《数据结构练习题》线性表

《数据结构练习题》线性表
《数据结构练习题》线性表

线性表及其实现

1设一顺序表中元素值递增有序。写一算法,将元素x插到表中适当的位置,并保持顺序表的有序性,且分析算法的时间复杂度。

2设有两个按元素值递增有序的顺序表A和B,编一程序将A 表和B表归并成一个新的递增有序的顺序表C(值相同的元素均保留在C表中)。

3按下面两种情况分别编写算法删除顺序表中值相同的多余

元素:

(1)顺序表元素值递增有序;

(2)顺序表元素值无序。

4已知L是无表头结点的单链表,且P结点既不是首结点,也不是尾结点,试从下列提供的语句中选出合适的语句序列。

(1) 在P结点后插入S结点:__________

(2) 在P结点前插入S结点:__________

(3) 在表首插入S结点:__________

(4) 在表尾插入S结点:__________

① P->next = S;

② P->next = P->next->next;

③ P->next = S->next;

④ S->next = P->next;

⑤ S->next = L;

⑥ S->next = P;

⑦ S->next = NULL;

⑧ Q = P;

⑨ while (P->next != Q) P = P->next;

while (Q->next != NULL) Q = Q->next;

P = Q;

P = L;

L = S;

L = P;

5已知P结点是某双向链表的中间结点,试从下列提供的语句中选出合适的语句序列。

(1) 在P结点后插入S结点:______________

(2) 在P结点前插入S结点:______________

(3) 删除P结点的直接后继结点:______________

(4) 删除P结点的直接前驱结点:______________

(5) 删除P结点:______________

① P->next = P->next->next;

② P->prior = P->prior->prior;

③ P->next = S;

④ P->prior = S;

⑤ S->next = P;

⑥ S->prior = P;

⑦ S->next = P->next;

⑧ S->prior = P->prior;

⑨ P->prior->next = P->next;

P->prior->next = P;

P->next->prior = P;

P->next->prior = S;

P->prior->next = S;

P->next->prior = P->prior;

Q = P->next;

Q = P->prior;

free(P);

free(Q);

6设有两个线性表A和B皆是单链表存储结构。同一个表中的元素各不相同,且递增有序。写一算法,构成一个新的线性表C,使C为A和B的交集,且C中元素也递增有序。

7设有两个按元素值递增有序的单链表A和B,编一程序将A 表和B表归并成一个新的递增有序的单链表C(值相同的元素均保留在C表中)。

8设L为带头结点的单链表,按下面两种情况分别编写算法,删除表中值相同的多余元素。

(1) 顺序表元素值递增有序;

(2) 顺序表元素值无序。

C语言数据结构线性表的基本操作实验报告

实验一线性表的基本操作 一、实验目的与基本要求 1.掌握数据结构中的一些基本概念。数据、数据项、数据元素、数据类型和数据结构,以及它们之间的关系。 2.了解数据的逻辑结构和数据的存储结构之间的区别与联系;数据的运算与数据的逻辑结构的关系。 3.掌握顺序表和链表的基本操作:插入、删除、查找以及表的合并等运算。4.掌握运用C语言上机调试线性表的基本方法。 二、实验条件 1.硬件:一台微机 2.软件:操作系统和C语言系统 三、实验方法 确定存储结构后,上机调试实现线性表的基本运算。 四、实验内容 1.建立顺序表,基本操作包括:初始化,建立一个顺序存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。 2.建立单链表,基本操作包括:初始化,建立一个链式存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。 3.假设有两个按数据元素值非递减有序排列的线性表A和B,均以顺序表作为存储结构。编写算法将A表和B表归并成一个按元素值非递增有序(允许值相同)排列的线性表C。(可以利用将B中元素插入A中,或新建C表)4.假设有两个按数据元素值非递减有序排列的线性表A和B,均以单链表作为存储结构。编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序,允许值相同)排列的线性表C。 五、附源程序及算法程序流程图 1.源程序 (1)源程序(实验要求1和3) #include #include #include #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 typedef struct arr {

