海面油膜高光谱遥感信息提取_陆应诚

海面油膜高光谱遥感信息提取_陆应诚
海面油膜高光谱遥感信息提取_陆应诚

收稿日期: 2008-03-10; 修订日期: 2008-09-30

基金项目:中国石油天然气股份有限公司科技预研项目“海域遥感油气勘探技术研究”(编号: 06-01C-01-08)和国家科技支撑计划(编号:

2006BAK30B01)。

第一作者简介: 陆应诚(1979— ), 男, 南京大学博士研究生, 主要从事高光谱遥感应用研究。E-mail: lycheng2003@https://www.360docs.net/doc/4617266453.html, 。

海面油膜高光谱遥感信息提取

陆应诚, 田庆久, 宋鹏飞, 李姗姗

南京大学 国际地球系统科学研究所, 江苏 南京 210093

摘 要: 针对辽东湾海域的Hyperion 高光谱遥感数据特点, 结合海面油膜光谱与Hyperion 影像特征, 对该数据进行水陆分离与最小噪声分离(minimum noise fraction, MNF)变换处理, 在辽东湾海域MNF 波段影像的2D 散点图中, 海面油膜的出现会在其边缘形成一个异常散点区域, 可区分油膜与干扰信息,结合提取的海面油膜端元的MNF 波谱, 通过混合调制匹配滤波(mixture tuned matched filtering, MTMF)技术, 成功地提取研究区海面油膜信息, 有效监测海面油膜信息, 为海洋环境监测提供新的技术手段。 关键词: 油膜, 高光谱, 遥感, Hyperion, 辽东湾 中图分类号: X55 文献标识码: A

1 引 言

在海洋石油的遥感监测与评估中, 海面油膜是遥感探测的一个重要对象, 多光谱、热红外、雷达等诸多遥感领域均对此有一定研究(Gonzalez 等, 2006; Fingas & Brown, 1997; Labelle & Danenberger, 1997; O’Briena 等, 2005), 由于海洋背景复杂, 海面大气影响、水体对电磁波的散射与吸收作用, 海面油膜遥感信息表现为弱信息;又由于海面油膜随来源、构成种类、油膜厚度、风化程度的不同表现为不确定的遥感影像特征;这些因素对海面油膜遥感信息提取存在一定的制约。随着高光谱遥感技术的发展(童庆禧, 2003), 针对海面油膜信息的高光谱遥感探测方法技术不断得到发展(Foudan, 2003)。Palme(1994)利用小型机载成像光谱仪(CASI)数据研究1993年Shetlands 群岛溢油事件中产生的油膜和其他油污信息, 指出440—900 nm 是可以用来进行溢油油膜信息提取的有效谱段;Foudan(2003)利用机载AVRIS 高光谱数据对Santa Barbara 海岸带的油污与海面油膜进行研究, 表明分散的石油在580nm 、700nm 具有反射峰, 厚油膜在近红外波段反射率要高于薄油膜, 600—900nm 具有最大的油膜遥感探测的可能性。比较分析混合光谱分解技术(spectral unmixing)、纯净像元指数(pixel purity index, PPI)、

光谱角度制图法(spectral angle mapper, SAM)、混合调制匹配滤波(mixture tuned matched filtering, MTMF)技术等方法在海面油膜信息提取上的特点。近年来, 国内学者也不断开展海面油膜遥感研究, 赵冬至等(2000)总结了柴油、润滑油和原油等3种油膜随厚度变化的光谱特征, 指出736nm 和774nm 对不同的油类具有相同的吸收特征;张永宁等(1999, 2000)测试了几种类型油的海面波谱, 认为在海洋溢油波谱特征中0.5—0.58μm 是不同油膜最高反射率的所在位置, 并利用A VHRR 和TM 数据识别海洋溢油;陆应诚(2008, 2009)的海面油膜实验表明随油膜厚度不同, 油膜光谱特征与响应原理表现不同。

本文以辽东湾双台子河口外海域为研究区, 结合海面油膜光谱特点与海面油膜Hyperion 遥感影像特征, 通过高光谱遥感MTMF 技术方法, 提取研究区海面油膜信息。

2 Hyperion 数据预处理

研究区在辽东湾双台子河口外海域, 该区是中国重要原油生产基地——辽河油田所在地, 近年来, 辽东湾海域油田的开采与运输为海洋环境带来一定的影响。

2007-05-06获取了研究区的一景美国EO-1卫

星上的Hyperion高光谱遥感数据(图1), 对该图像进行了预处理, 包括大气校正与地表反射率的转换。Hyperion光谱连续覆盖范围为356—2577nm, 共有242个波段, 光谱分辨率约为10nm, 1—70波段为VNIR波段, 光谱范围356—1058nm;71—242波段为SWIR波段, 光谱范围852—2577nm。空间分辨率为30 m, 扫描幅宽为7.5 km×180 km。经过辐射定标处理波段198个, 分别为VNIR8—57, SWIR77—224, 其中VNIR56、57波段与SWIR77、78波段重叠, 实际的可用波段有176个(谭炳香等, 2005; Beck, 2003)。

图1 研究区数据覆盖范围

(图像为Hyperion数据548.9nm、650.6nm、864.3nm

假彩色合成影像)

3 研究方法

在海洋油膜高光谱遥感中, 彩色合成、密度分割、比值等方法往往不能有效消除复杂环境背景下的影响因素;缺乏海面油膜种类、状态等辅助知识, 使基于光谱吸收或反射特征的高光谱遥感信息提取方法操作难度也较大;海面油膜与水体以混合像元的存在形式, 又使基于高光谱遥感的纯像元技术或混合光谱分解技术受到一定限制。基于以上分析, 本研究结合混合调制匹配滤波(MTMF)技术进行高光谱海面油膜信息提取方法研究, 寻找一种即避免受到以上各种制约因素影响又能充分发挥高光谱遥感探测优势的技术方法, 研究方法和技术流程如图2。首先对Hyperion数据做预处理, 并进行大气校正, 生成176个波段的地表反射率影像;其次通过690nm 和740nm的斜率计算值进行水陆分离, 对海水反射率影像进行最小噪声分离(minimum noise fraction, MNF)处理;选择合适的MNF波段进行2D散点图分析并提取海面油膜端元的MNF波谱, 利用此波谱对MNF1—5波段进行混合调制匹配滤波(MTMF);最后对混合调制匹配滤波的最佳匹配影像(MF score image)与不可行性影像(infeasibility image)进行阈值分割, 获取海面油膜信息。

