如图,M 、N 为两块水平放置的平行金属极板,板长为 L ,板右端到屏的距离为D ,且D 远大于L ,O’O 为垂直 于屏的中心轴线,不计离子重力和离子在板间偏离O’O 的距离。以屏中心O 为原点建立xOy 直角坐标系,其中x 轴沿水平方向,y 轴沿竖直方向。 (1)设一个质量为m 0、电荷量为q 0的正离子以速度v 0沿O’O 的方向从O’点射入,板间不加电场和磁场时,离子打在屏上O 点。若在两极板间加一沿+y 方向场强为E 的匀强电场,求离子射到屏上时偏离O 点的距离y 0; 4 102s 3103m ?910-?910-?910-?910-

人教版高三物理小专题复习 21电场能的性质的描述

21.电场能的性质的描述 一、单项选择题(每小题6分,共30分。每小题给出的四个选项中,只有一个选项是正确的) 1.如图所示,电场中的一簇电场线关于y轴对称分布,O点是坐标原点,M、N、P、Q是以O为圆心的一个圆周上的四个点,其中M、N在y轴上,Q点在x轴上,则() A.M点电势比P点电势高 B.OM间的电势差等于NO间的电势差 C.一正电荷在O点的电势能小于在Q点的电势能 D.将一负电荷从M点移到P点,电场力做正功 【解析】选D 2.在光滑绝缘的水平桌面上,存在着方向水平向右的匀强电场,电场线如图中实线所示。一带正电、初速度不为零的小球从桌面上的A点开始运动,到C点时,突然受到一个外加的水平恒力F作用而继续运动到B点,其运动轨迹如图中虚线所示,v表示小球在C点的速度。则下列判断中正确的是() A.小球在A点的电势能比在B点的电势能小 B.恒力F的方向可能水平向左 C.恒力F的方向可能与v方向相反 D.在A、B两点小球的速率不可能相等 【解析】选B 3.如图所示,真空中有一半径为R、电荷量为+Q的均匀带电球体,以球心为坐标原点,沿半径方向建立x轴。理论分析表明,x轴上各点的场强随x变化关系如图乙所示,则()

A.x2处场强大小为 B.球内部的电场为匀强电场 C.x1、x2两点处的电势相同 D.假设将试探电荷沿x轴移动,则从x1移到R处和从R移到x2处电场力做功相同 【解析】选A 4.空间某一静电场的电势φ在x轴上分布如图所示,x轴上有B、C两点,则下列说法中正确的有() A.B点的场强小于C点的场强 B.同一试探电荷在B、C两点的电势能可能相同 C.负电荷沿x轴从B点移到C点的过程中,电势能先减小后增大 D.B点电场强度沿x轴的分量与C点电场强度沿x轴分量方向相同 【解析】选C 5.如图,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ。一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则() A.直线a位于某一等势面内,φM>φQ

(完整)高三物理电场经典习题.doc

电场练习题 一、选择题 1.如图所示,在静止的点电荷 +Q 所产生的电场中,有与+ Q 共面的 A 、B、 C 三点,且 B、 C 处于以+ Q 为圆心的同一圆周上。设 A 、B、C 三点的电场强度大小分别为 E A、E B、E C,电势分别为φA、φB、φC,则下列判断正确的是 A. E A E B,φA<φB B. E A >E B,φA >φB D. E A>E C,φB=φC 2.如图所示,空间有一水平匀强电场,在竖直平面内有一初速度 v0的 带电微粒,沿图中虚线由 A 运动至 B,其能量变化情况是 A.动能减少,重力势能增加,电势能减少 B. 动能减少,重力势能增加,电势能增加 C.动能不变,重力势能增加,电势能减少 D.动能增加,重力势能增加,电势能减少 3.如图,在匀强电场中,将一质量为m,带电量为 q 的带电小球,由静 止释放,带电小球的运动轨迹为一与竖直方向夹角为θ的直线,则匀强 电场的场强大小为θ A. 唯一值是 mgtgθ/q B.最大值是 mgtgθ/q C.最小值是 mgsinθ/q D. 最小值是 mgcosθ/q 4.如图所示,从灯丝发出的电子经加速电场加速后,进入偏转电场, 若加速电压为 U1,偏转电压为 U2,要使电子在电场中的偏转量 y 增大 为原来的 2 倍,下列方法中正确的是 A. 使 U1减小到原来的 1/2 B. 使 U2增大为原来的 2 倍 C. 使偏转板的长度增大为原来 2 倍 D.使偏转板的距离减小为原来的1/2 5.如图,将乙图所示的交变电压加在甲图所示的平行 板电容器 A、B 两极板上,开始时 B 板的电势比 A 板 高,有一位于极板中间的电子,在 t=0 时刻由静止释 放,它只在电场力作用下开始运动,设 A 、 B两板间距足够大,则 A .电子一直向 A 板运动 B.电子一直向 B 板运动 C.电子先向 A 板运动,再向 B 板运动,再返回,如此做周期性运动 D.电子先向 B 板运动,再向 A 板运动,再返回,如此做周期性运动 6.一个动能为 E k的带电粒子,垂直于电力线方向飞入平行板电容器,飞出电容器时动能为2E k,如果使这个带电粒子的初速度变为原来的 2 两倍,那么它飞出电容器时的动能变为 A .8E k B.2E k C.4.25E k D.2.5E k

