电力系统继电保护的基本原理

电力系统继电保护的基本原理

电力系统继电保护的基本原理

电力系统是现代社会发展的重要基础设施,保障电力系统安全稳定运行对于社会的发展和人民的生产生活具有极为重要的作用。而继电保护作为电力系统中必不可少和关键的组成部分,其主要任务就是在电力系统中发生异常电气现象时迅速地停止有故障部分的运行,以保护电力系统其他部分的正常运行。因此,关于电力系统继电保护的基本原理具有非常重要的意义。

一、继电保护的基本定义

继电保护是指在电气设备的正常运行时,对于突发性或严重的设备事故或者电气故障的发生做出响应,限制故障范围,保护其他设备或系统不受到影响的一种保护措施。

二、继电保护的作用

继电保护的作用是对电气设备和电力系统进行保护。在故障发生时,需要快速地对故障进行检测和诊断,尽可能地将故障限制在短暂的时间内,同时尽快地将故障设备从系统中隔离出来,有效地保护了电力系统的正常运行。

三、继电保护的基本原理

1、电气量测量原理:此原理是继电保护的最基本也是最重要的原理。电气量是一种可以用数值大小表示的物理量,例如电压、电流、功率等。通常,继电保护装置都会测量电气量,以判断电气设备的运行状态是否正常。在继电保护装置中,各种电气量都会被放大,同时进行

处理和判断,判断是否与规定的条件相符合,如果不符合,则会进行保护动作,将故障设备隔离出来。

2、比率测量原理:通常,电力系统中各种电器设备的电气参数都是不同的,因此继电保护装置在检测时需要根据设备参数调整装置的检测条件。通过将各种电气参数的特点进行比较来实现此原理的应用。

3、"一"字原理:此原理指的是,在重要的电气设备上,需要同时接入多个继电保护装置,并且每个装置必须满足一定的条件。在电力系统中,依次进行一系列的保护动作,从而将故障限制到最大可能的范围之内。

四、继电保护的类型

1、过流保护:该保护类型是电气系统中最常见的一种继电保护,主要用于保护设备和线路。当过流保护装置检测到线路或设备的电流超过规定的值或持续时间时,电路将被隔离。

2、欠压保护:该保护类型主要用于发电机和变压器的保护,当设备的电压降到一定程度时,会触发欠压保护动作,保护设备不会损坏。

3、过压保护:该保护类型也主要用于发电机和变压器的保护,当设备的电压超过规定范围时,会触发过压保护动作,以保护设备。

4、相序保护:该保护类型主要用于三相电设备的保护,当设备的相序发生错误时(一相短路或断路),会触发相序保护,将故障隔离。

五、继电保护的未来趋势

未来的继电保护更多地将采用数字化、通信化、集成化和智能化的技术。数字化技术可以实现数据的实时处理和分析,从而提高继电保护

的反应速度和准确性。通信化技术可以实现继电保护装置之间的通信,从而更好地协调各种保护装置之间的动作。集成化技术可以实现多种

保护功能的集成,减少设备的占地面积和设计成本。智能化技术则可

以实现自适应、自校正和故障分析等功能,提高继电保护的自动化水平。

综上所述,电力系统继电保护的基本原理及其类型对于保护电力系统

的正常运行和维护电力设备的安全具有非常重要的作用。在未来,继

电保护技术将继续发展,在数字化、通信化、集成化和智能化方向上

不断创新和完善,为电力系统的安全运行提供更加有效的保障。

继电保护的基本原理和继电保护装置的组成

我们把它统称为电力系统。一般将电能通过的设备成为电力系统成为电力电力系统的一次设备,如发电机、变压器、断路器、输电电路等,对一次设备的运行状态进行监视、测量、控制和保护的设备,被称为电力系统的二次设备。继电保护装置就属于电力系统的二次设备。 一、继电保护装置的基本原理 为了完成继电保护的任务,继电保护就必须能够区别是正常运行还是非正常运行或故障,要区别这些状态,关键的就是要寻找这些状态下的参量情况,找出其间的差别,从而构成各种不同原理的保护。 1.利用基本电气参数的区别 发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护: (1)过电流保护。单侧电源线路如图1-1所示,若在BC段上发生三相短路,则从电源到短路点k之间将流过很大的短路电流I k,可以使保护2反应这个电流增大而动作于跳闸。 (2)低电压保护。如图1所示,短路点k的电压U k降到零,各变电站母线上的电压都有所下降,可以使保护2反应于这个下降的电压而动作。 图1:单侧电源线路 (3)距离保护。距离保护反应于短路点到保护安装地之间的距离(或测量阻抗)的减小而动作。如图1所示,设以Z k表示短路点到保护2(即变电站B母线)之间的阻抗,则母线 上的残余电压为: U B=I k Z ko Z B 就是在线路始端的测量阻抗,它的大小正比于短路点到保护2之间的距离。 2.利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差 别