(完整版)数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1 .实验目的 (1 )掌握使用Visual C++ 6.0 上机调试程序的基本方法; (2 )掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2 .实验要求 (1 )认真阅读和掌握和本实验相关的教材内容。 (2 )认真阅读和掌握本章相关内容的程序。 (3 )上机运行程序。 (4 )保存和打印出程序的运行结果,并结合程序进行分析。 (5 )按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>// 头文件 #include// 库头文件------ 动态分配内存空间 typedef int elemtype;// 定义数据域的类型 typedef struct linknode// 定义结点类型 { elemtype data;// 定义数据域 struct linknode *next;// 定义结点指针 }nodetype; 2)创建单链表

nodetype *create()// 建立单链表,由用户输入各结点data 域之值, // 以0 表示输入结束 { elemtype d;// 定义数据元素d nodetype *h=NULL,*s,*t;// 定义结点指针 int i=1; cout<<" 建立一个单链表"<> d; if(d==0) break;// 以0 表示输入结束 if(i==1)// 建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));// 表示指针h h->data=d;h->next=NULL;t=h;//h 是头指针 } else// 建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t 始终指向生成的单链表的最后一个节点

《数据结构》第二章习题参考答案 殷人昆版

《数据结构》第二章习题参考答案 一、判断题(在正确说法的题后括号中打“√”,错误说法的题后括号中打“×”) 1、顺序存储方式插入和删除时效率太低,因此它不如链式存储方式好。( × ) 2、链表中的头结点仅起到标识的作用。( × ) 3、所谓静态链表就是一直不发生变化的链表。( × ) 4、线性表的特点是每个元素都有一个前驱和一个后继。( × ) 5、在顺序表中,逻辑上相邻的元素在物理位置上不一定相邻。(×) 6、线性表就是顺序存储的表。(×) 7、课本P84 2.4题 (1)√(2)×(3)×(4)×(5)√(6)×(7)×(8)√ (9)×(10)×(11)√(12)√ 二、单项选择题 1、下面关于线性表的叙述中,错误的是哪一个?( B ) A.线性表采用顺序存储,必须占用一片连续的存储单元。 B.线性表采用顺序存储,便于进行插入和删除操作。 C.线性表采用链接存储,不必占用一片连续的存储单元。 D.线性表采用链接存储,便于插入和删除操作。 2、链表不具有的特点是( B ) A.插入、删除不需要移动元素B.可随机访问任一元素 C.不必事先估计存储空间D.所需空间与线性长度成正比 3、(1) 静态链表既有顺序存储的优点,又有动态链表的优点。所以,它存取表中第i个元素的时间与i无关。 (2) 静态链表中能容纳的元素个数的最大数在表定义时就确定了,以后不能增加。 (3) 静态链表与动态链表在元素的插入、删除上类似,不需做元素的移动。 以上错误的是( B ) A.(1),(2)B.(1)C.(1),(2),(3) D.(2) 4、在单链表指针为p的结点之后插入指针为s的结点,正确的操作是(B)A.p->link =s; s-> link =p-> link; B.s-> link =p-> link; p-> link =s; C.p-> link =s; p-> link =s-> link; D.p-> link =s-> link; p-> link =s; 5、若某线性表最常用的操作是取任一指定序号的元素及其前驱,则利用(C)存储方式最节省时间。 A.单链表B.双链表C.顺序表D.带头结点的双循环链表6、对于顺序存储的线性表,访问结点和增加、删除结点的时间复杂度为( C )。A.O(n),O(n) B. O(n),O(1) C. O(1),O(n) D. O(1),O(1) 7、在一个以 h 为头的单循环链中,p 指针指向链尾的条件是( A ) A. p->next=h B. p->next=NULL C. p->next->next=h D. p->data=-1 三、填空题

数据结构_实验1_线性表的基本操作

实验1 线性表的基本操作 一、需求分析 目的: 掌握线性表运算与存储概念,并对线性表进行基本操作。 1.初始化线性表; 2.向链表中特定位置插入数据; 3.删除链表中特定的数据; 4.查找链表中的容; 5.销毁单链表释放空间; 二、概要设计 ●基础题 主要函数: 初始化线性表InitList(List* L,int ms) 向顺序表指定位置插入元素InsertList(List* L,int item,int rc)删除指定元素值的顺序表记录DeleteList1(List* L,int item) 删除指定位置的顺序表记录 DeleteList2(List* L,int rc) 查找顺序表中的元素 FindList(List L,int item) 输出顺序表元素OutputList(List L) 实验步骤: 1,初始化顺序表 2,调用插入函数 3,在顺序表中查找指定的元素 4,在顺序表中删除指定的元素 5,在顺序表中删除指定位置的元素 6,遍历并输出顺序表 ●提高题

