微积分(经管类)第五章答案

微积分(经管类)第五章答案
微积分(经管类)第五章答案

微积分(经管类)第五章答案 5.1 定积分的概念与性质

一、1、∑=→?n

i i

i

x f 1

)(lim

ξλ;

2、被积函数,积分区间,积分变量;

3、介于曲线)(x f y =,x 轴,直线b x a x ==,之间各部分面积的代数和;

4、?

b

a dx ;

5、

??

+b

c c

a

dx x f dx x f )()(;

6、b a a b M dx x f a b m b

a

<-≤≤-?

,)()()(;

7、

?

b

a

dx x f )( ?-=a b

dx x f )(;

8、)(ξf 与a b -为邻边的矩形面积;二、略. 三、

?

-231

cos xdx .

四、略。

五、(1)+; (2)-; (3)+. 六、(1)<; (2)<. 七、略。

5.2. 微积分基本定理

一、1、0;

2、)()(a f x f -;

3、

)1ln(23

+x x ;

4、

6

5

; 5、(1)ππ,;

(2)0,0;

6、(1)0; (2)0。

7、;6

1

45 8、

6

π

; 9、1. 二、1、

1

sin cos -x x ;2、)sin cos()cos (sin 2

x x x π?-; 3、2-.

三、 1、852; 2、3

π; 3、14+π

; 4、4.

四、1、0; 2、10

1

.

五、略。 六、

3

35π

, 0. 七、????

???>≤≤-<=π

πφx x x x x ,10,)cos 1(210,0)(.

5.3. 定积分的换元积分法与分部积分法

一、1、0; 2、34-π; 3、2π; 4、32

3

π; 5、0.

6、e 21-

; 7、)1(412+e ; 8、2

3

ln 21)9341(+-π. 二、1、

41; 2、3

322-; 3、1-2ln 2; 4、34; 5、22; 6、

8

π;7、417;8、2ln 21

; 9、1-e .

10、211cos 1sin +-e e ; 11、)11(2e

-; 12、21

2ln -;

13、

2ln 3

3

-π; 14、22+π;15、3ln 24-;16、2+)2ln 3(ln 21-。

三、 )1ln(1

-+e . 六、2.

八、8.

5.5 反常积分

一、1、1,1≤>p p ;2、1,1≥k k ;

4、发散, 1;

5、过点x 平行于y 轴的直 线左边,曲线)(x f y =和x 轴所围图形的面积 .

二、1、

1

2

-p p

; 2、π; 3、!n ; 4、发散;

5、3

2

2

; 6、0; 7、!)1(n n -. 三、当1

k a b k

---1)(11

; 当1≥k 时发散. 四、

????

???<-≤<≤<∞-=?

-x

x x x x dt t f x

2,120,410,0)(2.

5.6定积分的几何应用

一、1、1; 2、3

32; 3、2; 4、y ; 5、21-+e e ; 6、21

7、?

b

a

dx x f )(2π

,?b a

dx x xf )(2π; 8、已知平行截面面积的; 9、2

2ax π。 二、1、

2ln 2

3-; 2、67

三、49. 四、2e

. 五、23

8a .

5.7 定积分在经济上的应用

1、5002.032)(2--=q q q L ;80.

2、ct bt at t F ++=2

1

31)(3。 3、300. 4、85-

;4;1481)(2++=x x x C ;18

5

5)(--=x x x L . 5、334/3。 6、(1)4;(2)-2.

定积分综合训练题 一、1、C ; 2、A ; 3、C ; 4、D ; 5、C ; 6、D ; 7、B ; 8、A ; 9、C ; 10、D. 三、1、

8

12

21213x x x x +-

+; 2、2sin 22

x e

y -±.

四、1、34ln

2; 2、4π; 3、)1(21-e ; 4、371; 5、22π-; 6、5

π

; 7、π.