两侧电流相位(或功率方向)的分析如下。 图2:双侧电源网络 a——正常运行情况;b——线路AB外部短路情况;c——线路AB内部短路情况 正常运行时,A、B两侧电流的大小相等,相位相差180°;当线路AB外部故障时,A、B两侧电流仍大小相等,相位相差180°;当线路AB内部短路时,A、B两侧电流一般大小不相等,在理想情况下(两侧电动势同相位且全系统的阻抗角相等),两侧电流同相位。从而可以利用电气元件在内部故障与外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别构成各种差动原理的保护(内部故障时保护动作),如纵联差动保护、相差高频保护、方向高频保护等。 3.序分量是否出现 电气元件在正常运行(或发生对称短路)时,负序分量和零序分量为零;在发生不对称短路时,一般负序和零序都较大。因此,根据这些分量的是否存在可以构成零序保护和负序保护。此种保护装置具有良好的选择性和灵敏性。 4.反应于非电气量的保护 反应于变压器油箱内部故障时所发生的气体而构成气体(瓦斯)保护;反应于电动机绕组的温度升高而构成过负荷保护等。 二、继电保护装置的组成 继电保护的种类虽然很多,但是在一般情况下,都是有三个部分组成的,即测量部分、逻辑部分和执行部分。其原理结构如图3所示。

继电保护及原理归纳

主要的继电保护及原理 一、线路主保护纵联保护 纵联保护:利用某种通信通道将输电线路两端的保护装置纵向连接起来,将各端的电气量传送到对端,将各端的电气量进行比较,一判断故障在本线路范围内还是范围之外,从而决定是否切断被保护线路; 任何纵联保护总是依靠通道传送的某种信号来判断故障的位置是否在被保护线路内,信号按期性质可分为三类:闭锁信号、允许信号、跳闸信号; 闭锁信号:收不到这种信号是保护动作跳闸的必要条件; 允许信号:收到这种信号是保护动作跳闸的必要条件; 跳闸信号:收到这种信号是保护动作与跳闸的充要条件; 按输电线路两端所用的保护原理分,可分为:纵联差动保护、纵联距离保护、纵联方向保护; 通道类型:一、导引线通道;二、载波高频通道;三、微波通道;四、光纤通道; 1)纵联差动保护 纵联差动保护:原理是根据基尔霍夫定律,即流向一个节点的电流之和等于零; 差动保护存在的问题: 一、对于输电线路 1、电容电流:电容电流从线路内部流出,因此对于长线路的空载或轻载线路容 易误动; 解决办法:提高启动电流值牺牲灵敏度;加短延时牺牲快速性;必要是进行电容电流补偿;

注:穿越性电流就是在保护区外发生短路时,流入保护区内的故障电流;穿越电流不会引起保护误动; 2、TA断线,造成保护误动 解决办法:使差动保护要发跳闸命令必须满足如下条件:本侧起动原件起动;本侧差动继电器动作;收到对侧“差动动作”的允许信号; 保护向对侧发允许信号条件:保护起动;差流元件动作 3、弱电侧电流纵差保护存在问题变压器不接地系统的弱电侧在轻载或空载时 电流几乎没有变化 解决办法:除两侧电流差突变量起动元件、零序电流起动元件和不对应起动元件外,加装一个低压差流起动元件; 4、高阻接地是保护灵敏度不够 在线路一侧发生高阻接地短路时,远离故障点的一侧各个起动元件可能都不启动,造成两侧差动保护都不能切除故障; 解决办法:由零序差动继电器,通过低比率制动系数的稳态相差元件选相,构成零序1 段差动继电器,经延时动作; 注:比率制动差动即一个和电流差动,一个差电流制动,两者综合考虑,差电流越大,才能动作; 5、采样不同步 解决办法:改进技术 6、死区故障 解决办法:远跳 线路M、N侧;将M侧母线保护动作的接点接在电流差动保护装置的“远跳”端

电力系统继电保护基本原理

电力系统继电保护基本原理 电力系统继电保护是电力系统中重要的安全保护措施,其基本原理是通过检测电力系统中的异常故障状态,并采取控制措施来迅速、准确地切除故障点,保护电力系统的安全运行。下面将从基本概念、分类、原理以及应用等方面进行详细介绍。 一、基本概念 继电保护是电力系统中用来对故障进行保护的设备。它可以检测系统中的故障,并通过切除故障点、发送报警信号等手段来保护电力系统的安全运行。 二、分类 根据继电保护的功能和应用,可以将其分为主保护、备用保护以及辅助保护。 1. 主保护:主保护是对电力系统中的主要设备(如变压器、发电机、电动机等)进行保护的措施。主保护对应用最为严格的要求,需要快速、准确地切除故障点,并能适应系统的各种工作条件。 2. 备用保护:备用保护是为了当主保护出现故障或失效时,起到替代保护作用的设备。备用保护的要求相对较低,主要是为了保证在主保护失效时仍能有效地保护电力系统。 3. 辅助保护:辅助保护是对系统中的辅助设备和线路进行保护的措施。辅助保