要求以较高的效率实现删除线性表中元素值在x到y(x和y自定义)之间的所有元素 方法: 按顺序取出元素并与x、y比较,若小于x且大于y,则存进新表中。 编程实现将两个有序的线性表进行合并,要求同样的数据元素只出现一次。 方法: 分别按顺序取出L1,L2的元素并进行比较,若相等则将L1元素放进L中,否则将L 1,L2元素按顺序放进L。 本程序主要包含7个函数 主函数main() 初始化线性表InitList(List* L,int ms) 向顺序表指定位置插入元素InsertList(List* L,int item,int rc)删除指定元素值的顺序表记录DeleteList1(List* L,int item) 删除指定位置的顺序表记录 DeleteList2(List* L,int rc) 查找顺序表中的元素 FindList(List L,int item) 输出顺序表元素OutputList(List L) 提高题的程序 void Combine(List* L1,List* L2,List* L) void DeleteList3(List* L,int x,int y) 二、详细设计 初始化线性表InitList(List* L,int ms) void InitList(List* L,int ms) { L->list=(int*)malloc(LIST_INIT_SIZE*sizeof(int)); L->size=0; L->MAXSIZE=LIST_INIT_SIZE;

数据结构第二章课后习题题解

2.4已知顺序表L递增有序,试写一算法,将X插入到线性表的适当位置上,以保持线性表的有序性。 解: int InsList(SeqList *L,int X) { int i=0,k; if(L->last>=MAXSIZE-1) { printf("表已满无法插入!"); return(ERROR); } while(i<=L->last&&L->elem[i]last;k>=I;k--) L->elem[k+1]=L->elem[k]; L->elem[i]=X; L->last++; return(OK); } 2.5写一算法,从顺序表中删除自第i个元素开始的k个元素。 解: int LDel(Seqlist *L,int i,int k) { if(i=1||(i+k>L->last+1)) { printf("输入的i,k值不合法"); return(ERROR); } else if(i+k==L->last+2) { L->last=i-2; return OK; } else { j=i+k-1; while(j<=L->last) { elem[j-k]=elem[j]; j++; } L->last=L->last-k+1; return OK;

} } 2.6已知线性表中的元素(整数)以递增有序排列,并以单链表作存储结构。试写一高效算法,删除表中所有大于mink且小于maxk的元素(若表中存在这样的元素),分析你的算法的时间复杂度(注意:mink和maxk是给定的两个变量,他们的值为任意的整数)。 解: int Delete(Linklist,int mink,int maxk) { Node *p,*q; p=L; while(p->next!=NULL) p=p->next; if(mink>=maxk||L->next->data>=maxk||mink+1=maxk) { printf("参数不合法!"); return ERROR; } else { while(p->next->data<=mink) p=p->next; q=p->next; while(q->datanext=q->next; free(q); q=p->next; } return OK; } } 2.7试分别以不同的存储结构实现线性表的就地逆置算法,即在原表的储存空间将线性表(a1,a1,…,an)逆置为(an,an-1,…,a1)。 (1)以顺序表作存储结构。 解: int ReversePosition(SpList L) { int k,temp,len; int j=0; k=L->last; len=L->last+1; for(j;j

数据结构实验一题目一线性表实验报告

北京邮电大学电信工程学院 数据结构实验报告 实验名称:实验1——线性表 学生姓名: 班级: 班内序号: 学号: 日期: 1.实验要求 1、实验目的:熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法 学习指针、模板类、异常处理的使用 掌握线性表的操作的实现方法 学习使用线性表解决实际问题的能力 2、实验内容: 题目1: 线性表的基本功能: 1、构造:使用头插法、尾插法两种方法 2、插入:要求建立的链表按照关键字从小到大有序 3、删除 4、查找 5、获取链表长度 6、销毁 7、其他:可自行定义 编写测试main()函数测试线性表的正确性。 2. 程序分析 2.1 存储结构 带头结点的单链表