图2 基于MTMF的海面油膜信息提取方法

4 水陆分离与MNF 变换

近海陆地背景复杂, 先对影像进行水陆分离将有助于其后的MNF 变换, 有利于油膜信息的集中与冗余信息的剔除。根据水体的光谱特点(赵英时等, 2003), 采用了斜率法来分离水陆信息, 通过公式(1)计算Hyperion 影像反射率数据, 如某像元处的S >0, 则该像元所属地物类型为水体, 如果S ≤0, 则属于其他地物类型。当03时, 为海水与入海河流水体。通过阈值分割S >3时, 建立掩膜进行高光谱Hyperion 数据的水陆分离。

690740740690

R R S ?=? (1) 高光谱Hyperion 数据中海洋油膜信息是一种微

弱信息, 通过对水陆分离后的海水反射率影像进行MNF 变换, 隔离高光谱数据中的噪声, 确定海水影

像数据的内在维数。MNF 变换本质上含有2次叠置处理的主成分变换, 其结果中特征值与相对应的特征影像相关, Hyperion 影像中海洋油膜信息通过MNF 变换得到集中, 并且与影像噪声得以区分, 研究区Hyperion 海水反射率数据的MNF1—5波段为有效的信息波段, MNF6及其后续波段噪声较大。

5 海面油膜端元MNF 波谱提取与混

合调制匹配滤波

选择海面油膜信息差异较大的MNF 1和MNF 5波段, 通过2D 散点图分析, 识别海面油膜并进行海面油膜的MNF 端元波谱信息提取(图3)。在理想水体、陆地、植被丰富区域会形成类似三角形的散点

图;而全水域的MNF 散点图是边缘相对“光滑”的形

状, 由于海面油膜的出现, 导致其散点图右上角出现一个三角形突起部分, 2D 散点图中红色点区域为海面油膜异常散点信息, 此外MNF 变换有效的区 分了船航行影响水体与油膜信息, 图3(a), (b)中绿色

图3 海面油膜端元MNF 波谱提取

(a) 红色为海面油膜信息、绿色为船航迹水体; (b) 海面油膜信息的MNF 2D 散点图选取; (c) 海面油膜与典型区域MNF 端元波谱

图4 混合调制匹配滤波结果影像图5 Hyperion影像海面油膜信息提取结果

点为船航迹水体。将2D散点图中提取的海面油膜端元MNF波段值进行平均, 获取海面油膜端元MNF 平均波谱(图3(c))。利用提取出来的海面油膜MNF 端元波谱, 对MNF 1—5波段进行混合调制匹配滤波(MTMF), 结果为2幅影像, 一幅为MF Score图像, 即为最佳匹配度图像, 其最大值表明为最佳匹配;另一幅为Infeasibility图像, 即不可行性图像, 其值越大则表明为复合背景同目标地物之间的混合越不可靠(图4)。在最佳匹配图像中, 不仅识别出海面油膜, 也将双台子河口高悬浮物水体与复州湾附近高悬浮物水体以及船的航迹影响水体列为最佳匹配;在不可行性图像中, 成功的将以上几种影响因素识别出来, 列为不可靠信息。通过多次试验确定MF Score Image Value>0.8, 并且Infeasibility Image Value <2.5时, 能较好的将海面溢油油膜信息提取出来(图5)。在本研究最终提取的油膜信息中, Hy-perion数据研究区中较为明显的海面油膜主要有3处, 图5的(a), (b), (c)影像。

6 结论

基于卫星高光谱遥感Hyperion数据, 结合海面油膜的光谱形态特征, 通过MNF变换技术和MTMF 技术, 可有效提取海面油膜信息, 为海洋油膜遥感监测提供了新的技术方法途径。本研究方法具备以下优势和特点:

(1) 可通过高光谱遥感超多波段的遴选与组合对油膜目标进行有效识别和提取;

(2) 可不依赖于高光谱遥感纯像元技术方法;

(3) 可消弱近海复杂的海水环境因素(如泥沙、航迹、太阳耀斑等)影响。

REFERENCES

Beck R. 2003. EO-1 User Guide v.2.3. (2006-11-12)

Fingas M F and Brown C E. 1997. Review of oil spill remote sens-ing. Spill Science & Technology Bulletin, 4(4): 199—208 Foudan M F S.2003. Hyperspectral Remote Sensing: A New Ap-proach for Oil Spill Detection and Analysis. USA: George Mason University

Gonzalez M, Uriarte A, Pozo R and Collins M. 2006. The prestige crisis: operational oceanography applied to oil recovery, by the Basque fishing fleet. Marine Pollution Bulletin, 53: 369—374 Labelle R and Danenberger E P. 1997. Oil-spill research program of the US minerals management service. Spill Science & Tech-nology Bulletin, 4(2): 107—111

Lu Y C, Tian Q J, Qi X P, Wang J J and Wang X C. The spectral response analysis of offshore thin oil slicks. Spectroscopy and Spectral Analysis, 2009, 29(4): 986—989

Lu Y C, Tian Q J, Wang J J, Wang X C and Qi X P. 2008. Study on spectral responses of offshore oil slicks experiment. Chinese Science Bulletin, 53(9): 1085—1088

O’Briena G W, Lawrenceb G M, Williamsc A K, Glenn K, Barrett

A.G, Lech M, Edwards D S, Cowley R, Boreham C J and

Summons R E. 2005. Yampi Shelf, Browse Basin, North-West Shelf, Australia: a test-bed for constraining hydrocarbon mi-gration and seepage rates using combinations of 2D and 3D seismic data and multiple, independent remote sensing tech-nologies. Marine and Petroleum Geology, 22: 517—549 Palmer D, Boasted G A and Boxall S R. 1994. Airborne multi spectral remote sensing of the January 1993 shetlands oil spill.

In Proceedings of the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments: Needs, Solu-tions and Applications

Tan B X, Li Z Y, Chen E X and Pang Y. 2005. Preprocessing of EO-1 hyperion hyperspectral data. Remote Sensing Informa-tion, (6): 36—41

Tong Q X. 2003. The present status and future of hyperspectral remote sensing. Journal of Remote Sensing, 7(Suppl): 1—12 Zhang Y N, Ding Q and Li Q J. 1999. A study on monitoring of oil spill at sea by satellite remote sensing. Journal of Dalian Mar-tine University, 25(3): 1—5

Zhang Y N, Ding Q, Gao C and Duan Y Y. 2000. Analysis of oil film spectrum and monitoring oil spilled by remote sensing.