护的主要作用是检测系统中的异常情况,并发出相应的信号进行报警,以减少故障对系统的影响。 三、原理 继电保护的工作原理是基于电气量的变化检测和测量。通过对电流、电压、频率、功率因数等电气量的测量,判断系统中是否存在故障,并能够快速、准确地切除故障点。 1. 故障检测:继电保护能够检测到电力系统中的各种故障类型(包括短路、过载、接地故障等)。通过对电流、电压等电气量进行检测和测量,在故障发生时能够及时判断故障类型和位置。 2. 故障切除:当继电保护检测到故障时,会通过控制开关进行故障点的切除。切除故障的方式包括断开故障电路、切除故障设备、切换备用设备等。 3. 报警通知:继电保护还能够通过发送报警信号或故障信息来通知操作人员。操作人员在接收到报警信息后,可以及时采取相应的措施来处理故障。 四、应用 继电保护广泛应用于电力系统中的各个环节,包括输电线路、变电站、发电机等。 1. 输电线路:对输电线路进行继电保护的主要任务是检测和切除线路中的短路

继电保护装置的基本原理

继电保护装置的基本原理 一、继电保护装置的概述 继电保护装置是电力系统中常用的一种保护设备,主要作用是在电力系统发生故障时,对故障部位进行快速、准确地切除,以保证系统的安全运行。继电保护装置可分为过流保护、零序保护、差动保护等多种类型,不同类型的继电保护装置有着不同的工作原理。 二、过流保护的原理 过流保护是一种常见的继电保护装置,其基本原理是利用变压器或线圈感应出来的电流信号,通过比较与预设值之间的大小关系来判断是否发生了故障。当系统中发生过载或短路时,导致通过该线路的电流超过额定值,则会触发过流保护动作。过流保护还可以根据不同类型故障区分出相间短路和接地短路。 三、零序保护的原理 零序保护是一种针对接地故障而设计的继电保护装置。其基本原理是利用变压器或线圈感应出来的零序电流信号,通过比较与预设值之间的大小关系来判断是否发生了接地故障。当系统中发生接地故障时,导致零序电流增大,触发零序保护动作。零序保护还可以根据不同类型故障区分出单相接地和双相接地。

四、差动保护的原理 差动保护是一种针对变压器、发电机等设备而设计的继电保护装置。 其基本原理是将设备两端的电流信号进行比较,如果两端电流不相等,则说明设备内部发生了故障,触发差动保护动作。差动保护还可以根 据不同类型设备区分出三相差动和单相差动。 五、继电保护装置的组成 继电保护装置由测量元件、比较元件、判断元件和输出元件四部分组成。测量元件包括变压器或线圈等感应器,用于感应系统中的电流或 电压信号;比较元件包括比较器等逻辑元件,用于将测量元件感应到 的信号与预设值进行比较;判断元件包括逻辑门等逻辑元件,用于根 据比较结果判断是否需要触发继电保护动作;输出元件包括继电器等 执行元件,用于将判断结果转换成电信号,控制断路器等开关设备进 行动作。 六、继电保护装置的特点 继电保护装置具有响应速度快、精度高、可靠性强等特点。由于其工 作原理简单,结构紧凑,因此体积小、重量轻、功耗低。此外,继电 保护装置还具有灵活性强、适应性广等特点,可以根据不同的需求进 行调整和配置。 七、继电保护装置的应用领域 继电保护装置广泛应用于各种输变电设备中,如变压器、发电机、线

电力系统继电保护的基本原理

电力系统继电保护的基本原理、构成与分类 一、什么是电力系统继电保护 1.电力系统故障和不正常运行 故障:短路和断线(断相) 短路: 大电流接地系统d(3)、d(2)、d(1)、d(1。1) 小电流接地系统d(3)、d(2)、d(1。1) 断相: 单相断线和两项断线(不要与PT二次断线混淆) 其中最常见且最危险的是各种类型的短路。其后果: 1I增加危害故障设备和非故障设备; 2U降低影响用户正常工作; 3破坏系统稳定性,使事故进一步扩大(系统震荡,互解) I2(I0)旋转电机产生附加发热I0—相邻通讯系统 故障特征: I增加、U降低、Z降低 接地故障、断线有零序 不对称故障有负序 不正常运行状态: 电力系统中电气元件的正常工作遭到破坏,但没有发生故障的运行状态。如:小电流接地系统d(1)、过负荷、过电压、频率降低、系统震荡等。2.继电保护的作用: 要求能区分故障和正常运行、判断故障设备(区内还是区外故障)

两个作用:故障 不正常运行状态 故障和不正常运行状态—>事故(P1),不可能完全避免且传播很快(光速) 要求:几十毫秒内切除故障人(×),继电保护装置(√) 任务:P2.被形象的比喻为“静静的哨兵” 二、继电器 继电器动作: 继电器返回: 继电特性: 三、电力系统继电保护的基本原理、构成与分类: 1.基本原理: 为区分系统正常运行状态与故障或不正常运行状态——找差别:特征。 ①增加故障点与电源间—>过电流保护 ②U降低—>低电压保护 ③变化;正常:20°左右—>短路:60°~85°—>方向保护. ④;模值减少—>阻抗保护 ⑤—>——〉电流差动保护 ⑥I2、I0序分量保护等。 另非电气量:瓦斯保护,过热保护 原则上说:只要找出正常运行与故障时系统中电气量或非电气量的变化特征(差别),即可找出一种原理,且差别越明显,保护性能越好。 2.构成 以过电流保护为例: 正常运行:Ir=IfLJ不动