2.2 关键算法分析 1.头插法 a、伪代码实现:在堆中建立新结点 将x写入到新结点的数据域 修改新结点的指针域 修改头结点的指针域,将新结点加入链表中b、代码实现: Linklist::Linklist(int a[],int n)//头插法 {front=new Node; front->next=NULL; for(int i=n-1;i>=0;i--) {Node*s=new Node; s->data=a[i]; s->next=front->next; front->next=s; } } 2、尾插法

a、伪代码实现:a.在堆中建立新结点 b.将a[i]写入到新结点的数据域 c.将新结点加入到链表中 d.修改修改尾指针 b、代码实现: Linklist::Linklist(int a[],int n,int m)//尾插法 {front=new Node; Node*r=front; for(int i=0;idata=a[i]; r->next=s; r=s; } r->next=NULL; } 时间复杂度:O(n) 3、按位查找 a、伪代码实现: 初始化工作指针p和计数器j,p指向第一个结点,j=1 循环以下操作,直到p为空或者j等于1 b1:p指向下一个结点 b2:j加1 若p为空,说明第i个元素不存在,抛出异常 否则,说明p指向的元素就是所查找的元素,返回元素地址 b、代码实现 Node* Linklist::Get(int i)//得到指向第i个数的指针 {Node*p=front->next; int j=1; while(p&&j!=i)//p非空且j不等于i,指针后移 {p=p->next; j++;

(完整版)数据结构课后习题及解析第二章

第二章习题 1.描述以下三个概念的区别:头指针,头结点,首元素结点。 2.填空: (1)在顺序表中插入或删除一个元素,需要平均移动元素,具体移动的元素个数与有关。 (2)在顺序表中,逻辑上相邻的元素,其物理位置相邻。在单链表中,逻辑上相邻的元素,其物理位置相邻。 (3)在带头结点的非空单链表中,头结点的存储位置由指示,首元素结点的存储位置由指示,除首元素结点外,其它任一元素结点的存储位置由指示。3.已知L是无表头结点的单链表,且P结点既不是首元素结点,也不是尾元素结点。按要求从下列语句中选择合适的语句序列。 a. 在P结点后插入S结点的语句序列是:。 b. 在P结点前插入S结点的语句序列是:。 c. 在表首插入S结点的语句序列是:。 d. 在表尾插入S结点的语句序列是:。 供选择的语句有: (1)P->next=S; (2)P->next= P->next->next; (3)P->next= S->next; (4)S->next= P->next; (5)S->next= L; (6)S->next= NULL; (7)Q= P; (8)while(P->next!=Q) P=P->next; (9)while(P->next!=NULL) P=P->next; (10)P= Q; (11)P= L; (12)L= S; (13)L= P; 4.设线性表存于a(1:arrsize)的前elenum个分量中且递增有序。试写一算法,将X插入到线性表的适当位置上,以保持线性表的有序性。 5.写一算法,从顺序表中删除自第i个元素开始的k个元素。 6.已知线性表中的元素(整数)以值递增有序排列,并以单链表作存储结构。试写一高效算法,删除表中所有大于mink且小于maxk的元素(若表中存在这样的元素),分析你的算法的时间复杂度(注意:mink和maxk是给定的两个参变量,它们的值为任意的整数)。 7.试分别以不同的存储结构实现线性表的就地逆置算法,即在原表的存储空间将线性表(a1, a2..., an)逆置为(an, an-1,..., a1)。 (1)以一维数组作存储结构,设线性表存于a(1:arrsize)的前elenum个分量中。 (2)以单链表作存储结构。 8.假设两个按元素值递增有序排列的线性表A和B,均以单链表作为存储结构,请编写算法,将A表和B表归并成一个按元素值递减有序排列的线性表C,并要求利用原表(即A 表和B表的)结点空间存放表C。