闭合电路中的能量转化

闭合电路中的能量转化 教学目标 1.理解电路中的能量转化情况,即在电路中哪部分发生由什么能转化成什么能的问题.加深对能的转化和守恒定律的认识. 2.掌握分析、计算电路中功率及能量的转化的方法. 教学重点、难点分析 1.对电路中各部分做功情况(什么力做功)、能量转换情况(什么能之间的转化)的分析、理解. 2.认清电源输出功率与效率的联系与区别. 3.对非纯电阻电路中能量转化问题的理解、应用. 教学过程设计 教师活动 一、电路中的功与能 能的转化和守恒定律是自然界普遍适用的规律.在电路中能量是怎么转化的?请参照图3-4-1所示电路回答并举例. 学生活动 答:电源是把其它能转化为电能的装置.内阻和用电器是电能转化为热能等其它形式能的装置.如化学电池将化学能转化成电能,而电路中发光灯泡是将电能转化成光、热能. 对于一个闭合电路,它的能量应该是守恒的,但又在不同形式间转化,通过什么方式完成呢?(请结合电动势和电压的定义回答)

答:做功.在电源部分,非静电力做正功W非=q ,将其它形式的能转化成电能.而 内阻上电流做功,将电能转化成内能W内=qU′(U′为内阻上的电势降),在外电路部分,电流做功W外=qU(U为路端电压),电能转化成其它形式的能. 这些功与能量间的定量关系如何? 总结:可见,整个电路中的能量循环转化,电源产生多少电能,电路就消耗多少,收支平衡.答:W非=W内+W外 或q =qU′+qU 二、电功与电热 这部分知识初中学过,可以列出一些问题,让学生回答,教师补充说明即可. 如图3-4-2所示,用电器两端电压U,电流I. 回答:(1)时间t内,电流对用电器做功; (2)该用电器的电功率; (3)若用电器电阻为R,时间t内该用电器产生的热量; (4)该用电器的热功率; (5)电功与电热是否相等?它们的大小关系如何?为什么? 答: (1)W=UIt (2)P=W/t=UI (3)Q=I2Rt(焦尔定律) (4)P热=Q/t=I2R (5)若电路为纯电阻电路,则

2017年高三物理一模 电场专题汇编

上海市各区县2017届高三物理试题电场专题分类精编 一、选择题 1、(2017崇明第12题)如图所示的直线是真空中某电场的一条电场线,A 、B 是这条直线上的两点,一 带正电粒子以速度υA 向右经过A 点向B 点运动,经过一段时间后,粒子以速度υB 经过B 点,且υB 与υA 方向相反,不计粒子重力,下面判断正确的是 A .A 点的场强一定大于B 点的场强 B .A 点的电势一定高于B 点的电势 C .粒子在A 点的速度一定大于在B 点的速度 D .粒子在A 点的电势能一定小于在B 点的电势能 2、(2017虹口第5题)三个点电荷附近的电场线分布如图所示,c 是电量相等的两个负电荷连线的中点, d 点在正电荷的正上方,c 、d 到正电荷的距离相等,则( ) (A )c 点的电场强度为零 (B )b 、d 两点的电场强度不同 (C )a 点的电势比b 点的电势高 (D )c 点的电势与d 点的电势相等 3、(2017虹口第8题)如图所示,一带正电的点电荷固定于O 点,两虚线圆均以O 为圆心。两实线分别为带电粒子M 和N 先后在电场中运动的轨迹,a 、b 、c 、d 、e 为轨迹和虚线圆 的交点,不计重力。下列说法中正确的是( ) (A )M 、N 均带负电荷 (B )M 在b 点的速度小于它在a 点的速度 (C )N 在c 点的电势能小于它在e 点的电势能 (D )N 在从e 点运动到d 点的过程中电场力先做正功后做负功 4、(2017嘉定、长宁第8题)带电粒子仅在电场力作用下,从电场中a 点以初速度v 0进入电场并沿虚线所示的轨迹运动到b 点,如图所示,实线是电场线,关于粒子,下列说法正确的是( ) (A )在a 点的加速度大于在b 点的加速度 (B )在a 点的电势能小于在b 点的电势能 (C )在a 点的速度小于在b 点的速度 (D )电场中a 点的电势一定比b 点的电势高 v A v B A B