五、11、111

3

1

大学高等数学第四章 不定积分答案

第四章 不定积分 习 题 4-1 1.求下列不定积分: (1)解:C x x x x x x x x x +-=-= -??- 25 232 122d )5(d )51( (2)解:?+x x x d )32(2 C x x x ++ ?+ =3 ln 29 6 ln 6 22 ln 24 (3)略. (4) 解:? ??-+ -= +-x x x x x x x d )1(csc d 1 1d )cot 1 1( 2 2 2 2 =C x x x +--cot arcsin (5) 解:?x x x d 2103 C x x x x x x += ==??80 ln 80 d 80 d 810 (6) 解:x x d 2 sin 2 ?=C x x x x ++= -= ?sin 2 12 1d )cos 1(2 1 (7)? +x x x x d sin cos 2cos C x x x x x x x x x x +--=-= +-= ?? cos sin d )sin (cos d sin cos sin cos 2 2 (8) 解:? x x x x d sin cos 2cos 2 2 ?? - = -= x x x x x x x x d )cos 1sin 1( d sin cos sin cos 2 2 2 2 2 2 C x x +--=tan cot (9) 解: ???-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2 =C x x +-sec tan (10) 解:},,1max{)(x x f =设?? ? ??>≤≤--<-=1,11,11,)(x x x x x x f 则. 上连续在),()(+∞-∞x f , )(x F 则必存在原函数,???? ???>+≤≤-+-<+-=1,2 1 11, 1,21)(32212 x C x x C x x C x x F 须处处连续,有又)(x F )2 1(lim )(lim 12 1 21 C x C x x x +- =+-+-→-→ ,,2 1112C C +- =+-即

微积分(经管类复习题)

微积分(经管类复习题)2011.5 一、选择题 1. 二元函数) 3ln(1),(2 2 y x y x f --= 的定义域为( ) .A 222<+y x .B 222≤+y x .C 322<+y x .D 322≤+y x 2. 点),(00y x 使0),(='y x f x 且0),(=' y x f y 成立,则( ) .A ),(00y x 是),(y x f 的极值点 .B ),(00y x 是),(y x f 的最小值点 .C ),(00y x 是),(y x f 的最大值点 .D ),(00y x 可能是),(y x f 的极值点 3. 级数 ∑∞ =1 n n aq 收敛的充分条件是( ) .A 1>q .B 1=q .C 1

微积分第4章习题解答(上)

第四章 习题参考解答 习题4-1 1、下列各方程中,哪些是微分方程,哪些不是微分方程?若是微分方程,请指出其阶数 (1)是一阶微分方程; (2)不是微分方程; (3)是一阶微分方程; (4)是二阶微分方程; (5)是一阶微分方程; (6)是一阶微分方程。 2、在下列各题所给的函数中,检验其中哪个函数是方程的解?是通解还是特解? (1)(B )是特解 (C )是通解; (2)(A)是特解 (B )是通解; (3)(A )是通解(B )是特解 3、求下列各微分方程在指定条件下的特解 (1)解:x x x y xe dx xe e dx ==-?? (1)x y e x C ∴=-+ 将(0)1y =代入上式,得2C = 故满足初始条件的特解为:2)1(+-=x e y x (2)解:C x x dx y +==? ln 将(1)1y =代入上式,得1C = 故满足初始条件的特解为:1ln +=x y 4、写出由下列条件确定的曲线所满足的微分方程 (1)解:设曲线为)(x y y = 由条件得2x y =' (2) 解:设曲线为)(x y y =,则曲线上点),(y x P 处的法线斜率为y k '- =1 由条件知PQ 中点的横坐标为0,所以Q 点的坐标为)0,(x -,从而有 01 ()y x x y -=-' --

即:20yy x '+= 注:DQ PD k = 习题4-2 1、求下列微分方程的通解 (1)sec (1)0x ydx x dy ++= 解:原方程变形为:cos 1x ydy dx x =- + 积分:11 cos 1 x ydy dx x +-=-+?? 得:sin ln 1y x x C =-+++ 所求的通解为:C y x x =++-sin 1ln (2) 10x y dy dx += 解:原方程变形为: 1010 x y dy dx = 积分:1010x y dy dx =? ? 得:1111010ln10ln10 y x C -=+ 所求的通解为:1010x y C --= (3)ln y y y '= 解:原方程变形为: ln dy dx y y = 积分:1ln dy dx y y =? ? 得:ln ln y x C =+,2ln x y C e = 所求的通解为:x Ce y e = 注:21,2C C e C e C ==; (4)tan cot ydx xdy = 解:原方程变形为:cot tan ydy xdx =