Marine Environmental Science, 19(3): 5—10 Zhao D Z and Cong P F. 2000. The research of visual light wave-band feature spectrum, remote sensing. Technology and Application, 15(3): 160—164

Zhao Y S et al. 2003. Theory and Method of Remote Sensing Ap-plication and Analysis. Beijing: Science Press

附中文参考文献

陆应诚, 田庆久, 齐小平, 王晶晶, 王向成. 海面甚薄油膜光谱响应研究与分析. 光谱学与光谱分析, 2009, 29(4): 986—989 陆应诚, 田庆久, 王晶晶, 王向成, 齐小平. 2008. 海面油膜光谱响应实验研究. 科学通报, 53(9): 1085—1088

谭炳香, 李增元, 陈尔学, 庞勇. 2005. EO-1 Hyperion高光谱数据的预处理. 遥感信息, (6): 36—41

童庆禧. 2003. 高光谱遥感的现在与未来, 遥感学报, 7(增刊): 1—12

张永宁, 丁倩, 李栖筠. 1999. 海上溢油污染遥感监测的研究.

大连海事大学学报, 25(3): 1—5

张永宁, 丁倩, 高超, 段岩燕. 2000. 油膜波谱特征分析与遥感监测溢油. 海洋环境科学, 19(3): 5—10

赵冬至, 丛丕福. 2000. 海面溢油的可见光波段地物光谱特征研究. 遥感技术与应用, 15(3): 160—164

赵英时等. 2003. 遥感应用分析原理与方法. 北京: 科学出版社

溢油监测雷达

雷达水面溢油监视系统 雷达溢油监视系统集成了最新的雷达技术、微波技术、信号处理、软件技术、电子海图技术等先进的软硬件技术。通过雷达波不断的扫描监测海区,能全天候监测海区溢油状况,能发现溢油并测算油污面积及体积,及时报警。为清污行动提供强大的技术支持,提高工作效率。已经在多次海上溢油事故中得到了实践检验,是现在国际上公认的最先进海上雷达溢油监测设备。 溢油监测雷达(青岛中环测控有限公司https://www.360docs.net/doc/4617266453.html,)主要功能 z安装在港区或者航道附近 支持全天侯水面溢油扫描 z安装在溢油应急回收船上支持全天候溢油回收作业 能在恶劣天气和夜间作业 z覆盖范围8公里

z可以测量小目标物体,直径4米(适合海上搜救) z可以测量水流、流速、水深、海底地形等数据 z可以接入VTS、AIS信号 z界面操作简单 z在国际上有过多次成功的应用案例 技术参数 z型号:Selux ST340 ARPA z测量范围:雷达≥8KM z调试方式:AM z使用频段:9375MHZ z占用带宽:≤75MHZ z功率:25KW±2KW z天线安装高度:25米 z传输方式:光纤 z精度:≥3.75米 z油膜厚度:0.1-1.5mm z测量角度:水平360°垂直 45-86° z工作环境:风速0-15米/秒温度 -35-55° 监测原理 z众所周知,雷达在不停的发射和接收电磁波,由海面反射回来的雷达反射波受到海面上的的风、浪、水面油污染以及海底地形等因素的影响,其杂波包含很多非常有价值的信息,普通的雷达将杂波抑制掉,因此无法提取这些信息,而雷达溢油监视

系统是一种创新的雷达传感器,它并不对杂波进行过滤,而是分析处理杂波并提取里面包含的有用信息。通过对杂波进行处理,溢油监测可以有效获取海面溢油、水流、流速、水深、海底地形等各种有用信息,是对现有雷达功能的极大补充。

溢油监测报警

水面溢油智能监测报警系统 水上溢油智能监测报警系统是采用非接触式光学监测方法,可以全天候监测水面溢油,精度高,运行稳定,维护简单。广泛应用于港口海湾、码头、油码头、船坞、机场、军事基地、石油炼化和混合工厂、化工产品生产设备管道,储油平台和钻井台等行业场所。可以对突发性溢油事故做到及时早发现、快速反应、科学决策、减少所失、以达到保护环境的目的。在实际应用中提高相关职能部门的溢油监测能力,对于降低事故风险,保护环境具有重要的意义。 水上溢油智能监测报警系统组成 ■溢油监控报警终端■监控中心控制系统 光学溢油探测器终端远程控制系统图片 现场声光报警器电子海图系统 数据/视频采集/通信模块溢油监控管理系统 中环测控(https://www.360docs.net/doc/4617266453.html,)光学溢油探测器主要功能和技术特点 (1)测量精确高,测量精度达到2微米,监测精度上下限可以根据水面情况设置。 (2)安装方便耐用,安装在距离水面0.2-10米的高度。 (3)密封性能好,采用标准的抗风化耐腐蚀材质316不锈钢,坚固耐用。 (4)紫外光源灯管使用寿命可达3年以上,整机设计使用寿命10年。 (5)标准输出接口,可以输出4-20ma 模拟信号,也可输出232\422\455数字信号。 可以直接接到PLC 或者PC机。 (6)通讯功能强大,可以实现有线和无线通讯,GSM\GPRS\CDMA、数传电台、微波、ADSL宽带等多种通讯方式。

(7)电源可以采用100/110/120/220/230/240交流电 50/60赫兹24伏直流电(+/- 12V),偏远地区可以选用太阳能电池。 (8)能监测燃油,航空油,重油、柴油所有常见油种,以及苯类、轻油、石脑油等化学品。 (9)报警验证机制,溢油超标时,自动加快监测频率,便于准确监测溢油状况。 (10)应对各种极端条件的监测模型,如雨雪天气,台风大潮.保证监测仪器连续稳定运行。 现场声光报警器 现场声光报警器采用大功率报警装置,当溢油监测设备检测到水面溢油时,报警器能发出声光报警,提醒现场操作人员发生溢油事故,有效距离可以达到3公里以内。 数据/视频采集及通讯设备 主要功能与特点如下: 240X128图形化液晶显示屏,全部中文菜单操作 16路通道数据采集,2路视频视频数据采集 内置日历时钟 参数设置密码保护 超标报警、断电报警、事件触发报警 数据有效性检查、数据完整性检查 远程参数设置 定时数据自动上传、历史数据补传 大容量FLASH,可以连续保存3个月的历史数据,不丢失 GPRS、PSTN、DDN、CDMA通信方式可选,默认配置同时支持GPRS、PSTN

遥感卫星影像数据信息提取.

