基于Nastran的拉丝机卷筒模态分析

基于Nastran的拉丝机卷筒模态分析
基于Nastran的拉丝机卷筒模态分析

白车身模态分析试验方法研究 毕业设计

目录 中文摘要 (1) 英文摘要 (2) 1 绪论 (3) 2 试验模态分析 (5) 2.1模态试验理论 (5) 2.2试验测试系统组成 (6) 3 模态参数识别方法 (7) 3.1模态参数识别主要方法 (7) 3.2最小二乘复频域法 (9) 3.2.1最小二乘复频域法简介 (9) 3.2.2系统模型的确定 (9) 4 白车身模态试验 (10) 4.1白车身参数 (10) 4.2试验结构的支撑方式 (10) 4.3传感器的选择及布置原则 (12) 4.4激励系统 (13) 4.4.1激励方式 (13) 4.4.2振动激励源的选择和比较 (14) 4.4.3设备传感器 (15) 4.5试验测试系统检验 (16) 5 试验测试结果及分析 (21) 5.1稳态图 (21) 5.2模态频率与阻尼比 (23) 5.3模态振型 (24) 5.4模态试验的有效性 (26) 6 有限元分析结果与试验结果对比 (30) 结论 (33) 谢辞 (34) 参考文献 (35)

白车身模态试验方法研究 摘要:本文的目的在于研究模态分析参数识别不同方法之间的优缺点,重点是PolyMAX法和时域分析法之间的对比,以研究通过何种方法才能获得精 确地实验数据。为此本文分别采用多参考最小二乘复频域(PolyMAX) 法和时域分析法对结构模态参数进行识别,得到白车身各阶的模态图、 模态频率和振型并采用模态置信判据法(MAC)验证试验结果,比较二者 之间的优缺点,从而发现PolyMAX能提供比时域法法更多的稳定极点 并且有一个清晰地图标,确保一个用户独立和简洁明了的解释,大量简 化了鉴别过程。为进一步验证PolyMAX法的准确性,将PolyMAX分析 结果与有限元分析相对比,发现两者具有相当高的一致性。因此,本文 认为在白车身模态试验中PolyMAX法是最佳的试验模态分析方法。 关键词:白车身模态试验分析方法MIMO PolyMAX 1

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

毕业设计论文中期报告.doc

毕业论文中期报告 一,预期目标 理论知识:1,了解网架结构的特点,并学习网架结构的计算与设计研究方法; 2,学习网架结构的静力分析方法。按照《建筑结构荷载规范》及设计规范取值,计算时考虑各项荷载及其组合,并根据组合确定几种最大影响工况,然后用ansys分析最不利情况,考察最不利情况是否满足《网架结构设计与施工规程》; 3,学习网架结构的动力特性分析。动力特性分析只作模态分析和随机振动谱分析。,模态分析理论是基础,它主要用于计算模型固有模态的两个基本参数:固有频率和模态振型。随机振动谱分析是一种将模态分析结果和已知谱联系起来,然后计算模型位移和应力的分析技术,主要用于模型在确定载荷或随机载荷作用下,获得结构的响应情况。 软件应用:1,学习有限元软件ansys的基本操作,并针对以前学习中出现的问题作补充 学习; 2,学习ansys自带的参数化设计语言APDL; 3,空间网架结构的参数化建模。 二,开题以来所做的具体工作和取得的进展或成果 自开题以来,按照开题报告所作的安排,陆续学习了相关知识,包括:网架结构的特点,计算与设计研究方法等,网架结构的静力分析方法,动力特性分析方法等。 另外,在学习理论知识的同时,也开始了有限元软件ansys的学习,主要是一些基本的理论知识,操作方法,了解一些在本论文应用中可能存在的问题。 三,存在的具体问题 1,涉及到的动力特性分析,比初始考虑的问题要复杂,因而加重了这一块学习的任务,到目前为止,有些问题依然比较模糊。 2,网架结构的参数化建模。由于APDL语言学习的水平所限,现在参数化建模没有完成,可能会影响到后期的进程。 四,下一步工作具体设想与安排 1,继续熟悉网架结构动力特性分析的理论知识,清晰化前期的模糊概念等内容; 2,加强APDL语言的学习,并强化编程能力,争取尽早完成网架结构的参数化建模; 3,参数化建模完成之后,加快速度做结构的静力特性分析,动力特性分析等; 4,完成毕业论文的撰写、修改、完稿等相关工作; 根据需要,随时补充学习相关的知识。精品文档5,