高等数学经管类

一. 单项选择题(共45分,每题3分) 请务必将选择题答案填入下面的答题卡 1. 数列{}n x 有界就是数列{}n x 收敛的( ) A 、 充分条件 B 、 充要条件 C 、 必要条件 D 、 非充分又非必要 条件 2.设极限0(1)(12)(13)a lim 6x x x x x →++++=,则a =( ) A 、 1 B 、 2 C 、 3 D 、 -1 3.当1x →时,函数 1 2111 x x e x ---的极限就是( ) A 、 2 B 、 不存在也不就是∞ C 、 ∞ D 、 0 4.如果函数()y f x =在点0x x =处取得极大值,则( ) A 、 0()0f x '= B 、 0()0f x ''< C 、 0()0f x '=且0()0f x ''< D 、 0()0f x '=或0()f x '不存在 5.若两曲线2 y x ax b =++与3 21y xy =-+在点(1,1)-处相切,则,a b 的值为( ) A 、 0,2a b ==- B 、 1,3a b ==- C 、 3,1a b =-= D 、 1,1a b =-=- 6.某商品的价格P 与需求量Q 的关系为100.01P Q =-,则4P =时的边际收益为( ) A 、 300 B 、 200 C 、 100 D 、 0 7.设函数()f x 可导,且0 lim ()1x f x →'=,则(0)f ( ) A 、 就是()f x 的极大值 B 、 就是()f x 的极小值 C 、 不就是()f x 的极值 D 、 不一定就是()f x 的极值 8.设()f x 就是连续函数,则下列计算正确的就是( ) A 、 11 221 ()2()f x dx f x dx -=? ? B 、 131 ()0f x dx -=?

《高等数学》经管类期末考试

《高等数学》经管类期末考试

————————————————————————————————作者:————————————————————————————————日期:

一、 填空题(本大题共5题,每题2分,共10分。请直接将正确结果填 入各题的空格处) 1. 函数221y x z --=的定义域 ; 2. 由方程z e xz yz xy =+-所确定的隐函数),(y x z z =在点()1,1处的全微分11==y x dz = ; 3. 变换二重积分 ??==b a x a I dy y x f dx I 的积分次序后),( ; 4. 将函数()2cos x x f =展开成x 的幂级数为 ; 5. 微分方程0='-''y y 的通解是 。 二、 选择题(本大题共5题,每题2分,共10分。每小题有四个选项, 其中有且只有一个选项正确,请将正确选项的代号字母填入括号内) 6. 在空间解析几何中方程422=+y x 表示( )。 A .圆 B .平面 C .圆柱面 D .球 面 7. 设函数22y x z =,则=??22x z ( )。 A. 22y B. xy 4 C. y 4 D. 0 8. 设(){}01,01,≤≤-≤≤-=y x y x D ,则??D dxdy 等于( ) 。 A .-1 B .1 C .2 D .-2

9. 级数∑ ∞=121n n ( )。 A. 发散 B.收敛,其和为2 C.收敛,其和为1 D.收敛,其和为3 10. 下列方程中,( )是二阶线性齐次微分方程。 A .y y dx y d ='+22 B .y x y '+=''2)( C .y y x y '+=''2 D . x y y y +'=''2)( 三、 计算题(本大题共9题,每题7分,共63分。解答须有主要解题步 骤,说明必要的理由) 11. 设),(v u f z =,y x u 2 =,y x v =,求y z x z ????,。 12. 求函数 122++=y x z 在条件03=-+y x 下的极值。 13. ??D xyd σ,其中D 是由抛物线 x y =2及直线2-=x y 所围成的 闭区域。 14. 计算??D dxdy y 2,其中D 为:4122≤+≤y x 。(要求画草图。提示:在极 坐标下计算) 15. 计算由y x z ++=1,1=+y x ,0=x ,0=y 及0=z 所围成 立体的体积(第一卦限). 16. 判断级数∑∞ =1 2sin n n n α的敛散性; 17. 求幂级数n n x n ∑∞=11的收敛区间与和函数。