数据结构线性表实验报告

《数据结构》实验报告 专业: 学号: 姓名: 实验二线性表 【实验目的】 1.熟悉VC环境,学习如何使用C语言实现线性表的两种存储结构。 2.通过编程、上机调试,进一步理解线性表的基本概念,东运用C语言实现线性表基本操作。 3.熟练掌握线性表的综合应用问题。 【实验内容】 1、一个线性表有n个元素(n-MAXSIZE.MAXSIZE指线性表的最大长度),且递增有。现有一元素x要插入到线性表的适当位置上,并保持线性表原有的顺序不变。设计程序实现。要求:采用顺序存储表示实现;采用链式存储表示方法实现:比较两种方法的优劣。 2.从单链表中删除指定的元素x,若x在单链表中不存在,给出提示信息。 要求: ①指定的值x由键盘输入; ②程序能处理空链表的情况。 3.设有头结点的单链表,编程对表中的任意值只保留一个结点,删除其余值相同的结点。 要求: ①该算法用函数(非主函数)实现; ②在主函数中调用创建链表的函数创建一个单链表,并调用该函数,验证算法的正确性。LinkedList Exchange(LinkedList HEAD,p) //HEAD是单链表头结点的指针,p是链表中的一个结点。本算法将p所指结点与其后 继结点交换。 (q=head->next;//q是工作指针,指向链表中当前待处理结点。 pre=head;//pre是前驱结点指针,指向q的前驱。 while(q'=null &&q1=p)(pre=q;q=q->next;]/未到p结点,后移指针。 if(p->next==null)printf(“p无后继结点\n”);/p是链表中最后一个结点,无后继。 else/处理p和后继结点交换 (q=p->next;//暂存p的后继。 pre->next=q://p前驱结点的后继指向p的后继。 p->next=q->next;//p的后继指向原p后继的后继。 q->next=p://原p后继的后继指针指向p。} }//算法结束。 4.已知非空单链表第一个结点由head指出,请写一算法,交换p所指结点与其下一个结点在链表中的位置。 要求:

《数据结构》实验一 线性表及其应用

实验一线性表及其应用 一、实验目的 1.熟悉C语言的上机环境,进一步掌握C语言的结构特点。 2.掌握线性表的顺序存储结构的定义及C语言实现。 3.掌握线性表的链式存储结构——单链表的定义及C语言实现。 4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。 5.掌握线性表在链式存储结构——单链表中的各种基本操作。 二、实验内容 1.顺序线性表的建立、插入及删除。 2.链式线性表的建立、插入及删除。 三、实验步骤 1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。 2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。 3.建立一个带头结点的单链表,结点的值域为整型数据。要求将用户输入的数据按尾插入法来建立相应单链表。 四、实现提示 1.由于C语言的数组类型也有随机存取的特点,一维数组的机内表示就是顺序结构。因此,可用C语言的一维数组实现线性表的顺序存储。 在此,我们利用C语言的结构体类型定义顺序表: #define MAXSIZE 1024 typedef int elemtype; /* 线性表中存放整型元素*/ typedef struct { elemtype vec[MAXSIZE]; int len; /* 顺序表的长度*/ }sequenlist; 将此结构定义放在一个头文件sqlist.h里,可避免在后面的参考程序中代码重复书写,另外在该头文件里给出顺序表的建立及常量的定义。 2. 注意如何取到第i个元素,在插入过程中注意溢出情况以及数组的下标与位序(顺序表中元素的次序)的区别。 3.单链表的结点结构除数据域外,还含有一个指针域。用C语言描述结点结构如下: typedef int elemtype; typedef struct node

数据结构实验报告——线性表

实验报告:线性表的基本操作 实验1:实现顺序表各种基本运算的算法 一、实验目的 学会并运用顺序表存储结构及各种运算。 二、实验环境 VC++6.0 三、实验准备 (1) 复习课件中理论知识 (2)练习课堂所讲的例子 四、实验内容 编写一个程序实现SqList.cpp,实现顺序表基本运算,并在此基础上设计个主程序exp1.cpp,完成如下功能: (1)初始化顺序表L; (2)依次插入a、b、c、d、e元素; (3)输出顺序表L; (4)输出顺序表L长度; (5)判断顺序表L是否为空: (6)输出顺序表L的第3个元素; (7)输出元素a的位置; (8)在第4个位置上插入f元素; (9)输出顺序表L; (10)删除顺序表L的第3 个元素; (11)输出顺序表L; (12)顺序表L; 五、实验步骤 1、构造一个空的线形表并分配内存空间 Status InitList_Sql(SqList &L) {L.elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType)); if(!L.elem) exit(OVERFLOW); L.length=0; L.listsize=LIST_INIT_SIZE; return OK; } 2、求线性表的长度 Status ListLength(SqList L) { return L.length; } 3、线性表清空 void ClearList(SqList &L){ L.length = 0; } 4、在顺序线形表 L 中第 i 个位置之前插入新的元素 e Status ListInsert_Sq(SqList &L,int i,ElemType e)