MSC_Nastran模块介绍_2012

MSC Nastran 模块功能介绍 1.MSC Nastran Basic 1003 (License文件中的授权特征名:NA_NASTRAN) MSC Nastran基本模块,功能包括线性静力分析、模态分析及屈曲分析。MSC Nastran 基本模块求解规模无节点限制,可对多种单元、材料、载荷工况进行评估,实现线性静力分析(包括屈曲分析)和模态分析(包含流固偶合即虚质量方法和水弹性方法)。线性静力分析,预测结构在静力条件下的线性响应(位移、应变、应力),即小变形和不考虑非线性因素的情况,包括屈曲分析(稳定性分析)。模态分析能了解结构的固有频率(振动模态)特征,帮助评估结构的动力特性。 2. MSC Nastran Dynamics 1025 (License文件中的授权特征名:NA_Dynamics) 结构动力学分析是MSC Nastran的主要强项之一,它具有其它有限元分析软件所无法比拟的强大分析功能。MSC Nastran动力学分析功能包括: 正则模态,复特征值分析,频率及瞬态响应分析,随机响应分析,冲击谱分析等。 3. MSC Nastran Connectors 10002 (License文件中的授权特征名: NA_Connectots) MSC Nastran连接单元,可以模拟点焊,铆接,螺栓连接等。允许创建点-点,点-面,面-面连接。可以用焊接单元将任意的两个部件的网格连接在一起,并自动处理与任意类型单元之间的连接。 4. MSC Nastran ADAMS Integration 10233 (License文件中的授权特征名: NA_ADAMS_Integration) MSC Nastran 与ADAMS的接口,使用ADAMS进行柔性体分析时,需导入MSC Nastran计算所生成的模态中性文件,MSC Nastran ADAMS Integration可使MSC Nastran 计算生成ADAMS所需要的柔性体模态中性文件。 5. MSC Nastran DMAP 1024 (License文件中的授权特征名:NA_DMAP) 作为开放式体系结构,MSC Nastran的开发工具DMAP语言 (Direct Matrix Abstraction Program)有着40多年的应用历史。一个DMAP模块可由成千上万个FORTRAN子程序组成,并采用高效的方法来处理矩阵。实际上MSC Nastran是由一系列DMAP子程序顺序执行来完成求解任务的。用户可利用DMAP编写客户化的程序,形成自己的求解序列来操作数据库与数据流。 6. MSC Nastran Heat Transfer 1023 (License文件中的授权特征名:NA_Thermal) MSC Nastran热分析模块。热分析通常用来校验结构零件在热边界条件或热环境下的产品特性,利用MSC Nastran可以计算出结构内的热分布状况,并直观地看到结构内潜热、热点位置及分布。用户可通过改变发热元件的位置、提高散热手段、绝热处理或用其它方法优化产品的热性能。 7. MSC Nastran SMP 1030 (License文件中的授权特征名:NA_SMP) MSC Nastran共享内存并行计算,通过单机多CPU并行计算技术,用来实现大模型的求解,缩短计算时间,提高分析效率。

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒定的位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A 端振动,由A 端振动引起的波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波 在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示 向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位 始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为:

机械制造专业_毕业设计_小型龙门加工中心基础件设计与受力分析(ANSYS模态分析)