微积分第五章第六章习题答案

习题5.1 1.(1) sin x x ;3sin x (2)无穷多 ;常数(3)所有原函数(4)平行 2. 23x ;6x 3.(1)3223 x C --+(2)323sin 3x x e x C +-+(3)3132221(1565(2))15x x x x C -++-+ (4 2103)x x C -++ (5)4cos 3ln x x C -++(6)3 23 x x ex C +-+ (7) sin 22 x x C -+(8 )5cos x x C --+ 4. 3113y x =+ 5. 32()0.0000020.0034100C x x x x =-++;(500)1600;(400)(200)552C C C =-= 习题5.2 1.(1)1a (2)17(3)110(4)12-(5)112(6)12(7)2-(8)15(9)-(10)12 - 2. (1)515t e C + (2)41(32)8x C --+(3)1ln 122x C --+(4)231(23)2 x C --+ (5 )C -(6)ln ln ln x C +(7)111tan 11x C +(8)212 x e C --+ (9)ln cos ln sin x x C -++(10 )ln C -+(11)3sec sec 3 x x C -++ (12 )C (13)43ln 14x C --+(14)2sec 2 x C + (15 12arcsin 23x C + (16)229ln(9)22 x x C -++ (17 C (18)ln 2ln 133 x x C -+-+ (19)2()sin(2())4t t C ?ω?ωω++++ (20)3cos ()3t C ?ωω +-+ (21)cos 1cos5210x x C -+ (22)13sin sin 232x x C ++(23)11sin 2sin12424 x x C -+ 习题5.3 1.(1)arcsin ,,u x dv dx v x === (2),sin ,cos u x dv xdx v x ===-

高等数学(同济大学版)第四章练习(含答案)

第四章 不定积分 一、学习要求 1、理解原函数与不定积分的概念及性质。 2、掌握不定积分的第一类换元法、第二类换元法及分部积分法。 二、练习 1.在下列等式中,正确的结果是( C ). A. '()()f x dx f x =? B.()()df x f x =? C. ()()d f x dx f x dx =? D.[()]()d f x dx f x =? 2.若ln x 是函数()f x 的一个原函数,则()f x 的另一个原函数是( A ); A. ln ax B.1ln ax a C.ln x a + D.21(ln )2 x 3.设()f x 的一个原函数是2x e -,则()f x =( B ); A. 2x e - B. 22x e -- C. 24x e -- D. 24x e - 4.'' ()xf x dx =? ( C ). A.'()xf x C + B. '()()f x f x C -+ C. '()()xf x f x C -+ D. '()()xf x f x C ++. 5 .将 化为有理函数的积分,应作变换x =( D ). A. 3t B. 4 t C. 7 t D. 12 t 6.dx = 1/7 ()73d x -, 2cos 2dx x = 1/2 ()tan 2d x ,2 19dx x =+1/3 ()arctan3d x ; 7. 已知(31)x f x e '-=,则()f x =1 3 3x e c ++. 8.设()f x 是可导函数,则'()d f x x ?为()f x C +. 9.过点(1,2)且切线斜率为34x 的曲线方程为41y x =+ 10.已知()cos xf x dx x C =+?,则()f x =sin x x - 11.求下列不定积分 解: (1) 22 32tan 1tan tan tan 1sin 3 x dx xd x x c x ==+-?? (2) 22arctan 11 x x x x x x x dx e dx de e c e e e e -===++++??? 5 34 2 (3)t a n s e c t a n s e c s e c x x d x x x d x ? =??? 22 2(s e c 1)s e c s e c x x d x =-?? ()642sec 2sec sec sec x x x d x =-+?753121 sec sec sec 753 x x x c = -++