继电保护的原理及应用

继电保护的原理及应用 1. 什么是继电保护? 继电保护是一种在电力系统中用来检测故障信号、判断故障类型和位置、并采 取相应措施以保护电力设备和系统安全运行的技术手段。继电保护系统主要由测量、判断、动作三个部分组成,它能及时准确地对电力系统的故障进行检测,保障电力系统的安全运行。 2. 继电保护的原理 继电保护的原理主要基于电力系统的运行特点和故障模式,通过检测电流、电压、频率等参数的变化情况来判断电力系统是否存在故障。继电保护的原理一般包括以下几个方面: •电流保护原理:通过检测电流的变化情况来判断电力系统是否存在过载、短路等故障。常见的电流保护装置包括电流互感器、电流继电器等。 •电压保护原理:通过检测电压的变化情况来判断电力系统是否存在欠压、过压等故障。常见的电压保护装置包括电压互感器、电压继电器等。 •频率保护原理:通过检测电力系统的频率变化情况来判断电力系统是否存在频率异常故障。常见的频率保护装置包括频率继电器等。 •差动保护原理:通过比较电流、电压等参数的差异来判断电力系统是否存在故障,并采取相应动作。差动保护主要用于保护高压线路和重要设备。 3. 继电保护的应用 继电保护广泛应用于电力系统的各个环节,以保障电力设备和系统的安全运行。以下列举了继电保护在电力系统中的主要应用: •发电机保护:发电机是电力系统的核心设备,对其进行继电保护可以有效预防过载、短路等故障,保障电力系统的稳定运行。 •变压器保护:变压器是电力系统中的重要传输设备,对其进行继电保护可以防止过电流、过热等故障,保护变压器的正常运行。 •线路保护:电力线路是电力系统的传输通道,对线路进行继电保护可以防止过载、短路等故障,确保电能在各个终端之间的正常传输。 •母线保护:电力系统的母线是电能分配的关键节点,对母线进行继电保护可以防止过电流、短路等故障,保障电力系统的正常运行。

继电保护的四个基本原理

继电保护的四个基本原理 继电保护是电力系统中非常重要的一项安全保护措施,它能够在电力系统发生故障时快速、准确地检测和切除故障部分,从而保护电力设备和电力系统的安全运行。继电保护的实现依赖于一些基本原理,本文将介绍继电保护的四个基本原理。 一、电流保护原理 电流保护是继电保护中最常见的一种保护方式。它基于电流的大小和方向来判断电力系统中是否存在故障。当电流超过设定值时,继电器就会触发动作,进而切除故障部分。电流保护的实现主要依赖于电流互感器和继电器。电流互感器将高电压线路中的电流转换成与之成比例的低电流,并通过继电器进行监测和切除故障。 二、电压保护原理 电压保护是继电保护中另一种常见的保护方式。它主要用于检测电力系统中的电压异常情况,如过高或过低的电压。电压保护的实现需要使用电压互感器和继电器。电压互感器将高电压线路中的电压转换成与之成比例的低电压,并通过继电器进行监测和切除故障。 三、差动保护原理 差动保护是一种以比较电流差值来判断电力系统中是否存在故障的保护方式。它主要应用于变压器、发电机等设备的保护。差动保护

的实现主要依赖于电流互感器和继电器。电流互感器将设备输入和输出侧的电流转换成与之成比例的低电流,继电器通过比较两侧电流的差值来判断是否存在故障,并触发动作切除故障。 四、过电流保护原理 过电流保护是一种以电流超过额定值来判断电力系统中是否存在故障的保护方式。它主要用于保护电力系统中的配电线路和设备。过电流保护的实现主要依赖于电流互感器和继电器。电流互感器将高电压线路中的电流转换成与之成比例的低电流,并通过继电器进行监测和切除故障。 继电保护的四个基本原理分别是电流保护、电压保护、差动保护和过电流保护。这些原理在电力系统中起到了至关重要的作用,保护了电力设备和电力系统的安全运行。通过合理配置和使用继电保护装置,能够及时检测和切除故障,有效避免了电力系统事故的发生,保障了电力系统的可靠供电。

电力系统继电保护原理

继电保护原理概念汇总 利用故障时电气量的变化特征,可以构成各种作用原理的继电保护。例如,根据短路故障时电流增大,可构成电流速断保护和过电流保护;根据短路故障时电压降低,可构成低电压保护和电压速断保护;根据短路故障时电流与电压之间相角的变化,可构成功率方向保护;根据电压与电流比值的变化,可构成距离保护;根据故障时被保护元件两端电流相位和大小的变化,可构成差动保护;根据不对称短路故障出现的相序分量,可构成灵敏的序分量保护。上述保护还可构成更为复杂的继电保护,例如,将过电流保护与方向保护组合,构成方向电流保护。此外,除了反应各种电气量的保护外,还有反应非电气量的保护,如电力变压器的瓦斯保护和过热保护等。 一、电网相间短路的电流电压保护 根据电流整定值选取的原则不同,电流保护可分为无时限电流速断保护、带时限电流速断保护和定时限过电流保护三种。 1、无时限电流速断保护根据电力系统对继电保护的要求,可以使电流保护的动作不带时限(只有继电器本身固有动作时间),构成瞬动保护,为了保证动作的选择性,采取动作电流按躲过被保护线路外部短路时最大短路电流来整定。这种保护装臵称为无时限电流速断保护(又被称为第Ⅰ段电流保护或瞬动Ⅰ段电流保护)。无时限电流速断保护不能保护线路全长,它存在线路末端保护死区。无时限电流速断保护动作电流值最大。 2、带时限电流速断保护 由于无时限电流速断保护不能保护线路全长,其保护范围外的故障必须由另外的保护来切除。为了保证速动性的要求,用尽可能短的时限来切除该部分的故障。可增设第二套保护,即II段电流速断保护。为了获得选择性,II段电流速