第一章概述 1.1课题研究的背景及意义 机床是现代制造技术的工作母机,在某种意义上,一个国家机床设计和制造水平的高低,决定着这个国家整个制造业水平的高低。在信息革命的推动下,现代工业技术发展迅猛。近年来,各国在信息工业,航空航天工业,军事工业,电子工业,能源工业等领域竞争日益激烈。随着这些高科技领域日益向高速、高效、精密、轻量化和自动化的方向发展,对机床的要求也越来越高。现代机床正向高速、大功率、高精度的方向发展。随着机床向高速度、大功率和高精度方向的发展,除了要求机床重量轻、成本低、使用方便和具有良好的工艺性能以外,而着重要求机床具有愈来愈高的加工性能。而机床的加工性能又与其动态特性紧密相关。事实表明,随着机床的加工精度的不断提高,对机床动态特性的要求也愈来愈高。 多年来,由于受到理论分析和测试实验手段落后的限制,机床结构的设计计算主要沿用传统的结构强度为主的设计方法。传统设计方法主要是保证刀具和工件间具有一定的相对运动关系和满足机床几何精度要求,采用经验和类比的方法进行,设计的主要依据是静刚度和静强度,对机床的动态性能考虑较少。在利用传统方法进行机床结构的设计计算时,因为不能准确地把握机床结构与其动态特性之间量的关系,所以结构设计的结果常常是以较大的安全系数加强机床结构。这样的设计方法容易导致机床结构尺寸和重量的加大;其结果一则不能很好发挥材料的潜力,二来机床结构的动态性能也不会有根本的改进提高。所以,后来科研工作者对机床的动态特性、切削稳定性进行了大量的研究工作,最初是以实物或模型为基础,进行机床性能试验,从中发现规律,分析影响机床动态性能的主要原因,寻求解决问题的方法,处于弄清机理,说明现象的定性阶段。从二十世纪六十年代中期以来,由于计算机技术、振动理论和结构动力学理论等的发展,为机床的动态性能研究提供了坚实的理论基础和先进的测试手段,使研究进入一个全新的计算机辅助分析和优化设计的定量研究阶段,系统地建立了机床动态特性的研究理论,达到了一定的实用程度,并在不断地深化和发展。1.2我国基础件现状 基础件是机床的重要组成部分。我的国对机械基础件在机械工业中的重要地位认识较晚,长期投入乏力,致使整个行业基础差、底子薄、实力弱。随着我国主机水平的提高,机械基础件落后于主机的瓶颈现象日益显现。近年来,虽然在技术引进、技术改造、科研开发等方面,国家给予了一定的支持,但与当前市场需求及国外水平相比,仍有不少差距。具体表现在以下几个方面: 一、产品品种少,水平低,质量不稳定,早期故障率高,可靠性差。我国机械基础件产品品种、规格少,特别是高档产品差距较大,不能满足主机日益发展的需求。目前,各类主机基础件的性能指标大体相当于国外20世纪80年代水平。质量不稳定,早期故障率高,可靠性差,是基础件的致命弱点。因此,不少主机厂为提高其主机的市场竞争力,往往选择进口基础件配套。因而,国产基础件,特别是技术含量较低的产品,国内市场占有率在明显下降。虽然基础件产品出口有明显优势,但主要是劳动密集型产品,数量大,价值低,技术附加值不高。 二、重复建设严重,专业化程度低,形不成规模,经济效益差。机械基础件与主机相比,企业建立的初始资金和技术所需投入相对较少,因此在国家几次经济大发展时期,都增加了一批基础件生产企业。行业中已呈现大量的低水平重复建设,点多、批量小,形不成经济规模。基础件企业虽然逐渐独立于主机厂,但大多数企业本身就是“大而全”、“小而全”,专业化程度低,装备水平不高,质量不稳定,经济效益低下。例如,轴承行业哈轴、瓦轴、洛轴三家大型骨干企业年产轴承的总和还不到国外一家著名公司的50%,现在全国轴承厂

【完整版】毕业设计论文基于ANSYS的轴承座的模态分析

河南科技学院 2013届本科毕业论文(设计) 论文题目:基于ANSYS的轴承座的模态分析 学生姓名:刘x 所在院系:机电学院 所学专业:机械设计及其自动化 导师姓名: 完成时间:2013年5月8日

摘要 轴承座在机械生产中很常见,在各类机器、机构中都有它存在的身影,由于轴承座本身结构并不是太复杂,所以本文并没有借助其他类型的三维软件建模,而是在ANSYS环境下建立的模型。轴承座的受力主要是分布在轴承孔圆周上,还有轴承孔的下半部分的径向压力载荷。为了提高结构的抗振性,本文借助于ANSYS软件强大的模态分析功能,运用ANSYS软件建立了轴承座的三维模型,并对轴承座进行模态分析,并给出前20阶的固有频率和振型,以此来指导结构的优化设计[1]。 关键字:轴承座,模态分析,有限元,ANSYS Abstract Bearing seat is common in the machinery manufacturing, it exists in all kinds of machine, figure, because the bearing seat structure itself is not too complicated, so this article does not use other types of 3 d software modeling, but established under ANSYS environment model. Stress is mainly distributed in the bearing hole of the bearing on the circumference of a circle, and the bearing hole of the bottom half of the radial pressure load. In order to improve the vibration resistance of structure, in this paper, with the aid of powerful modal analysis function of ANSYS software, and the 3 d model of the bearing was established by applying the ANSYS software, and the modal analysis was carried out on the bearing seat, and give the top 20 order natural frequency and vibration mode, in order to guide the optimization design of structure. Keywords: bearing seat,modal analysis,finite element ,ANSYS