高等数学经管类

高等数学经管类-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一. 单项选择题(共45分,每题3分) 请务必将选择题答案填入下面的答题卡 1. 数列{}n x 有界是数列{}n x 收敛的( ) A. 充分条件 B. 充要条件 C. 必要条件 D. 非充分 又非必要条件 2.设极限0(1)(12)(13)a lim 6x x x x x →++++=,则a =( ) A. 1 B. 2 C. 3 D. -1 3.当1x →时,函数 1 2111 x x e x ---的极限是( ) A. 2 B. 不存在也不是∞ C. ∞ D. 0 4.如果函数()y f x =在点0x x =处取得极大值,则( ) A. 0()0f x '= B. 0()0f x ''< C. 0()0f x '=且0()0f x ''< D. 0()0f x '=或0()f x '不存在 5.若两曲线2y x ax b =++与321y xy =-+在点(1,1)-处相切,则,a b 的值为( ) A. 0,2a b ==- B. 1,3a b ==- C. 3,1a b =-= D. 1,1a b =-=- 6.某商品的价格P 和需求量Q 的关系为100.01P Q =-,则4P =时的边际收益为( ) A. 300 B. 200 C. 100 D. 7.设函数()f x 可导,且0 lim ()1x f x →'=,则(0)f ( ) A. 是()f x 的极大值 B. 是()f x 的极小值

C. 不是()f x 的极值 D. 不一定是()f x 的极值 8.设()f x 是连续函数,则下列计算正确的是( ) A. 1 1 221 ()2()f x dx f x dx -=?? B. 1 31 ()0f x dx -=? C. 0+∞-∞ =? D. 11 221 0()2()f x dx f x dx -=? ? 9.设2sin ()sin x t x F x e tdt π+=? ,则()F x ( ) A. 为正常数 B. 为负常数 C. 恒为零 D. 不为常数 10.设直线1158 :121x y z L --+== -,20:23 x y L y z -=??+=?,则12,L L 的夹角为( ) A. 6 π B. 4π C. 3 π D. 2 π 11.设()f x,y 在点()a,b 处偏导数存在,则极限()() n f a x,b f a x,b lim x →+∞ +--= ( ) A. ()x f a,b B. ()2x f a,b C. ()2x f a,b D. ()1 2 x f a,b 12.设函数()f x 连续,则22 0()dt x d tf x t dx -=?( ) A. ()2xf x B. ()2xf x - C. ()22xf x D. ()22xf x - 13.设二次积分2sin 0 d (cos ,sin )d I f r r r r π θθθθ=??,则I 可写成( ) A. 2 2d (,)d x f x y y -? B. 2 20 d (,)d y f x y x -? C. 2 0d (,)d x f x y y ? D. 2 d (,)d y f x y x ? 14.点(0,0)是函数z xy =的( ) A. 极大值点 B. 极小值点 C. 驻点 D. 非驻点

微积分二课后题答案,复旦大学出版社第五章

第五章 习题5-1 1.求下列不定积分: (1) 2 5)x -d x ; (2) 2 x ; (3) 3e x x ?d x ; (4) 2cos 2 x ?d x ; (5) 23523x x x ?-??d x ; (6) 22cos 2d cos sin x x x x ?. 解 5 15173 2 2222 22210 (1) 5)(5)573d d d d x x x x x x x x x x C -=-=-=-+??? 2. 解答下列各题: (1) 一平面曲线经过点(1,0),且曲线上任一点(x ,y )处的切线斜率为2x -2,求该曲线方程; (2) 设sin x 为f (x )的一个原函数,求 ()f x '?d x ; (3) 已知f (x )的导数是sin x ,求f (x )的一个原函数; (4) 某商品的需求量Q 是价格P 的函数,该商品的最大需求量为1000(即P=0时,Q =1000),已知需求量的变化率(边际需求)为Q ′(P )=-10001( )3 P ln3,求需求量与价格的函数关系. 解 (1)设所求曲线方程为y =f (x ),由题设有f′(x )=2x -2, 又曲线过点(1,0),故f (1)=0代入上式有1-2+C =0得C =1,所以,所求曲线方程为 2()21f x x x =-+. (2)由题意有(sin )()x f x '=,即()cos f x x =, 故 ()sin f x x '=-, 所以 ()sin sin cos d d d f x x x x x x x C '=-=-=+???. (3)由题意有()sin f x x '=,则1()sin cos d f x x x x C ==-+? 于是 1 2 ()(cos )sin d d f x x x C x x C x C =-+=-++??. 其中12,C C 为任意常数,取120C C ==,得()f x 的一个原函数为sin x -. 注意 此题答案不唯一.如若取121,0C C ==得()f x 的一个原函数为sin x x --. (4)由1()1000( )ln 33 P Q P '=-得 将P =0时,Q =1000代入上式得C =0