断保护必须带时限,以便和相邻的I段电流速断保护相配合,通常所带时限只比无时限电流速断保护大一个或两个时限级差Δt,所以称它为带时限电流速断保护。带时限电流速断保护范围包括本线路全长和相邻线路一部分,但不会超过相邻线路的无时限电流速断保护和降压变压器电流速断保护的保护范围。带时限电流速断保护动作电流值相比无时限电流速断保护要小得多。 3、定时限过电流保护定时限过电流保护(简称过电流保护),即电流保护的第III段。它的动作电流按照躲过最大负荷电流来整定,并以时限来保证动作的选择性。它不仅能保护本线路全长,而且也能保护相邻线路的全长,不仅可作本级线路的近后备保护,还可作为相邻线路的远后备保护。如果故障越靠近电源侧,则短路电流越大,而电流保护的动作切除故障的时间越长,这是定时限过电流保护的主要缺点。所以,在电力系统电流保护中采用电流速断保护或带时限电流速断保护作为本级线路的主保护,采用过电流保护作为本级线路的近后备保护,作为相邻线路的远后备保护。 二、电力系统的接地保护 我国电力系统中采用的中性点接地方式,通常有中性点直接接地方式、中性点经过消弧线圈接地方式和中性点不接地方式三种。一般110KV及其以上电压等级的电力系统都采用中性点直接接地方式,3—35KV的电力系统都采用中性点不接地或者经过消弧线圈接地的方式。中性点直接接地电力系统中发生单相接地故障时,因中性点直接接地,在故障相中流过很大的短路电流,所以这种电力系统又称为大接地电流电力系统。而中性点不直接接地(包括中性点经过消弧线圈接地)系统当发生单相接地故障时,由于不构成短路回路,接地故障电流往往比负荷电流小得多,所以这种电力系统称为小接地电流电力系统。

继电保护的作用及原理

继电保护的作用及原理 当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备。实现这种自动化措施的成套设备,一般通称为继电保护装置。 本期就为大家详细介绍继电保护的基本原理、基本要求、基本任务、分类和常见故障分析及其处理。 1、基本原理。继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。 电力系统发生故障后,工频电气量变化的主要特征是:a.电流增大短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。 b.电压降低当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。 c.电流与电压之间的相位角改变正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而

在保护反方向三相短路时,电流与电压之间的相位角则是180° +(60°~85°)。 d.测量阻抗发生变化测量阻抗即测量点(保护安装处)电压与电流之比值。正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。 不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。利用短路故障时电气量的变化,便可构成各种原理的继电保护。 此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护,如瓦斯保护。 2、基本要求。继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。 ①选择性选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。

继电保护装置的基本原理

继电保护装置的基本原理:继电保护主要是利用电力系统中元件发生短 路或异常情况时的电气量(电流、电压、功率、频率等)的变化构成继电保护动作的原理,还有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。 ①、电力系统运行中的参数(如电流、电压、功率因数角)在正常运行和故障情况时是有明显区别的。继电保护装置就是利用这些参数的变化,在反映、检测的基础上来判断电力系统故障的性质和范围,进而作出相应的反应和处理(如发出警告信号或令断路器跳闸等)。 ②、继电保护装置的原理框图分析: A、取样单元---它将被保护的电力系统运行中的物理量(参数)经过电气隔离并转换为继电保护装置中比较鉴别单元可以接受的信号,由一台或几台传感器如电流、电压互感器组成。 B、比较鉴别单元---包括给定单元,由取样单元来的信号与给定信号比较,以便下一级处理单元发出何种信号。(正常状态、异常状态或故障状态)比较鉴别单元可由4只电流继电器组成,二只为速断保护,另二只为过电流保护。电流继电器的整定值即为给定单元,电流继电器的电流线圈则接收取样单元(电流互感器)来的电流信号,当电流信号达到电流整定值时,电流继电器动作,通过其接点向下一级处理单元发出使断路器最终掉闸的信号;若电流信号小于整定值,则电流继电器不动作,传向下级单元的信号也不动作。鉴别比较信号“速断”、“过电流”的信息传送到下一单元处理。 C、处理单元---接受比较鉴别单元来的信号,按比较鉴别单元的要求进行处理,根据比较环节输出量的大小、性质、组合方式出现的先后顺序,来确定保护装置是否应该动作;由时间继电器、中间继电器等构成。电流保护:速断---中间继电器动作,过电流——时间继电器动作。(延时过程) D、执行单元---故障的处理通过执行单元来实施。执行单元一般分两类:一类是声、光信号继电器;(如电笛、电铃、闪光信号灯等)另一类为断路器的操作机构的分闸线圈,使断路器分闸。 E、控制及操作电源---继电保护装置要求有自己独立的交流或直流电源,而且电源功率也因所控制设备的多少而增减;交流电压一般为220伏,功率1KVA以上。 常用继电保护装置的类型:①、电流保护:(按照保护的整定原则,保 护范围及原理特点)