2010高三物理高考知识点分析:电场的能的性质

电场的能的性质 Ⅰ 电 势 能 和 电 势 和 电 势 差 一、电势能(ε标量 焦耳 J )——电场力、相对位置 1、电荷在电场中受到电场力,所具有的与电荷的位置有关的能量,称电势能或电能。 2、电势能的相对性――选择零势能面,一般选择大地或无穷远为零势能面。(等效) 3、电场力做功与电势能改变的关系——方法与重力势能相对比 ①无论电荷的正负,电场力做正功,电势能减小,电场力做负功,电势能增加,做功和电势能的变化量在数值上是相等的 ②静电场中,电场力做功与路径无关,电势能的改变量与路径无关 二、 电量电势能电势= q ε Φ= 1 J / C = 1 V / m 1、 地位:u (或φ)与力学中的高度相当(标量) 2、 相对性:选取大地或无穷远处为零电势点 3、 沿电场线方向,电势降低(与电性无关) 4、 电势由电场本身性质决定 5、 电势是描述电场中能量性质的物理量 6、 意义:电场中某一点的电势在数值等于单位电荷在那一点所具有的电势能。 练习: 1、 沿电场线方向移动正电荷,电势能减小 沿电场线方向移动负电荷,电势能增加 正电荷的电场中,电势为正,负电荷的电场中,电势为负 2、 正电荷的电场中,正的检验电荷电势能为正,负的检验电荷电势能为负 负电荷的电场中,正的检验电荷电势能为负,负的检验电荷电势能为正 3、 只在电场力的作用下,正电荷顺着电场线运动,由高电势向低电势 A 到 B ,正功,εa >εb A B A 到 B ,负功,εa <εb ∞ ε=0 φ=0 A B ε=6J =3V ε=10J φ=5V φ

只在电场力的作用下,负电荷逆着电场线运动,由低电势向高电势 4、 比较5J 和-7J 的大小,理解标量负号的意义。 三、电 势 差——电场力做功与电荷电量的比值叫电势差 1、 在电场中某两点的电势之差,也叫电压 U AB = φA - φB 2、 A B AB w U q q q εε=-= 3、意义: ①对应于高度差,由电场本身的性质决定 ②电势与选择的零电势点有关,电势差与零电势点的选择无关 4 、运用要求: 1、U AB =ΦA -ΦB =1-4=-3 V 带正负号 2、U =W/q 或W =qU 用绝对值,正负号另行判断(V U 341=-=) 例8:将电量为q =-2×10 8 C 的点电荷从零电场中点S 移动到M 点要克服电场力做功4×10 -8 J ,求M 点的电势=?。若再从M 点移动到N 点,电场力又做正功14×10- 8 J ,求N 点电 势=? 解: (1) S 到M , V q w U 21021048 8 =??== --对负电荷做负功,电势降低 M 到N 对负电荷做正功,电势升高 (2) V U V q w U N 5710 2101488 =?=??='='-- 例9:电子伏是研究微观粒子时常用的能量单位。1ev 就是电势差为1V 的两点间移动一个元电荷电场力所做的功。1ev =1.6×10 -19 C ×1V =1.6×10 -19 J ,把一个二价正离子从大地移动到 电场中的A 点,w =6ev ,求:U A =? 解:V U V e eV U A 3326=?== 例10、 如图所示,三个同心圆是同一个点电荷周围的三个等势面,已知这三个圆的半径成等差数列。A 、B 、C 分别是这三个等势面上的点,且三点在同一条电场线上。A 、C 两点的电势依次为 S M 0V -2V S M 0V -2V 5V

2021届广东省高考物理专题练习:电场

电场 一、选择题(每小题6分,共54分) 1.(2020届广东六校第一次联考,5)如图,静电场中的一条电场线上有M、N两点,箭头代表电场的方向,则() A.M点的电势比N点的低 B.M点的电场强度大小一定比N点的大 C.正电荷在M点的电势能比在N点的大 D.电子在M点受到的电场力大小一定比在N点的小 2.(2019广东一模,21)(多选)如图所示,点电荷Q1、Q2固定于边长为L的正三角形的两顶点上,将点电荷Q3(电荷量未知)固定于正三角形的中心,Q1=Q2=+q。在正三角形第三个顶点上放入另一点电荷Q,且Q=-q,点电荷Q恰好处于平衡状态。已知静电力常量为k,不计各电荷受到的重力,下列说法正确的是() A.若撤去Q3,则Q将做匀加速直线运动 B.Q3的电荷量为-√3q 3 C.若不改变Q的电性,仅改变其电荷量,Q将不再受力平衡 D.若将Q1的电荷量改为-q,则Q受到的合力大小为2kq2 L2 3.(2020届珠海月考,8)如图所示,有两对等量异种电荷,放在正方形的四个顶点处,a、b、c、d 为正方形四个边的中点,O为正方形的中心,下列说法中正确的是() A.O点电场强度为零 B.a、c两点的电场强度大小相等、方向相反 C.将一带正电的试探电荷从b点沿直线移动到d点,电场力做功为零 D.将一带正电的试探电荷从a点沿直线移动到c点,试探电荷具有的电势能增大 4.(2019广州二模,21)(多选)水平放置的平行板电容器与电源相连,下极板接地。带负电的液滴静止在两极板间P点,以E表示两极板间的场强,U表示两极板间的电压,φ表示P点的电势。若电容器与电源断开,保持下极板不动,将上极板稍微向上移到某一位置,则() A.U变大,E不变,φ不变 B.U不变,E变小,φ降低 C.液滴将向下运动

相关文档
最新文档