微积分刘迎东编第四章习题4.6答案

微积分刘迎东编第四章习题4.6答案

4.6 有理函数的积分 习题4.6 求下列不定积分: (1)3 3 x dx x +? 解: ()()()33223227939272727ln 33239327327ln 3.32 x t t dxx t t t dt t t C x t x x x x C ??+=-+-=-+-+ ?+?? ++=-++-++?? (2)223310 x dx x x ++-? 解:()2222231310ln 310.310310 x dx d x x x x C x x x x +=+-=+-++-+-?? (3)2125x dx x x +-+? 解: ()()()()22222222511122412252252251211ln 25arctan .22 d x x d x x x dx dx x x x x x x x x x x C -+-+-+==+-+-+-+-+-=-+++???? (4)() 21dx x x +? 解:()()()()22 222222211111ln .2212111d x dx x d x C x x x x x x x ??==-=+ ?++++????? (5)331 dx x +? 解:

( )( )322222223121213ln 1111211131ln 1212121ln 1ln 1.2x x dx dx x dx x x x x x x d x x x dx x x x x x x C ---??=+=+- ?++-+-+?? -+=+-+-+??-+ ?? ???=+--+++????? (6)()() 221 11x dx x x ++-? 解:()()()222211111122ln 1.1121111x dx dx x C x x x x x x ?? ?+=+-=-++ ?-+++-+ ??? ?? (7)()()() 123xdx x x x +++? 解: ()()()13222123123132ln 2ln 1ln 3.22 xdx dx x x x x x x x x x C ??-- ?=++ ?++++++ ??? =+-+-++?? (8)5438x x dx x x +--? 解: ()()542233232 8811184332118ln 4ln 13ln 1.32x x x x dx x x dx x x x x x x x x dx x x x x x x x x x C ??+-+-=+++ ? ?-+-?? ??=+++-- ?+-?? =+++-+--+??? (9)()() 221dx x x x ++?

高等数学 第四章不定积分课后习题详解

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

微积分经管类考试大纲

《有机化学》考试大纲 (201409修改) 一、考试目的 有机化学是一门研究有机物的组成、结构、性质、合成以及与此相关的理论、规律的科学。通过考试,使同学们系统地掌握有机化学的基本概念、基本理论,熟练掌握有机化合物分子结构与性质之间的关系,有机化合物的合成及相互转化的方法和规律,具有基本科学的思维方法和理论联系实际独立分析问题解决问题的能力。 二、考试内容 第一章绪论 1.1有机化合物和有机化学 有机化合物的定义 1.2 有机化合物的特征 1.3 分子结构和结构式 短线式、缩简式、键线式 1.4 共价键 1.4.1 共价键的形成 Lewis 结构式、价键理论、轨道杂化(sp、sp2、sp3 杂化) 1.4.2 共价键的属性 键长、键能、键角、键的极性、诱导效应 1.4.3 共价键的断裂和有机反应的类型 均裂(产生自由基)、异裂(形成正、负离子)、自由基反应、离子型反应 1.5 分子间的相互作用力 偶极-偶极相互作用、范德华力、氢键 1.6 酸碱的概念 1.6.1 Br? nsted 酸碱理论 Br? nsted 酸、Br? nsted 碱、共轭酸碱 1.6.2 Lewis 酸碱理论 Lewis 酸、Lewis 碱 1.7 有机化合物的分类

1.7.1 按碳架分类 脂肪族化合物、脂环族化合物、杂环化合物 1.7.2 按官能团分类 官能团 第二章饱和烃:烷烃和环烷烃 烃、脂肪烃、脂环烃、饱和烃 2.1烷烃和环烷烃的通式和构造异构 烷烃:CnH2n+2 环烷烃:CnH2n 构造异构体 2.2 烷烃和环烷烃的命名 伯、仲、叔、季碳原子;伯、仲、叔氢原子;烷基、环烷基烷烃的命名、单环环烃的命名 2.3烷烃和环烷烃的结构 2.3.1 σ键的形成及其特征 2.3.2 环烷烃的结构与环的稳定性 角张力 2.5 烷烃和环烷烃的物理性质 2.6 烷烃和环烷烃的化学性质 2.6.1 自由基取代反应 卤化反应、自由基的稳定性次序、卤素的活性次序 2.6.2 氧化反应 2.6.5 小环环烷烃的加成反应 加氢、加溴、加溴化氢 第三章不饱和烃: 烯烃和炔烃 3.1烯烃和炔烃的结构 碳碳双键的组成、碳碳叁键的组成、π键的特性 3.2烯烃和炔烃的同分异构