电力系统继电保护教学大纲

电力系统继电保护教学大纲 电力系统继电保护教学大纲 随着电力系统的发展和扩大规模,继电保护作为电力系统的重要组成部分,在 保障电力系统安全稳定运行方面起着至关重要的作用。电力系统继电保护教学 大纲的制定,对于培养电力系统继电保护专业人才,提高继电保护技术水平具 有重要意义。 一、继电保护概述 继电保护是指通过电力系统中的继电器来检测和判断电力系统中发生的故障, 并采取相应的保护措施,以保证电力系统的安全运行。继电保护的主要任务包 括故障检测、故障判别和故障隔离等。继电保护的基本原理是利用电力系统中 的电流、电压和功率等参数的变化来实现对故障的检测和判断。 二、继电保护的基本原理 1. 电力系统的故障类型 电力系统中常见的故障类型包括短路故障、接地故障和过电压故障等。短路故 障是指电力系统中两个或多个电气设备之间发生的电路短路现象;接地故障是 指电力系统中的电气设备与地之间发生的电路接地现象;过电压故障是指电力 系统中电压超过额定值的现象。 2. 继电保护的工作原理 继电保护的工作原理是基于电力系统中的电流、电压和功率等参数的变化来实 现对故障的检测和判断。继电保护设备通过对电力系统中的参数进行实时监测,并与预设的保护参数进行比较,当监测到电力系统中出现异常情况时,继电保 护设备会及时发出保护信号,以实现对故障的隔离和保护。

三、继电保护的技术要点 1. 继电保护的装置和设备 继电保护的装置和设备主要包括继电器、保护变压器、保护开关和保护控制器等。继电器是继电保护系统的核心部件,负责对电力系统中的故障进行检测和判断;保护变压器用于将电力系统中的电流和电压信号转换为继电器可以处理的信号;保护开关用于对电力系统中的故障进行隔离和保护;保护控制器用于对继电保护系统进行监控和控制。 2. 继电保护的工作方式 继电保护的工作方式主要包括定时工作方式和差动工作方式。定时工作方式是指继电保护设备根据预设的时间参数来进行工作,当电力系统中的参数超过设定值的时间超过一定时间时,继电保护设备会发出保护信号;差动工作方式是指继电保护设备通过对电力系统中的参数进行差动计算,当计算结果超过设定值时,继电保护设备会发出保护信号。 四、继电保护的应用和发展 1. 继电保护在电力系统中的应用 继电保护在电力系统中的应用非常广泛,几乎所有的电力系统都需要配备继电保护设备。继电保护设备可以有效地检测和判断电力系统中的故障,并及时采取相应的保护措施,以保证电力系统的安全运行。 2. 继电保护的发展趋势 随着电力系统的不断发展和电力设备的不断更新,继电保护技术也在不断发展和创新。未来,继电保护技术将更加智能化和自动化,可以实现对电力系统的远程监控和控制,提高电力系统的可靠性和安全性。

继电保护的基本原理

*继电保护的基本原理:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。 *一次电流和二次电流的关系 继电器的动作电流 电流互感器变比 变压器中性点接地方式:220kV 变电站主变一台中性点直接接地,另外几台不接地,为保证接地故障时零 序网络的稳定性。 切换变压器中性点接地开关如何操作?切换原则是保证电网不失去接地点,采用先合后拉的操作方法:(1)合上备用接地点的隔离开关。(2)拉开工作接地点的隔离开关。 (3)将零序保护切换到中性点接地的变压器上 *距离保护的基本原理 :距离保护是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。 *三段式距离保护的配置:距离保护Ⅰ段(方向阻抗继电器),距离保护Ⅱ段(方向阻抗继电器),距离保护III 段(采用偏移特性阻抗继电器) *振荡消除措施:1、不论频率升高或降低的电厂都要按发电机事故过负荷的规定,最大限度地提高励磁电流。 2、发电厂应迅速采取措施恢复正常频率。送端高频率的电厂,迅速降低发电出力,直到振荡消除或恢复到正常频率为止。受端低频率的电厂,应充分利用备用容量和事故过载能力提高频率,直至消除振荡或恢复到正常频率为止。 3、争取在3至4分钟内消除振荡,否则应在适当地点将部分系统解列。 *对距离保护的评价(特点)距离保护主要用于输电线路的保护,一般为三段段式。其一、二段带方向性,作为本线段的主保护,第一段保护线路的80%-90%。第二段保护余下的10%-20%,并作为本线路一段的近后备和相邻母线的远后备保护。第三段带方向或不带方向,作本线及相邻线段的后备保护。整套距离保护包括故障启动、故障距离测量、相应的时间逻辑回路与电压回路断线闭锁,有的还配有振荡闭锁等基本环节。 *高频闭锁距离保护:高频闭锁距离保护与高频闭锁方向保护的构成和原理相似,其起动元件是利用距离保护的起动元件。跳闸回路将功率方向元件换成了方向阻抗继电器。是在距离保护的基础上加设高频部分。该保护能瞬时切除被保护线路上任何一点的故障,而当发生外部故障时,利用距离保护本身的特点,可按不同的时限动作,起到后备保护的作用。当高频保护部分故障或退出时,距离保护仍能继续工作。但当距离保护故障或退出时,高频保护部分不能独立运行。防止励磁涌流影响的方法:采用间断角原理的差动保护,利用二次谐波制动,利用波形对称原理的差动保护。 三绕组变压器过电流保护的特点:对多侧电源的三绕组变压器,应该在三侧都装设独立的过电流保护。当变压器任意一侧的母线发生短路故障时,过流保护动作。因为三侧都装有过流保护,能使其有选择性地切除故障。而无需将变压器停运。各侧的过流保护可以作为本侧母线,线路的后备保护,主电源侧的过流保护可以作为其他两侧和变压器的后备保护。 中性点直接接地变压器的零序电流保护:变压器零序保护安装在变压器中性点直接接地侧,用来作绕组内部引出线上的接地短路的主保护,并可作为相邻母线和线路接地点短路的后备保护,在变压器中性点接地时均应投入零序保护 TA set op n I I =-op I -TA n