弦振动实验报告

实验13 弦振动得研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动就是产生波动得根源,波动就是振动得传播。均匀弦振动得传播,实际上就是两个振幅相同得相干波在同一直线上沿相反方向传播得叠加,在一定条件下可形成驻波。本实验验证了弦线上横波得传播规律:横波得波长与弦线中得张力得平方根成正比,而与其线密度(单位长度得质量)得平方根成反比、 一、 实验目得 1、 观察弦振动所形成得驻波。 2、 研究弦振动得驻波波长与张力得关系、 3. 掌握用驻波法测定音叉频率得方法。 二。 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三。 实验原理 1、 两列波得振幅、振动方向与频率都相同,且有恒定得位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊得干涉现象——形成驻波、如图3—13—1所示。在音叉一臂得末端系一根水平弦线,弦线得另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A 端振动引起得波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续得入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉、当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波得波节;而有些点振动最强,称为驻波得波腹。 2、 图3—13-2所示为驻波形成得波形示意图。在图中画出了两 列波在T=0,T/4,T/2时刻得波形,细实线表示向右传播得波,虚线表示 向左传播得波,粗实线表示合成波。如取入射波与反射波得振动相位 始终相同得点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们得波动方程分别为:

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析毕业设计(论文)汽车驱动桥壳UG建模及有限元分析 JIU JIANG UNIVERSITY 毕业论文 题目汽车驱动桥壳UG建模及有限元分析英文题目 Modeling by UG and Finite Element Analyzing of Automobile Drive Axle Housing 院系机械与材料工程学院 专业车辆工程 姓名 班级 指导教师 摘要 本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。因此,驱动桥壳的研究对于整车性能的控制是很重要的。 本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为 桥壳设计提出可行的措施和建议。 【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析

Abstract This graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage. The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys. 【Key words】 Finite element method,UG,ANSYS,Drive axle housing,Static analysis,Modal analysis 目录 前言 1 第一章绪论 2

Hyper-Nastran接口视频教程之模态分析与瞬态分析

hypermesh-nastran接口应用实例视 频教程 模态分析与瞬态动力学分析 提供专业水平的有限元咨询和培训服务 email:Simxpert@https://www.360docs.net/doc/4618073850.html,

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/4618073850.html, 1.问题描述 问题1:计算其振动模态,为下一步计算瞬态做准备. 问题2:在悬臂梁端部施加两个动态载荷。第一个是垂直方向的按照给定的曲线变化的动态载荷。第二个是扭矩,其变化规律为幅值A=200, 角频率w=80的简谐波.对于如图所示的板(悬臂梁):

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/4618073850.html, 2.模态分析 1.板的尺寸为250x25x8.(Unit: mm) 2.材料属性:弹性模量E=2.0e4MPa,泊松比系数v=0.28,密度d=7.8e -8. 3.集中质量:质量大小m=1.0e -4,转动惯量Ixx =0.4,其余为0. 实体单元表层蒙了一层壳单元,其厚度为1.0e -4mm. 约束条件:一端固定,一端自由. 已知条件:

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/4618073850.html, 分析流程 1.分析流程中有很多截图,截图仅仅用于说明分析过程,图片中的部分数据和视频中的内容不一致,一切以视频中的数据为准. 重要提醒:

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/4618073850.html, 2.1.定义材料 定义各向同性材料.(操作步骤见视频)

提供专业水平的有限元咨询和培训服务email:Simxpert@https://www.360docs.net/doc/4618073850.html, 2.2创建实体单元 1. 创建component ,然后先创建面单元,20x4. 2. 创建实体单元属性prop_solid . 3.创建component 来保存实体单元. 4.拉伸面单元得到实体单元,删除面单元. 因为本模型比较简单,不必使用CAD 软件创建几何模型然后倒入,这里在hm 中创建面单元,然后拉伸得到实体单元。