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由 26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供 worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、 ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm、 landsat(etm、 rapideye、alos、Kompsat 卫星、北京二号、资源三 号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。

遥感信息智能化提取方法

遥感信息智能化提取方法 目前,大部分遥感信息的分类和提取,主要是利用数理统计与人工解译相结合的方法。这种方法不仅精度相对较低,效率不高,劳动强度大,而且依赖参与解译分析的人,在很大程度上不具备重复性。尤其对多时相、多传感器、多平台、多光谱波段遥感数据的复合处理,问题更为突出。在遥感影像相互校正方面,一些商业化的遥感图像处理软件,虽然提供了简单的影像相互校正和融合功能,但均是基于纯交互式的人工识别选取同名点,不仅效率非常低,而且精度也难于达到实用要求。因此,研究遥感信息的智能化提取方法对于提高遥感信息的提取精度和效率具有重要意义。 1.遥感图像分类 遥感图像分类是遥感图像处理系统的核心功能之一,它实现了基于遥感数据的地理信息提取,主要包括监督分类,非监督分类,以及分类后的处理功能。非监督分类包括等混合距离法分类(Isodata)等。监督分类包括最小距离(Minimum Distance)分类、最大似然(Maximum Likehood)分类、贝叶斯(Bayesian)分类、以及波谱角分类、二进制编码分类、AIRSAR散射机理分类等。 自动分类是计算机图像处理的初期便涉及的问题。但作为专题信息提取的一种方法,则有其完全不同的意义,是从应用的角度赋予其新的内容和方法。传统的遥感自动分类,主要依赖地物的光谱特性,采用数理统计的方法,基于单个像元进行,如监督分类和非监督分类方法,对于早期的MSS这样较低分辨率的遥感图像在分类中较为有效。后来人们在信息提取中引入了空间信息,直接从图像上提取各种空间特征,如纹理、形状特征等。其次是各种数学方法的引进,典型的有模糊聚类方法、神经网络方法及小波和分形。 近年来对于神经网络分类方法的研究相当活跃。它区别于传统的分类方法在于:在处理模式分类问题时,并不基于某个假定的概率分布,在无监督分类中,从特征空间到模式空间的映射是通过网络自组织完成的,在监督分类中,网络通过对训练样本的学习,获得权值,形成分类器,且具备容错性。人工神经网络 (ANN) 分类方法一般可获得更高精度的分类结果,因此 ANN方法在遥感分类中被广泛应用,特别是对于复杂类型的地物类型分类,ANN 方法显示了其优越性。如 Howald(1989)、McClellad(1989)、 Hepner(1990)、T.Yosh ida(1994)、K.S.Chen(1995)、J.D.Paola(1997) 等利用 ANN 分类方法对 TM 图像进行土地覆盖分类,在不同程度上提高了分类精度;Kanellopoulos(1992) 利用 ANN方法对 SPOT 影像进行了多达20类的分类,取得比统计方法更精确的结果;G.M.Foody(1996)用ANN对混合像元现象进行了分解;L.Bruzzone 等 (1997) 在 TM-5 遥感数据、空间结构信息数据、辅助数据(包括高程、坡度等)等空间数据基础下,用 ANN 方法对复杂土地利用进行了分类,比最大似然分类法提高了 9% 的精度。与统计分类方法相比较,ANN 方法具有更强的非线性映射能力,因此,能处理和分析复杂空间分布的遥感信息。2.基于知识发现的遥感信息提取

海洋卫星遥感溢油监测

卫星遥感监测海上油田溢油 随着世界海洋运输业的发展和海上油田不断投入生产,海上溢油事故频发,在最近30年里,全球溢油量超过4500万立方米的事故就有62起。近年来,在中国海域也发生过多起恶性溢油事故,其中在胶州湾发生的两起外轮溢油事故,共溢出原油4000多吨,使200公里海岸及10余万亩滩涂养殖场受到污染,水产资源遭到严重破坏。溢油事故往往造成大面积海域污染,造成严重的生态破坏,引起了各国政府的重视。世界各国都积极参与海上溢油的监视和遥感监测。基本方法就是航空遥感、卫星遥感和雷达遥感监测。由于我国经济飞速发展和石油战略储备的需要,海上石油运输量猛增,油轮数量增加且呈大型化趋势,这就增大了溢油事故,尤其是大型溢油事故的可能性。船舶发生溢油污染事故后,需要采取及时、有效的应急反应行动,以减少溢油的危害,保护海洋环境和人命财产。 而提起海上油田溢油,我们不得不说洋流对漂油的作用。洋流的流速,流向,无疑是船舶选择航线,准确定位和掌握航向、航速的重要参数。表层流,中层流和深层流还都会影响气候,生物地球化学循环和海洋生物链。目前常用的观测方法是海上浮标观测,是一种少、慢、差,费的方法。西方各国利用卫星平台上装置的雷达高度计,完全可以完成海上浮标的观测任务。雷达高度计发射不间断的脉从计算海面返回卫星的时间差来测量海面拓扑,用这种海面拓扑再与已知的水准平面比较,推导出海面高度差。例如在2010年发生在墨两哥湾的溢油事故中,溢油漂移趋势受到洋流的作用,漂移方

向与洋流方向一致.研究表明,至5月1日对溢油处理与漏油处封堵的努力效果甚微,油污面积有继续扩大趋势,油污漂移方向与洋流具有较强相关性.该研究验证了光学遥感图像可以很好地对溢油事故造成的溢油范围进行监测,结合GIS的空间分析功能和洋流等信息可对溢油面积和溢油漂移趋势进行监测与分析,从而为溢油控制与清理提供重要参考信息。 人类社会正面临着“资源日趋枯竭、环境日益恶化和人口不断剧增三大威胁而且这种态势也有进一步加剧的趋势已经严重威胁到了人类的未来发展。人们不得不重新思考自己与自然的关系重新确定自己新的行为方式。同时人们也不能不为了争取人类的可持续发展去寻找新的发展空间新的资源替代源泉。人类再次把目光和期望转向了海洋。人类在不断满足自己的欲望但又没有充分意识到对海洋带来的危害这就使得海洋污染日趋严重。引发海洋污染的原因是多种多样的其危害的方式、程度都不尽相同。海洋污染主要包括石油类污染、重金属污染、热污染、有机废物和固体废物污染等。其中石油类污染已成为影响海洋生态环境的重要污染物之一。油污在进入海水后受到海浪和海风的影响形成一层漂浮在海面上的油膜阻碍了水体与大气之间的气体交换而且海洋溢油扩散范围大、持续时间长和难以消除。油类粘附在鱼类、藻类和浮游生物上对浮游植物的光合作用产生抑制作用同时其在分解的过程中又消耗了海水中的溶解氧致使海洋生物死亡并破坏海鸟生活环境导致海鸟死亡和种群数量下降破坏了海洋的生态环境。石油污染还会使水产品品质下降造成巨大的经济损失。海洋