继电保护原理与应用

继电保护原理与应用 电力系统是现代社会运行的重要基础设施,而继电保护作为电力系统中的重要组成部分,起着保护电力设备和系统安全稳定运行的关键作用。本文将介绍继电保护的原理和应用。 一、继电保护的原理 继电保护是通过测量电力系统中的电流、电压、功率等参数,根据预设的保护逻辑和规则,实现对电力设备和系统的快速检测、判断和保护的一种技术手段。其原理主要包括电气量测量、信号传输、逻辑判断和动作执行四个方面。 1. 电气量测量:继电保护首先需要对电力系统中的电流、电压等电气量进行测量。传感器将电气量转化为电信号,并通过变送器传输给保护装置。 2. 信号传输:测量到的电信号需要通过传输线路传输到继电保护装置。通常采用的传输方式有有线传输和无线传输两种,其中有线传输更为常见。 3. 逻辑判断:继电保护装置接收到传输过来的电信号后,根据预设的保护逻辑和规则进行逻辑判断。比如,当电流超过设定值时,判断为过载,需要进行相应的保护动作。 4. 动作执行:当继电保护装置判断出需要进行保护动作时,会通过输出接口控制断路器、接触器等执行器进行相应的动作。比如,当判断为短路时,保护装置会输出信号使断路器迅速切断故障电路,保护电力设备。 二、继电保护的应用 继电保护广泛应用于电力系统的各个环节,以确保电力设备和系统的安全稳定运行。

1. 发电机保护:发电机作为电力系统的重要组成部分,需要进行多方面的保护。继电保护可以对发电机进行电气量测量,如电流、电压、频率等,实现对发电机的过载、短路、失势等故障的保护。 2. 变压器保护:变压器是电力系统中的重要设备,需要进行继电保护以防止故 障对电力系统造成的影响。继电保护可以对变压器的电流、温度、油位等进行测量和保护,确保其正常运行。 3. 输电线路保护:输电线路是电力系统中能量传输的关键部分,需要进行继电 保护以防止线路故障对电力设备和系统的影响。继电保护可以对输电线路的电流、电压、功率等进行测量和保护,及时切除故障线路,保护系统的安全稳定运行。 4. 配电系统保护:配电系统是将电能从输电系统输送到用户的关键环节,需要 进行继电保护以防止故障对用户供电的影响。继电保护可以对配电系统的电流、电压进行测量和保护,保障用户的用电安全。 综上所述,继电保护作为电力系统中的重要组成部分,通过测量、传输、逻辑 判断和动作执行等环节,实现对电力设备和系统的保护。其应用范围广泛,涵盖发电机、变压器、输电线路和配电系统等多个领域,确保电力系统的安全稳定运行。

电力系统中的继电保护装置原理

电力系统中的继电保护装置原理继电保护装置在电力系统中起着至关重要的作用。它们用于检测电 力系统中的异常情况,并迅速切断故障部分,以保护系统的正常运行 和设备的安全。本文将介绍电力系统中继电保护装置的原理及其工作 机制。 一、继电保护装置的基本原理 继电保护装置的基本原理是利用电力系统中的电流、电压等信号, 通过对这些信号进行检测和判断,实现对电力系统的保护。具体来说,继电保护装置通过测量电流和电压的大小和相位关系,判断电力系统 中是否存在异常情况,如短路、过电流、低电压等。一旦检测到异常 情况,继电保护装置会发出信号,通过断路器等设备切断故障电路, 以防止故障扩大或对设备造成损坏。 二、继电保护装置的工作机制 继电保护装置的工作机制通常包括以下几个步骤: 1. 信号采集:继电保护装置通过电流互感器和电压互感器等设备对 电力系统中的电流和电压进行采集。这些传感器将电流和电压信号转 化为适合继电保护装置处理的信号。 2. 信号处理:继电保护装置会对采集到的信号进行处理,例如通过 滤波器滤除噪声等。信号处理的目的是确保继电保护装置能够准确地 判断电力系统中是否存在故障。