微积分总复习题与答案

第五章 一元函数积分学 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写 出cos t a == 邻边斜边,于是21arcsin(/)22a x a C =+ 例3:求不定积分sin x xdx ? 分析:如果被积函数()sin f x x x =中没有x 或sinx ,那么这个积分很容易计算出来,所以可以考虑用分部积分求此不定积分,如果令u=x ,那么利用分部积分公式就可以消去x (因为' 1u =) 解令,sin u x dv xdx ==,则du dx =,cos v x =-. 于是sin (cos )(cos )cos sin x xdx udv uv vdu x x x dx x x x C ==-=---=-++???? 。熟悉分部积分公式以后,没有必要明确的引入符号,u v ,而可以像下面那样先凑微分,然后直接用分部积分公式计算: sin cos (cos cos )cos sin x xdx xd x x x xdx x x x C =-=--=-++???

高等数学第四章不定积分课后习题详解

高等数学第四章不定 积分课后习题详解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)

思路: 被积函数52 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C ---=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到22222 1111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★ (8)23(1dx x -+? 思路:分项积分。 解 :2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★ (9) 思路 = 11172488x x ++==,直接积分。 解 :715888.15x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。 解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)211 x x e dx e --?

经管类微积分(上)参考答案

经管类《微积分》(上)习题参考答案 第一章 函数、极限与连续 习题一 一、1.否; 2.是; 3.是; 4.否. 二、1.)[()5,33,2?; 2.()πππ+k k 2,2;3. 2,24>-<<-x x 或; 4.[]a a -1,;。5.[]2,0; 6.222+-x x . 三、1.奇函数;2.奇函数. 3.(略) 四、1(略);2.2 12+x ; 3.11 -+x x . 五、1.x v v u u y sin ,,ln 2===;2.x x u e y u ln ,==;3.1525++?x x . 六、50 500,,)50(8.050)(>≤=<-=x x x x x f 为()x f 的跳跃间断点。

微积分(曹定华)(修订版)课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+1 31 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+1 1 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2 ) (1n S n =++ ++ 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4) 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而1112 n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5) ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+ ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6) 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7) 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8) (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:(1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且 其和为1+ 12=3 2 . (2) 11121(1)(2)212n n n n n n ?? =-+ ?++++??

高等数学经管类(下)复习重点

物流班高数复习重点 题型:选择题3'X 5=15 填空3'X 5=15 解答题 ? X8 =60 应用10'X1=10 #1、P15判断二元函数在某点处的极限例5 例6 2、P20偏导数的计算例5 P27 1(1)(5) 3、P29 7.4.2可微于连续、偏导数存在之间的关系两个定理 P51 5 ,6 # 4、P35 多元复合求偏导例4 P31 全微分计算例3 例4 #5 P44 求二元函数的极值例4 #6 P49 拉格朗日乘数发求各种极值问题例9 P50 6 , 7 7、P60交换积分次序例2 例3 #8、P61 直角坐标下的二重积分例4 Y型积分区域 #9、P65求坐标系下二重积分计算例1 10、P73常见的级数敛散性1)等比级数2)调和收敛3)P级数 11、P73常数项级数性质1——3 P75级数收敛必要条件 12、P82比值判断法1、(5) 13、任意项级数、绝对收敛、条件收敛、例3 P86 1、(1) 14、P90求幂级数的收敛性例2 #15、P92求幂级数的和函数例4 P92 2、(1) =1+x+x2+……+x n(|x|<1) 16、P98 将f(x) 展开成幂级数4个e x sin x1 1?x ln(1+x) 17、P111可分变量的微分方程例1----例4 18、P115齐次方程求解例7 19、P120 一阶线性方程例1 例2 #20、P125可降阶的高阶微分方程类型II(不含y)例3 例4 #21、P132 表10—1 例7、例8、例9 P134 2、指数函数情形f(x)=A e ax 这时二阶常系数线性非齐次方程为y′′+p y′+qy=A e ax