某汽车排气系统的有限元分析

Internal Combustion Engine & Parts 某汽车排气系统的有限元分析 王雷 (一汽-大众汽车有限公司佛山分公司,佛山528237 ) 摘要:首先建立排气系统的三维数模,然后根据需要进行网格划分,通过有限元的方法对某汽车排气系统进行流场和振动特性分 析,探索其尾气处理效率和在振动条件下的耐久性。 关键词:排气系统;有限元;流场;耐久性 0引言 汽车排气系统在尾气处理方面起到了不可代替的作 用,与发动机直接相连的岐管和催化器是排气系统中相对 独立的重要组成部分,也是本文的研究对象。排气系统的 流场均匀性直接影响到尾气的处理效率。另外排气系统受 到发动机激励的极大影响,其振动特性也直接影响耐久 性。本文利用有限元仿真,通过流场分析和模态分析,探索 其流场均匀性和振动耐久性。 1建立几何模型 首先通过测量,利用三维建模Catia软件,建立排气系 统的三维数模,如图1,包括排气歧管罩和支撑结构。 图1排气系统总成三维数模 2划分三维有限元网格 采用HyperMesh软件,进行有限元分析预处理,即对 壳体机构和流过的废气进行有限元网格划分。 只保留与尾气接触的壁面,进行二维网格划分,然后 自动生成流体网格模型。对催化器部分,忽略内部的载体 和垫层,只留取管壁,生成管壁三维网格数模,如图2。 图2流体与管壁有限元三维网格数模 3参数设定 3.1出入口边界 将废气看作理想气体,入口速度均匀分布,为10m/s,进气温度为860益,出口处压力为22MPa。 3.2管壁 管壁设为光滑、非渗透性,没有滑移,壁面散热系数为 11000W/s*m2,外界温度为25益。管壁材料弹性模量E= 2.1GPa,泊松比滋=0.3,材料密度p=7.85g/cm3。 作者简介:王雷(1986-),男,山东金乡人,研究生,毕业于重庆大学,研究方向为汽车振动。 3.3催化器载体 蜂窝载体是由许多大小相同的方形管道组成,管道的 直径远小于载体的直径,故可把载体设成多孔介质模型。二次阻力系数为650kg/m0.9,均匀性较好,气体基本均匀地在催化器 载体区域内流动,能够与催化剂进行充分的反应。 图3流体速度场与第1阶振型图 4.2振动特性分析 将管壁网格导入到AN SYS中,设定参数,进行模态 分析。 排气系统与发动机直接相连,因此固有频率必须与发 动机的激振频率分开,避免出现共振现象[3],缩短排气歧管 总成的使用寿命。 表1各阶固有频率 阶次频率(Hz)阶次频率(Hz)阶次频率(Hz) 131625273982 外界的最高激励频率约为240Hz,而该排气系统自由 模态第一阶固有频率为316Hz,远离外界激励频率,故该 排气系统在正常的使用过程中不易发生共振现象,此排气 系统的振动耐久性较好。 参考文献: [1] 庞剑,湛刚,何华.汽车噪声与振动[M].北京:北京理工大学出版社,2006:256-283. [2] 穆丰瑞,海德利,董锡强.汽车排气歧管计算机辅助设计研 究[J].内燃机学报,1995,13(4)401-407. [3] 邢素芳,王现荣,王超,郭占敏.发动机排气系统振动分析 [J].河北工业大学学报,2005,34( 5 ) : 109-110.

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

毕业设计文献综述格式+范文

广师天河学院 毕业设计文献综述 目: 机电工程系 学生姓名: 指导教师: 业设计文献综述 业: 机械设计制造及其自动化 系: 学号:

结合毕业设计课题情况,根据所查阅的文献资料,每人撰写2500字以上的文献综述,文后应列出所查阅的文献资料。 标题用4号黑体,正文用小4号宋体,1.5倍行距。 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX .............. 。

毕业设计文献综述(样板,供参考) 结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2500 字以上的文献综述,文后应列出所查阅的文献资料。