3. 故障判断:在信号处理之后,继电保护装置会将处理后的信号与预设的故障判断条件进行比较。如果处理后的信号符合某一故障判断条件,继电保护装置将判断系统发生了故障。 4. 发出动作信号:一旦继电保护装置判断系统发生故障,它会发出动作信号。这个信号通常用于切断故障部分的电路,以保护系统和设备的安全。 5. 动作执行:继电保护装置的动作信号会送至断路器等装置,使其切断故障电路。在故障被排除之后,断路器可以重新合闸,使电力系统恢复正常运行。 三、继电保护装置的分类 根据其保护对象和工作原理的不同,继电保护装置可以分为多种类型,如电流保护、过电流保护、差动保护等。每种继电保护装置都有其专门的应用领域和工作原理。 1. 电流保护:电流保护装置主要用于检测电力系统中的电流异常情况,如过流和短路。它通常基于电流的大小来进行判断,并采取相应的保护措施。 2. 过电流保护:过电流保护装置可以通过检测电力系统中的过电流情况来判断是否存在故障。当电流超过预设阈值时,过电流保护装置会触发动作信号,切断故障电路。

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成继电保护是电力系统中重要的安全保障措施之一,用于保护电力设备和电力系统免受故障和过电流的损害。本文将介绍继电保护的基本原理以及继电保护装置的组成。 一、继电保护的基本原理 继电保护的基本原理是依靠电力系统中的电流、电压等参数的异常变化来判断设备是否发生故障,并对故障设备进行隔离和保护。其基本原理包括故障检测、信号传输、故障判断和动作执行等环节。 1. 故障检测: 继电保护装置通过检测电力系统中的电流、电压等参数,以确定是否存在设备异常。常见的故障包括过电流、过电压、短路、接地故障等。 2. 信号传输: 一旦检测到异常信号,继电保护装置会将信号传输给中央控制室或操作人员,以便进一步判断和采取相应的措施。 3. 故障判断: 中央控制室或操作人员会根据接收到的异常信号进行故障判断,通过比对设备的工作状态和理论模型,确定具体的故障类型和位置。 4. 动作执行:

一旦故障类型和位置确定,继电保护装置将发送信号给断路器或其他隔离设备,使其迅速切断故障电路,并保护其他设备免受影响。 二、继电保护装置的组成 继电保护装置是实现继电保护原理的关键设备,其主要组成包括输入电路、测量元件、比较元件、判别元件和动作元件。 1. 输入电路: 输入电路是继电保护装置的基础,充当了信息采集的作用。输入电路包括电流互感器、电压互感器等,用于采集电力系统中的电流、电压等参数,并将信号传递给后续的测量元件。 2. 测量元件: 测量元件是用来对输入电路中采集的信号进行精确的测量和转换。常见的测量元件包括电流变压器、电压变压器等,能够将采集到的电流、电压等参数转换为标准的模拟量或数字量信号。 3. 比较元件: 比较元件用于将测量得到的参数与事先设定的保护参数进行比较。当测量参数超过或低于设定的保护参数范围时,比较元件会发出警报信号,通知判别元件进行下一步判断。 4. 判别元件:

继电保护的原理及应用动画

继电保护的原理及应用动画 一、继电保护的基本原理 继电保护是电力系统运行中非常重要的一部分,它能够对电力系统中的故障进行检测、定位并采取相应的措施,以保证电力系统的安全运行。继电保护的基本原理如下: 1.故障检测:继电器通过检测电力系统中各个部分的电流、电 压等参数,判断是否存在故障。一般来说,当电流或电压超过设定的安 全阈值时,会触发继电保护系统。 2.故障定位:一旦检测到故障,继电保护系统需要准确地定位 故障的位置,以便快速采取措施。这一步通常是通过测量电流和电压在 电力系统中的传输时间来实现的。 3.故障隔离:确定故障位置后,继电保护系统会将故障部分与 正常部分隔离,以避免故障扩大影响整个电力系统的安全运行。 4.保护控制:一旦故障隔离完成,继电保护系统会通过控制开 关等装置,对故障部分进行控制操作,使故障得到修复或绕过。 二、继电保护的应用动画 以下是继电保护的原理及应用动画演示,通过动画的方式直观地展示继电保护系统的运行过程。 1.故障检测阶段在这个动画中,可以看到继电保护系统实时监测电力 系统中的电流和电压参数。当电流或电压超过设定的安全阈值时,动画中的继电保护系统会触发报警并标出发生故障的位置。 2.故障定位阶段一旦发生故障,动画中的继电保护系统会测量电流和 电压在电力系统中的传输时间。通过计算传输时间,系统可以精确地定位故障的位置,并在动画中以箭头的形式标出。 3.故障隔离阶段故障定位完成后,动画中的继电保护系统会自动控制 开关等装置,将故障部分与正常部分进行隔离。在动画中,可以看到原先连接故障部分的线路被隔离开,并且继电保护系统会给出相应的提示。 4.保护控制阶段经过故障隔离操作后,动画中的继电保护系统会进一 步进行保护控制。例如,如果故障是因为某个设备损坏,系统可以关闭该设备并启用备用设备,以确保电力系统的正常运行。 通过这些动画,人们可以直观地了解继电保护的原理和应用过程,更好地理解电力系统的安全运行机制。

相关主题
相关文档
最新文档