基于遥感数据的城市绿地信息提取研究进展

基于遥感数据的城市绿地信息提取研究进展1 吕杰,刘湘南 中国地质大学(北京)信息工程学院,北京 (100083) E-mail:jasonlu168@https://www.360docs.net/doc/4617266453.html, 摘要:本文对目前城市绿地信息提取研究现状进行了总结,对其中的利用航空遥感数据提取植被信息、卫星遥感提取植被信息、高分辨率遥感植被信息以及高光谱遥感植被信息研究进展进行了介绍,并从中分析提出遥感数据提取城市绿地信息存在的问题,对于存在的混合像元的问题,本文指出混合像元分解是解决存在问题的关键。 关键词:遥感,城市绿地,信息提取,混合像元 中图分类号:TP 7 1.引言 随着城市规模的不断扩大,自然环境正受到越来越严重的破坏,特别是大量的植被被高楼大厦取代,导致原有的生态系统严重失衡。而植被是环境的天然调节器,因此,无论在新城区还是老城区,绿化都显得尤其重要。对于土地资源极为珍贵的特大城市来说,良好的绿地规划方案可以有效地提高绿化生态环境效益。 另一方面,随着社会和经济的发展,城市化步伐在不断加快,城市规模日渐扩大,因此,城市正面临着一系列的生态和环境问题,例如城市热岛效应,沙尘暴等。为了解决这些问题,人们逐渐发现城市绿地对城市生态环境的改善有着不可替代的功效,为此,许多国家将城市绿化制定为城市可持续发展战略的一个重要内容,并将城市绿地作为衡量城市综合质量的重要指标之一。 利用遥感技术获取绿地信息成为快速、客观、准确的城市生态监测、评价、规划和管理的重要手段。目前可以利用的高分辨率遥感数据资料越来越多,高于lm 分辨率航天遥感影像和航空遥感影像己开始应用到资源调查和测图中。 2.城市绿地信息提取研究现状及存在问题 城市绿地是在人类较强干扰下生成的绿地景观,其生态效益不仅与绿地斑块的面积、空间分布有关,而且与构成绿地的植被类型密切相关(王伯荪,1987 )。90 年代后期,景观生态学理论和方法逐渐应用到对城市绿化的研究中,这些研究为城市植被研究提供了新的研究思路和方法(高峻等,2002 :李贞等,2000 )。城市植被遥感信息提取为城市植被景观生态分析提供基础数据,是遥感信息提取的重要研究方向,也是城市植被学研究的重要内容(王伯荪等,1998 )。 2.1 航空遥感影像用于植被信息提取 随着遥感技术的发展,航空影像图的信息提取比例尺已经达到了1:1000 ,由遥感图提取城市绿地率和绿化覆盖率,是一条比较成熟和现实的途径。2001 年5 月上海市已完成三次航空遥感城市绿地精细调查。2000 年山东省建设处委托中国国土资源航空物探遥感中心对山东省济南市、淄博、文登、荣成等地市进行了航空遥感城市绿化调查。大比例尺彩红外航空遥感图像具有信息量大、植物标志清楚等优点,它不仅被广泛用于植被调查,而且对植 1本课题得到国家863项目(2007AA12Z174)资助。

SAR海面溢油监测方法

北京师范大学环境数据采集与分析期末论文 题目:SAR海面溢油监测方法__ 姓名:董海洋 学号:200911181031 年级:2009级 专业:环境工程

SAR海面溢油监测方法 摘要:海洋溢油发生后,准确及时的监测溢油对于海洋环境保护具有重要意义。随着卫星遥感技术的高速发展,遥感己经成为监测溢油的最重要和最有效手段之一。本论文以海面溢油为研究对象,讨论了利用SAR采集数据监测海面溢油的方法,重点在SAR图像中溢油数据的处理、MODIS监测海面油膜厚度、基于GIS的遥感溢油监测系统和中国海溢油分布等方面进行研究。 关键词:SAR、海面溢油监测、溢油数据的判别分析、GIS 1前言 1.1研究意义 海上石油污染是海洋污染中最严重的因素,也是最复杂的海洋污染问题之一。石油污染进入海洋后对海洋环境的危害是多方面的。从自然环境到野生动物,从自然资源到养殖资源等都会受到不同程度的危害,并且这种危害的周期冗长,修复过程复杂。 海洋石油污染有多种途径,既有天然来源如海底油气藏烃渗漏和沉积岩石的侵蚀,也有沿岸工业污水和生活废水的排放、海洋倾废,更有海上石油运输和生产所造成的石油泄漏。其中以船舶溢油事故和汕井井喷事故对海洋环境造成的影响最为严重,主要因为这类事故多发生在近海海域和恶劣天气,短时间内排入大量石油烃,造成生态环境毁灭性的损害,严重影响周边区域的人民生活。 我国的海洋油污染问题由来已久,60年代即有发生,1973年在大连港就发生了由于船舶(“大庆36”)而造成了多达1400吨原油溢出的事故;1978年改革开放以来,由于经济发展的需要,我国对石油的需求不断增加,尤其近年来油船数量和吨位不断增加,油轮进出港口次数日渐增多,船舶发生事故的几率也随之增加。1973年到2003年,我国沿海及内河水域发生船舶溢油事故共2353起,平均3天半发生一起。其中,溢油量50吨以上的重大溢油事故62起,平均每年两起,总溢油量34189吨,平均每起溢油量551吨。 海洋溢油发生后,能否准确及时的监测溢油对于海洋环境保护具有重要意义。过去检测油膜主要依靠直接测量,一种方式是飞机或船只进入溢油发生区域,利用人眼直接判断海面油膜以及估计油膜的厚度;另一种方式是利用浮标测量,如国际海洋系统公司的油膜采样浮标,将浮标投入油膜覆盖区域,利用浮标收集的溢油样品进一步测量分析。直接测量方法的优点是获取的数据准确,虚警率低,但是也存在较多缺点,如检测覆盖面积小,判断主观等。 随着卫星遥感技术的高速发展,遥感己经成为监测溢油的最重要和最有效手段之一。利