(完整版)数据结构第二章线性表1答案

(A )需经常修改L 中的结点值 (E )需不断对L 进行删除插入 第二部分线性表 、选择题 1 ?关于顺序存储的叙述中,哪一条是不正确的 (B ) A. 存储密度大 B. 逻辑上相邻的结点物理上不必邻接 C. 可以通过计算直接确定第 i 个结点的位置 D. 插入、删除操作不方便 2.长度为n 的单链表连接在长度为 m 的单链表后的算法的时间复杂度为 (C ) A 0( n ) B 0(1) C 0(m ) D 0(m+n ) 3 .在n 个结点的顺序表中,算法的时间复杂度是 0(1)的操作是:(A ) A 访问第i 个结点(1<=i<=n )和求第i 个结点的直接前趋(2<=i<=n ) B 在第i 个结点(1<=i<=n )后插入一个新结点 C 删除第i 个结点(1<=i<=n ) D 将n 个结点从小到大排序 4.一个向量第一个兀素的存储地址是 100 ,每个兀素的长度为 2 ,则第5 个兀素的地址是 (B ) ( A ) 110 ( B ) 108 (C ) 100 ( D ) 120 5 .已知一个顺序存储的线性表, 设每个结点需要占 m 个存储单元,若第一个结点的地址为 da , 则第i 个结点的地址为:(A ) 7 .链表是一种采用( B )存储结构存储的线性表。 (A )顺序 (B )链式 (C )星式 (D )网状 8 .线性表若采用链式存储结构时,要求内存中可用存储单兀的地址: (D ) (A )必须是连续的 (B )部分地址必须是连续的 (C )一定是不连续的 (D )连续或不连续都可以 9 .线性表L 在_ ( B )情况下适用于使用链式结构实现。 A ) da+(i-1)*m B ) da+i*m 6.在具有n 个结点的单链表中,实现( A )遍历链表和求链表的第 i 个结点 C )删除开始结点 C ) da-i*m D ) da+(i+1)*m A )的操作,其算法的时间复杂度为 0(n )。 B )在地址为p 的结点之后插入一个结点 D ) 删除地址为p 的结点的后继结点

数据结构实验一题目一线性表实验报告

数据结构实验报告 实验名称:实验1——线性表 学生姓名: 班级: 班内序号: 学号: 日期: 1.实验要求 1、实验目的:熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法 学习指针、模板类、异常处理的使用 掌握线性表的操作的实现方法 学习使用线性表解决实际问题的能力 2、实验内容: 题目1: 线性表的基本功能: 1、构造:使用头插法、尾插法两种方法 2、插入:要求建立的链表按照关键字从小到大有序 3、删除 4、查找 5、获取链表长度 6、销毁 7、其他:可自行定义 编写测试main()函数测试线性表的正确性。 2. 程序分析 存储结构 带头结点的单链表

关键算法分析 1.头插法 a、伪代码实现:在堆中建立新结点 将x写入到新结点的数据域 修改新结点的指针域 修改头结点的指针域,将新结点加入链表中 b、代码实现: Linklist::Linklist(int a[],int n)

堆中建立新结点 b.将a[i]写入到新结点的数据域 c.将新结点加入到链表中 d.修改修改尾指针 b、代码实现: Linklist::Linklist(int a[],int n,int m)取链表长度函数 a、伪代码实现:判断该链表是否为空链表,如果是,输出长度0 如果不是空链表,新建立一个temp指针,初始化整形数n为0 将temp指针指向头结点 判断temp指针指向的结点的next域是否为空,如果不是,n加一,否 则return n 使temp指针逐个后移,重复d操作,直到temp指针指向的结点的next 域为0,返回n b 、代码实现 void Linklist::Getlength()Linklist(); cout<