0引言 引水隧洞施工不论是钻爆开挖,还是TBMS进,喷锚支护、压力灌浆、溶洞回填、 止水堵漏都是必不可少的工作环节,工作量也相当繁重。要确保工程质量和施工工期, 应具有功能良好的回填施工设备。混凝土喷射机就是一种施工设备,它广泛应用于地下工程,岩土工程,市政工程等领域,它利用压缩空气或其它动力,将一定比例配合的拌和料通过管道输送并高速喷射到受喷面上凝结硬化,从而形成混凝土支护层,近处来,喷射混凝土技术以其简便的工艺,独特的效应,经济的造价和广泛的用途,在各种建筑领域内显示出旺盛的生命力⑴。目前,国内主要是以干式混凝土喷射机为主, 施工作业粉尘浓度高、回弹量大、喷射混凝土强度不高,不适合于地下工程。为了解决干式混凝土喷射机所存在的问题,各种湿喷技术开始逐渐推行。所谓湿喷,其基本原理是将加水搅拌好的混凝土加入湿式喷射机,输送至喷嘴处,经掺加速凝剂后形成料束喷至施工面⑵。开发一台新型混凝土喷射机,如果采用传统的方法,周期长、成本高,但如果采用虚拟样机技术,它可以代替物理样机对产品进行创新设计、测试和评估,可以缩短开发周期,降低成本,改进产品设计质量。 对湿式混凝土喷射机进行模态仿真分析,可以识别出机体的模态参数(如固有频率、固有振型、模态质量、刚度和阻尼等模态参数)进而了解机体的动态特性,有助于分析各零部件及整机的振动和噪声特性,建立起结构的动态模型,使人们比较直观地了解零件各阶模态的频率及其振动的规律(振型),并从中找出产品结构刚度薄弱环节及其结构的不合理之处,从而为其结构的动态特性改进提供可靠理论参考,为实验模态提供理论依据,同时利用分析结果还可以对有限元模型进行修正,为机体的其 它设计改进提供可靠的参考[3,4]0 1虚拟样机技术概念及特点 所谓虚拟样机技术是一种基于产品计算机模型的数字化设计方法,这种技术以计算机仿真和建模技术为支撑,融合了智能化设计技术、并行工程、仿真工程和网络技术等多种先进的制造技术,其最终目标是实现在产品加工前对产品的性能、可制造性 等进行预测,从而对设计方案进行评估和优化,以达到产品的最优化。虚拟样机技术又称为机械系统动态仿真技术,是国际上20世纪80年代随着计算机技术的发展 而迅速发展起来的一项计算机辅助工程(CAE技术,工程师在计算机上建立样机模型, 对模型进行各种动态性能分析,然后改进样机设计方案,用数字化形式代替传统的实物样机试验。运用虚拟样机技术,可以在产品实际加工之前就能够对其性能、特征和可制造性等进行评价,同时可以对制造和使用的全过程进行仿真分析,将制造和使用过程中可能发生的总是提前到设计阶段处理,以达到产品生产的最优目标[5‘6,7]。 在基于虚拟样机技术的现代产品设计中,被广泛应用的是面向实体的模型,即三维模型或实体模型。 利用虚拟样机技术,可以使得产品的仿真结果能够以可视化的、可以运动的图像方式显示。一个实时的图像动态仿真是使用者可以交互进行干涉仿真分析、系统运动分析和动力学分析