海面油膜高光谱遥感信息提取_陆应诚

收稿日期: 2008-03-10; 修订日期: 2008-09-30 基金项目:中国石油天然气股份有限公司科技预研项目“海域遥感油气勘探技术研究”(编号: 06-01C-01-08)和国家科技支撑计划(编号: 2006BAK30B01)。 第一作者简介: 陆应诚(1979— ), 男, 南京大学博士研究生, 主要从事高光谱遥感应用研究。E-mail: lycheng2003@https://www.360docs.net/doc/4617266453.html, 。 海面油膜高光谱遥感信息提取 陆应诚, 田庆久, 宋鹏飞, 李姗姗 南京大学 国际地球系统科学研究所, 江苏 南京 210093 摘 要: 针对辽东湾海域的Hyperion 高光谱遥感数据特点, 结合海面油膜光谱与Hyperion 影像特征, 对该数据进行水陆分离与最小噪声分离(minimum noise fraction, MNF)变换处理, 在辽东湾海域MNF 波段影像的2D 散点图中, 海面油膜的出现会在其边缘形成一个异常散点区域, 可区分油膜与干扰信息,结合提取的海面油膜端元的MNF 波谱, 通过混合调制匹配滤波(mixture tuned matched filtering, MTMF)技术, 成功地提取研究区海面油膜信息, 有效监测海面油膜信息, 为海洋环境监测提供新的技术手段。 关键词: 油膜, 高光谱, 遥感, Hyperion, 辽东湾 中图分类号: X55 文献标识码: A 1 引 言 在海洋石油的遥感监测与评估中, 海面油膜是遥感探测的一个重要对象, 多光谱、热红外、雷达等诸多遥感领域均对此有一定研究(Gonzalez 等, 2006; Fingas & Brown, 1997; Labelle & Danenberger, 1997; O’Briena 等, 2005), 由于海洋背景复杂, 海面大气影响、水体对电磁波的散射与吸收作用, 海面油膜遥感信息表现为弱信息;又由于海面油膜随来源、构成种类、油膜厚度、风化程度的不同表现为不确定的遥感影像特征;这些因素对海面油膜遥感信息提取存在一定的制约。随着高光谱遥感技术的发展(童庆禧, 2003), 针对海面油膜信息的高光谱遥感探测方法技术不断得到发展(Foudan, 2003)。Palme(1994)利用小型机载成像光谱仪(CASI)数据研究1993年Shetlands 群岛溢油事件中产生的油膜和其他油污信息, 指出440—900 nm 是可以用来进行溢油油膜信息提取的有效谱段;Foudan(2003)利用机载AVRIS 高光谱数据对Santa Barbara 海岸带的油污与海面油膜进行研究, 表明分散的石油在580nm 、700nm 具有反射峰, 厚油膜在近红外波段反射率要高于薄油膜, 600—900nm 具有最大的油膜遥感探测的可能性。比较分析混合光谱分解技术(spectral unmixing)、纯净像元指数(pixel purity index, PPI)、 光谱角度制图法(spectral angle mapper, SAM)、混合调制匹配滤波(mixture tuned matched filtering, MTMF)技术等方法在海面油膜信息提取上的特点。近年来, 国内学者也不断开展海面油膜遥感研究, 赵冬至等(2000)总结了柴油、润滑油和原油等3种油膜随厚度变化的光谱特征, 指出736nm 和774nm 对不同的油类具有相同的吸收特征;张永宁等(1999, 2000)测试了几种类型油的海面波谱, 认为在海洋溢油波谱特征中0.5—0.58μm 是不同油膜最高反射率的所在位置, 并利用A VHRR 和TM 数据识别海洋溢油;陆应诚(2008, 2009)的海面油膜实验表明随油膜厚度不同, 油膜光谱特征与响应原理表现不同。 本文以辽东湾双台子河口外海域为研究区, 结合海面油膜光谱特点与海面油膜Hyperion 遥感影像特征, 通过高光谱遥感MTMF 技术方法, 提取研究区海面油膜信息。 2 Hyperion 数据预处理 研究区在辽东湾双台子河口外海域, 该区是中国重要原油生产基地——辽河油田所在地, 近年来, 辽东湾海域油田的开采与运输为海洋环境带来一定的影响。 2007-05-06获取了研究区的一景美国EO-1卫

溢油跟踪浮标系统

溢油监测跟踪浮标系统方案 一.系统概述 在目前全社会对海洋环境保护越来越重视的大形势下,各涉海企业和海事监管部门所肩负的责任也越来越重。如何能够有效解决或者应对溢油污染给环境带来的影响这个问题,不仅需要各相关部门和企业的充分认识和高度重视,还要依靠建立完善的管理手段,从制度上上尽可能的避免和减少各种各样的溢油事故的发生。 通过装备先进的溢油监测设备和建立有效的应急反应计划,以便溢油发生时,能尽采取切实有效的措施,降低经济损失和对环境的危害实现保护海洋环境,促进社会、经济的可持续发展。 青岛中环测控有限公司(https://www.360docs.net/doc/4617266453.html,)研发的溢油跟踪浮标,当溢油事故发生时,通过向溢油发生海域投放溢油跟踪浮标监测,能准确的了解溢油的漂移扩散方向,漂移扩散速度,及位置信息,为溢油应急行动提供支持。二.系统组成 2.1系统组成介绍 系统由两大部分组成:溢油监测跟踪浮标设备终端(以下简称终端)和监控中心控制系统。 z溢油监测跟踪浮标设备终端 z监控中心控制系统包括:软件系统和硬件系统 ★软件系统:溢油监测跟踪浮标管理系统

★硬件设备:数据库服务器/通讯服务器。 2.2溢油监测跟踪浮标设备 溢油监测跟踪浮标设备是青岛中环测控有限公司(https://www.360docs.net/doc/4617266453.html,)为溢油监测活动研发的一款高端产品,首先通过GPS卫星定位系统,然后可以采用AIS通讯方式把浮标的位置信息传输到监控中心,经过信号分析系统处理后,通过显示设备展示溢油监测浮标的位置,漂移速度,漂移方向等信息,达到溢油监 测跟踪的要求。仪器外观结构如下: 在海上发生溢油事故 使用方式及原理: 的时候,将设备开启投入到水中后,设备会通过