数据结构实验指导书——线性表的操作

实验1 线性表的基本操作 一、实验目的 (1) 掌握线性表的逻辑特征; (2) 掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算; (3) 熟练掌握线性表的链式存储结构定义及基本操作; (4) 理解循环链表和双链表的特点和基本运算; (5 )加深对顺序存储数据结构的理解和链式存储数据结构的理解,逐步培养解决实际问题的编程能力; 二、实验内容 1、创建有若干个元素(可以是整型数值)的顺序表,实现对顺序表的初始化,对已建立的顺序表插入操作、删除操作、遍历输出顺序表。 要求各个操作均以函数的形式实现,在主函数中调用各个函数实现以下操作: (1)从键盘上依次输入21、18、30、75、42、56,创建顺序表,并输出顺序表中的各元素值。 (2)分别在单链表的第3个位置插入67,给出插入成功或失败的信息,并输出此时顺序表中的各元素值。 (3)删除顺序表中的第6个数据元素,给出删除成功或失败的信息,并输出此时顺序表中的各元素值。 (4)查找顺序表中是否有75这个元素,如果有返回该元素在顺序表中的位序。 2、创建有若干个元素(可以是整型数值)的单链表,实现对单链表的初始化,对已建立的顺序表插入操作、删除操作、查找操作、遍历输出单链表表。 要求各个操作均以函数的形式实现,在主函数中调用各个函数实现以下操作: (1)从键盘上依次输入21、18、30、75、42、56,创建单链表,并输出单链表中的各元素值。 (2)分别在单链表的第4个位置,给出插入成功或失败的信息,并输出单链表中的各元素值。

(3)删除单链表中的第2个数据元素,给出删除成功或失败的信息,并输出单链表中的各元素值。 (4)查找顺序表中的第五个元素并输出该元素的值。 三、参考代码 (1) 顺序表的操作 #include #include #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int Status; #define INIT_SIZE 100 /*初始分配空间的大小*/ #define LISTINCREMENT 10 /*分配增量*/ typedef int ElemType; typedef struct{ ElemType *elem; int length; int listsize; }SqList; /*ElemType elem[INIT_SIZE],注两者区别。存储空间的起始地址。*/ /*线性表中数据元素个数,即表长*/ /*线性表所申请的存储空间的大小*/ SqList CreateList_Sq(SqList L) /*创建一个空的线性表*/ { L.elem=(ElemType *)malloc(INIT_SIZE*sizeof(ElemType)); if (!L.elem) exit(ERROR); L.length=0; /*表长为0*/ L.listsize=INIT_SIZE; /*申请的空间为初始大小*/ return L; }

数据结构线性表的应用实验报告

实验报告 课程名称____数据结构上机实验__________ 实验项目______线性表的应用____________实验仪器________PC机___________________ 系别_____电子信息与通信学院___ 专业________ ___ 班级/学号______ __ 学生姓名______ ___________ 实验日期_______________________ 成绩_______________________ 指导教师_______________________

实验一.线性表的应用 1.实验目的:掌握线性链表的存储、运算及应用。利用链 表实现一元多项式计算。 2.实验内容: 1)编写函数,实现用链表结构建立多项式; 2)编写函数,实现多项式的加法运算; 3)编写函数,实现多项式的显示; 4)测试:编写主函数,它定义并建立两个多项式,显示 两个多项式,然后将它们相加并显示结果。变换测试用的多项式,检查程序的执行结果。 选做内容:修改程序,选择实现以下功能: 5)多项式求值:编写一个函数,根据给定的x值计算并 返回多项式f(x)的值。测试该函数(从终端输入一个x的值,调用该函数并显示返回结果)。 6)多项式相减:编写一个函数,求两个多项式相减的多 项式。 7)多项式相乘:编写一个函数,求两个多项式的乘积多 项式。 3.算法说明: 1)多项式的建立、显示和相加算法见讲义。可修改显示 函数,使输出的多项式更符合表达规范。