实验报告

23.实验名称:使物体发出声音 实验目的:实验探究怎样使物体发出声音,声音是怎样产生的。 实验器材:锣、鼓、钢尺、皮筋。 实验步骤: 1、用力按压锣、鼓,锣、鼓然后轻轻击打看能不能发出声音? 2、用力弯曲钢尺,钢尺然后轻轻拨动钢尺,钢尺就能发出声音吗? 3、用力拉伸橡皮筋然后轻轻拨动橡皮筋,橡皮筋能发出声音吗? 观察现象:用力按压锣、鼓,锣、鼓,物体不振动,发不出声音;轻轻击打锣、鼓,锣、鼓,物体振动了,发出了声音。 用力弯曲钢尺,钢尺并不发声;轻轻拨动钢尺,,钢尺就能发出声音。 用力拉伸橡皮筋,橡皮筋并不发声;轻轻拨动橡皮筋,橡皮筋就能发出声音。 实验结果:鼓面、钢尺和橡皮筋发声时都在振动。 24.实验名称:观察发声物体 实验目的:观察发声物体 实验器材:水槽一个、音叉一个、音叉锤一个、水。 实验步骤:1、在水槽里盛约2/3的清水,用击打过的音叉轻轻触及水面. 2.观察水面变化。 观察现象:用击打过的音叉轻轻触及水面,观察水面有波纹出现。 实验结果:水面的波纹是振动的音叉触及水面产生的。 25.实验名称:观察比较声音强弱的变化 实验目的:观察比较声音强弱的变化 实验器材:钢尺 实验步骤:1、把钢尺的一部分伸出桌面大约10厘米,用一只手压住尺子的一端,另外一只手拨动尺子的另一端。 2、先轻轻拨动钢尺,观察尺上下振动的幅度,发出的声音强弱 3、再用力拨动钢尺,与前面的实验进行比较 观察现象:轻轻拨动钢尺,尺上下振动的幅度小,发出的声音弱;用力拨动钢尺,尺上下振动的幅度大,发出的声音强。 实验结果:轻轻拨动钢尺,尺上下振动的幅度小,发出的声音弱;反之尺子上下振动的幅度大,发出的声音强。 26.实验名称:不同水量的杯子声音高低的变化 实验目的:了解不同水量的杯子声音高低的变化 实验器材:盛有不同水量的相同烧杯4个且标有编号、筷子。 实验步骤:1、用同样的力度敲击标有编号的盛有不同水量烧杯口,记录它们发出的声音。 2、重复实验3次。观察 观察现象:1号杯子发出的声音低,2号杯子发出的声音较低,3号杯子发出的声音较高,4号杯子发出的声音高。 实验结果:不同水量的杯子声音高低不同 27.实验名称:尺子的音高变化 实验目的:观察尺子的音高变化

毕业论文 系统分析及设计报告

ARP包解析软件的设计与实现系统分析及设计报告 1. 系统分析 随着网络技术的飞速发展和网络时代的到来,互联网的影响己经渗透到国民经济的各个领域和人民生活的各个方面,全社会对网络的依赖程度越来越大,整个世界通过网络正在迅速地融为一体,但由于计算机网络具有联结形式多样性、终端分布不均匀性和网络的开放性、互联性等特征,致使网络易受黑客、恶意软件和其他不轨的攻击。广义来说,凡是涉及到网络上信息的保密性、完整性、可用性、真实性和可控性的相关技术和理论都是网络安全所要研究的领域。网络安全涉及的内容既有技术方面的问题,也有管理方面的问题,两方面相互补充,缺一不可。技术方面主要侧重于防范外部非法用户的攻击,管理方面则侧重于内部人为因素的管理。如何更有效地保护重要的信息数据、提高计算机网络系统的安全性已经成为所有计算机网络应用必须考虑和必须解决的一个重要问题。 可以这样来定义网络数据安全:所谓网络数据安全,指的是网络系统的硬件、软件和数据信息能够受到保护,不会因为偶然或恶意的原因而遭到破坏、更改、泄露,同时系统能够连续、可靠地运行,网络服务不被中断。但在现实中,绝对安全的网络是没有的。据IT界企业团体ITAA的调查显示,美国80%的IT企业对黑客攻击准备不足。 目前美国75%一85%的网站都抵挡不住黑客的攻击,约有75%的企业网上信息失窃,其中25%的企业损失在25 万美元以上。因此了解网络面临的各种威胁,防范和消除这些威胁,实现真正的网络安全己经成了网络发展中最重要的事情。 网络互连一般采用TCP/IP协议,而TCP/IP协议是一个工业标准的协议簇,在该协议簇制订之初,没有过多考虑其安全性,所以协议中存在很多的安全漏洞,致使网络极易受到黑客的攻击。ARP协议作为TCP/IP协议簇中的一员,同样也存在着安全漏洞,利用ARP协议漏洞进行网络监听是黑客的攻击手段之一。因此有必要了解黑客的这种攻击手段,并提高自己的安全意识,积极采取有效的安全策略来保障网络的安全性。 由于ARP协议是无状态的,主机可以随时发出请求,而且在没有请求的时候也可以作出应答,所以ARP协议是网络攻击者最偏向于利用的网络底层协议。

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

相关文档
最新文档