遥感影像信息提取与分析_沈占锋

计算机世界/2006年/7月/31日/第B15版 技术专题 Taries软件主要应用于对高分辨率遥感影像的各种信息的处理、提取与分析,是具有自主知识产权的软件产品。 遥感影像信息提取与分析 沈占锋 近年来,一系列高分辨率卫星的相继上天,高分辨率卫星遥感的应用也因此成为可能,也凸现出遥感影像数据处理的重要性日益显现。遥感影像数据处理的主要内容就是对遥感数据(主要是高分辨率遥感影像数据)进行自动(半自动)图像处理分析,从而获取人们需要的信息。 Taries软件是具有自主知识产权的软件产品,由中科院遥感所国家遥感应用工程技术研究中心下属的空间信息关键技术研发部开发。Taries软件主要应用于对高分辨率遥感影像的各种信息的处理、提取与分析,其功能包括影像的预处理、影像分割、影像分类、特征提取与表达、特征分析、目标识别等。它是集矢量和栅格于一体化的软件系统。 Taries主要功能 1. 影像处理 (1)采用几何精纠正方法:建立基于空间投影理论与有限控制点的全局自适应方法,并建立基于控制点、线、面特征的局部自适应相结合的影像几何精纠正模型。 (2)实现多源遥感影像信息的特征级融合: 在像元级、高精度的多源遥感信息分析技术基础上,发展了各种特征估计器和融合评判规则,建立特征级的多源遥感信息融合的方法以及相应的算法。 2. 影像信息提取 (1)在复杂环境中的目标信息增强: 采用具有空间自适应能力的目标特征的信息增强模型与方法,特别是弱目标信息的增强方法,并对无关背景信息进行抑制。 (2)高分辨率影像分割: 基于空间特征(包括纹理特征、形状特征和动态特征)以及高维统计特征,采用面向特征的高分辨率影像分割技术(如基于模糊集理论、EM模型、Markov模型、MCMC模型、小波分析等)。 (3)基于智能计算模型的目标特征提取: 基于神经网络、支撑向量机等智能计算模型,研究和发展针对目标的纹理特征、结构特征的提取方法,并实现相应算法。 (4)目标识别与提取系统原型: 采用组件技术,研制开发目标识别与提取软件系统原型,包括影像精处理、目标单元分割与特征提取、目标识别等模块。 3. 矢量数据显示、处理与分析 (1)兼容ArcGIS SHP等矢量数据存储格式,能够采用系统的矢栅一体化数据模型对相应的矢量数据进行读取与显示。 (2)基于底层数据模型,能够实现基于Taries软件的矢量数据的修改功能,包括基本对象(点、线、面)的增、删、改等操作。 (3)基于相应的矢量数据建立拓扑关系,并在此基础上进行相应的空间分析功能(如最优路径查询分析等)。 (4)具有常规的矢量数据显示软件的基本功能,并可在此基础开发进一步的应用(如移动目标定位与车辆跟踪系统等)。 关键技术

遥感图像信息提取方法综述

遥感图像信息提取方法综述 遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。 在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。 1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。 1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。 1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。 2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。(2)对比分析 对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。 各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。对比分析可以增加不同物体在图像上的差别,以达到识别目的。(3)综合分析 综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。间接判读标志之间相互制约、相互依存。根据这一特点,可作更加深入细致的判读。如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域

遥感技术的发展趋势及应用领域

遥感技术的发展趋势及应用领域 经过数周的学习,我们的"遥感技术"课程结束了,在这课程的学习中,我们收获了很多遥感方面的知识. 随着传感器技术、航空航天技术和数据通讯技术的不断发展,现代遥感技术已经进入一个能动态、快速、多平台、多时相、高分辨率地提供对地观测数据地新阶段。 美国NOAA2005-2015国际遥感研究报告提出,“在未来10年遥感工业强壮发展”。从遥感影像的普及性看主要的发展方向: 1、携带传感器的微小卫星发射与普及 为协调时间分辨率和空间分辨率这对矛盾,小卫星群计划将成为现代遥感的另一发展趋势,例如,可用6颗小卫星在2-3天内完成一次对地重复观测,可获得高于1m的高分辨率成像光谱仪数据。除此之外,机载和车载遥感平台,以及超低空无人机载平台等多平台的遥感技术与卫星遥感相结合,将使遥感应用呈现出一派五彩缤纷的景象。 2、地面高分辨率传感器的使用 商业化的高分辨率卫星为未来发展的趋势,目前已有亚米级的传感器在运行。未来几年内,将有更多的亚米级的传感器上天,满足1比5000甚至1比2000的制图要求。如美国的OrbView-5、韩国的KOMPSAT-2等 3、高光谱/超光谱遥感影像的解译 高光谱数据能以足够的光谱分辨率区分出那些具有诊断性光谱特征的地表物质,而这是传统宽波段遥感数据所不能探测的,使得成像光谱仪的波谱分辨率得到不断提高。从几十到上百个波段,光谱分辨率也向更小的数量级发展。 从遥感影像处理技术和应用水平上看,主要发展方向: 1)多源遥感数据源的应用 信息技术和传感器技术的飞速发展带来了遥感数据源的极大丰富,每天都有数量庞大的不同分辨率的遥感信息,从各种传感器上接收下来。这些数据包括了光学、高光谱和雷达影像数据。 2)定量化:空间位置定量化和空间地物识别定量化 遥感信息定量化,建立地球系统科学信息系统,实现全球观测海量数据的定量管理、分析与预测、模拟是遥感当前重要的发展方向之一。遥感技术的发展,最终目标是解决实际应用问题。但是仅靠目视解译和常规的计算机数据统计方法来分析遥感数据,精度总提不高,

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年11 月

一、项目意义与价值 高光谱遥感技术起源于20 世纪80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统的分类方法往往需要很多数目的已知类别的训练样本,从而导致计算量大,时间复