微积分(经管类)第五章答案

微积分(经管类)第五章答案 5.1 定积分的概念与性质 一、1、∑=→?n i i i x f 1 )(lim ξλ; 2、被积函数,积分区间,积分变量; 3、介于曲线)(x f y =,x 轴,直线b x a x ==,之间各部分面积的代数和; 4、? b a dx ; 5、 ?? +b c c a dx x f dx x f )()(; 6、b a a b M dx x f a b m b a <-≤≤-? ,)()()(; 7、 ? b a dx x f )( ?-=a b dx x f )(; 8、)(ξf 与a b -为邻边的矩形面积;二、略. 三、 ? -231 cos xdx . 四、略。 五、(1)+; (2)-; (3)+. 六、(1)<; (2)<. 七、略。 5.2. 微积分基本定理 一、1、0; 2、)()(a f x f -; 3、 )1ln(23 +x x ; 4、 6 5 ; 5、(1)ππ,; (2)0,0; 6、(1)0; (2)0。 7、;6 1 45 8、 6 π ; 9、1. 二、1、 1 sin cos -x x ;2、)sin cos()cos (sin 2 x x x π?-; 3、2-.

三、 1、852; 2、3 π; 3、14+π ; 4、4. 四、1、0; 2、10 1 . 五、略。 六、 3 35π , 0. 七、???? ???>≤≤-<=π πφx x x x x ,10,)cos 1(210,0)(. 5.3. 定积分的换元积分法与分部积分法 一、1、0; 2、34-π; 3、2π; 4、32 3 π; 5、0. 6、e 21- ; 7、)1(412+e ; 8、2 3 ln 21)9341(+-π. 二、1、 41; 2、3 322-; 3、1-2ln 2; 4、34; 5、22; 6、 8 π;7、417;8、2ln 21 ; 9、1-e . 10、211cos 1sin +-e e ; 11、)11(2e -; 12、21 2ln -; 13、 2ln 3 3 -π; 14、22+π;15、3ln 24-;16、2+)2ln 3(ln 21-。 三、 )1ln(1 -+e . 六、2. 八、8. 5.5 反常积分 一、1、1,1≤>p p ;2、1,1≥k k ; 4、发散, 1; 5、过点x 平行于y 轴的直 线左边,曲线)(x f y =和x 轴所围图形的面积 . 二、1、 1 2 -p p ; 2、π; 3、!n ; 4、发散;

微积分经管类整理(期中考试前)

微积分讲义(期中考试之前) 1、求极限 (1)有界量与无穷小的乘积是无穷小; 求极 ??? ??--+→211cos 4 lim x x x x (2)变换根号,利用()()22-的形式(很是常见) ; 求极限( ) 11lim 2 2 +-- +++∞ →x x x x x 求极限x x x 11lim -+→ (3)利用书本第32页的公式; 求极限() () () 5 4112lim 2 4 3 -++--+∞ →x x x x x x 求极限x x x x x sin 53cos 7lim +++∞ → 求极限1 3 1 1lim 3 1 -- -→x x x 求极限() () 2 100 100 2 3 22 3lim ++∞ →x x x (4)两个重要极限1* sin*lim *=→、e =??? ? ? +∞→* **11lim 或()e =+→*1 0**1lim (*可以是一个变量或 表达式!自己灵活应用) 求极限2 2cos 1lim x x x -→ 求极限x x x 2sin lim ∞ → 求极限()x x x sin 2 31lim +→ (5)等价无穷小,书本P43的公式必须记住。另外还有三个比较重要的等价无穷小: 21 sin tan lim 3 = -→x x x x 、6 1sin lim 3 = -→x x x x 、3 1tan lim 3 = -→x x x x ;(老老实实记公式) 求极限() x x x x x x 3 sin sin tan tan lim -→ 求极限()()x x x e x x 2 2 2 tan cos 11 lim --→ (6)利用洛必达法则!(最最基本的)

相关文档
最新文档