全国土地利用数据遥感信息提取土地利用数据说明

全国土地利用数据遥感信息提取土地利用数据说明北京揽宇方圆信息技术有限公司是中国科学院系统的遥感影像数据服务企业,专注于遥感影像数据一站式的基础卫星数据服务、卫星影像数据处理服务。 土地利用数据时间:1985年、1990年、1995年、2000年、2005年、2010年、2015年 土地利用数据源:Landsat TM影像Landsat ETM影像 土地利用数据遥感信息的提取:根据影像光谱特征,利用ARCGIS、易康软件、ENVI软件等,同时参照有关地理图件,对地物的几何形状,颜色特征、纹理特征和空间分布情况进行分析,提取土地利用信息。 土地利用/覆被变化信息的提取。采用arcgis与易康结合,它通过分析地物光谱特征和其他图像特征,充分利用高程、坡度等地理辅助信息可以有效地提高分类精度,比较适合于地形破碎、地物分布复杂的地区。基于Landsat TM遥感影像,采用全数字化人机交互遥感快速提取方法,同时参考国内外现有的土地利用/土地覆盖分类体系,以及遥感信息源的实际情况,将遥感影像进行解译并进行验证将土地利用数据类型划分为6个一级分类,24个二级分类以及部分三级分类的土地利用/土地覆盖数据产品,并结合本项目制定土地利用数据产品分类体系。 目视解译侧重于人的知识的参与,为了减少由于不同人员的主观差异性所造成的误差,提高遥感判读精度,因此建立统一解译标志是十分

必要的。根据影像光谱特征,结合野外实测资料,同时参照有关地理图件,对地物的几何形状,颜色特征、纹理特征和空间分布情况进行分析。 一、TM影像数据的预处理。遥感数据处理主要包括大气校正、几何校正和图像增强,并利用行政边界矢量图对影像进行裁剪。 二、土地利用变化信息提取。首先对其中的一期影像分别采用人工解译的方法,然后利用易康开始分类。 三、数据集成 对数据形式特征(如格式、单位、分辨率、精度)等和内部特征(特征、属性、内容等)做出全部或部分的调整、转化、合成、分解等操作,形成充分兼容的数据库。包括空间、属性和时间等对对象数据特征的处理。 四、质量控制方法 (1)遥感影像纠正采用投影变换方法(PROJECT),控制点要选择比较明显的地物,如道路交差点,坝址等,并与地形图相对应,分布要均匀,尽可能多的选择控制点,误差控制在一个像元,TM影像纠正的方根误差(a RES error)小于0.01,MSS影像纠正的方根误差(a RES error)小于0.08。 (2)地形图纠正采用有限元方法(Finite Element)。①经纬网 偏差不超过一个像素,②经线方向的方里网误差不超过2个像素,③纬线方向的方里网不超过3个像素。 (3)专题信息矢量化采用人机交互判读实现,分为基于遥感影像 的专题信息和分为基于地形图的专题信息。遥感影像解译精度保证耕地、

(完整word版)高光谱目标检测文献综述

基于核方法的高光谱图像目标检测技术研究 ----文献选读综述报告 1前言 20 世纪80 年代遥感领域最重要的发展之一就是高光谱遥感的兴起。从20 世纪90 年代开始,高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。高光谱遥感图像目标检测在民用和军事上都具有重要的理论价值和应用前景,是当前目标识别及遥感信息处理研究领域中的一个热点研究问题。 2 研究目的及意义 高光谱遥感图像是在电磁波谱的紫外、可见光、近红外和中红外区域,利用成像光谱仪获取的许多非常窄且光谱连续的图像数据(如图1.1所示)。成像光谱仪为每个像元提供数十至数百个窄波段(通常波段宽度小于10 nm)的光谱信息,能产生一条完整而连续的光谱曲线。 图1.1 成像光谱仪探测地物目标示意图[1] 高光谱遥感技术主要利用各种地物(例如某种土壤、岩石和作物)对不同的光谱波长具有各不相同的吸收率和反射率的原理,根据每种物质所拥有的独特光

谱反射曲线来进行检测和分类。 利用高光谱遥感技术,能够很好地提取目标的辐射特性参量,使地表目标的定量分析与提取成为可能。然而,高光谱遥感成像机理复杂、影像数据量大,这导致影像的大气纠正、几何纠正、光谱定标、反射率转换等预处理困难。由于成像光谱仪获取的地物光谱特征曲线近乎连续,波段间相关性很高,数据冗余信息很多。在使用传统目标检测方法对高光谱影像中感兴趣目标进行检测时,波段多且相关性高,会导致训练样本相对不足,致使分类模型参数的估计不可靠,检测分类存在维数灾难现象。 因此,高光谱影像给地物分类识别带来了巨大机遇,同时给传统的目标检测方法也带来了挑战。为了充分发挥高光谱遥感技术的优势,必须在影像检测分类基本算法的基础之上,结合高光谱影像分类的特点,研究新的适用于高光谱影像的理论、模型和算法〕。在国内外,许多研究机构在理论和应用上进行了探索,取得了不少成果。 自从上世纪90年代中期核方法在支持向量机分类中得到成功应用以后,人们开始尝试利用核函数将经典的线性特征提取与分类识别方法推广到一般情况,在理论和应用中都有许多成果,引起了继经典统计线性分析、神经网络与决策树非线性分析后第三次模式分析方法的变革,成为机器学习、应用统计、模式识别、数据挖掘等许多学科的研究热点,在人脸识别、语音识别、字符识别、机器故障分类等领域得到成功应用[2]。 基于核方法的非线性特征提取与分类,为高光谱影像分析提供了一条新的途径。 3 核方法理论发展概况 3.1 核理论基础 核的理论比较古老,Mercer定理可追溯到1909年,早在20世纪40年代,A.N.Kolmogorov和N.Aronszajn就已经开展了有关再生核理论的研究。该理论最早被引入机器学习领域是在1964年,M.Aizermann、E.Bravermann和L.Rozoener在势函数方法中应用Mercer定理把核解释为特征空间中的内积。1975年Poggiio首次用到了多项式核函数,然而一直到20世纪90年代中期,B.Boser、I.Guyon和V.N.Vapnik提出支持向量机(SVM)算法后,该理论的实际价值才开始被人们所广泛认识。并且在经过 B.Scholkopf等人后续的工作以后,逐渐形成了如下的“核技巧”:任何一个只依赖于内积的算法都可以被“核化”[3]。 近年来核方法和基于核函数的算法在许多领域都获得了重要的应用。这些应用主要包括图象和计算机视觉(人脸识别、手写体识别等),文本分类,生物信息

高光谱图像分类

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年11 月

一、项目意义与价值 高光谱遥感技术起源于20 世纪80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统的分类方法往往需要很多数目的已知类别的训练样本,从而导致计算量大,时

相关文档
最新文档