2)多项式减法:同次项的系数相减(缺项的系数是0)。 例如a(x)=-5x2+2x+3,b(x)= -4x3+3x,则a(x)-b(x) =4x3-5x2-x+3。提示:a(x)-b(x) = a(x)+(-b(x))。 3)多项式乘法:两个多项式的相乘是“系数相乘,指数 相加”。算法思想是用一个多项式中的各项分别与另 一个多项式相乘,形成多个多项式,再将它们累加在 一起。例如,a(x)=-5x2+2x+3,b(x)=-4x3+3x,则 a(x)*b(x) = (-4x3)*(-5x2+2x+3)+(3x)*(-5x2+2x+3) = (20x5-8x4-12x3) + (-15x3+6x2+9x) = 20x5-8x4-27x3+6x2+9x。 4.实验步骤: 根据实验报告的要求,我对文件夹里的C文件进行了丰 富和修改,步骤如下: 链表结构建立多项式: typedef struct polynode { float coef; //系数 int exp; //指数 struct polynode *next; //下一结点指针 } PNode; 编写函数,实现多项式的加法运算; PNode * PolyAdd (PNode *f1, PNode *f2) //实现加法功能。

数据结构实验一 实验报告

班级: 姓名: 学号: 实验一线性表的基本操作 一、实验目的 1、掌握线性表的定义; 2、掌握线性表的基本操作,如建立、查找、插入与删除等。 二、实验内容 定义一个包含学生信息(学号,姓名,成绩)的顺序表与链表(二选一),使其具有如下功能: (1) 根据指定学生个数,逐个输入学生信息; (2) 逐个显示学生表中所有学生的相关信息; (3) 根据姓名进行查找,返回此学生的学号与成绩; (4) 根据指定的位置可返回相应的学生信息(学号,姓名,成绩); (5) 给定一个学生信息,插入到表中指定的位置; (6) 删除指定位置的学生记录; (7) 统计表中学生个数。 三、实验环境 Visual C++ 四、程序分析与实验结果 #include #include #include #include #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int Status; // 定义函数返回值类型 typedef struct

{ char num[10]; // 学号 char name[20]; // 姓名 double grade; // 成绩 }student; typedef student ElemType; typedef struct LNode { ElemType data; // 数据域 struct LNode *next; //指针域 }LNode,*LinkList; Status InitList(LinkList &L) // 构造空链表L { L=(struct LNode*)malloc(sizeof(struct LNode)); L->next=NULL; return OK; } Status GetElem(LinkList L,int i,ElemType &e) // 访问链表,找到i位置的数据域,返回给 e { LinkList p; p=L->next;

数据结构线性表实验报告

实验报告 实验一线性表 实验目的: 1.理解线性表的逻辑结构特性; 2.熟练掌握线性表的顺序存储结构的描述方法,以及在该存储结构下的基本操作;并能灵活运用; 3.熟练掌握线性表的链表存储结构的描述方法,以及在该存储结构下的基本操作;并能灵活运用; 4.掌握双向链表和循环链表的的描述方法,以及在该存储结构下的基本操作。 实验原理: 线性表顺序存储结构下的基本算法; 线性表链式存储结构下的基本算法; 实验内容: 2-21设计单循环链表,要求: (1)单循环链表抽象数据类型包括初始化操作、求数据元素个数操作、插入操作、删除操作、取消数据元素操作和判非空操作。 (2)设计一个测试主函数,实际运行验证所设计单循环链表的正确性。 2-22 .设计一个有序顺序表,要求: (1)有序顺序表的操作集合有如下操作:初始化、求数据元素个数、插入、删除和取数据元素。有序顺序表与顺序表的主要区别是:有序顺序表中的数据元素按数据元素值非递减有序。 (2)设计一个测试主函数,实际运行验证所设计有序顺序表的正确性。 (3)设计合并函数ListMerge(L1,L2,L3),功能是把有序顺序表L1和L2中的数据元素合并到L3,要求L3中的数据元素依然保持有序。并设计一个主函数,验证该合并函数的正确性。 程序代码: 2-21(1)头文件LinList.h如下: typedef struct node { DataType data; struct node *next; }SLNode; /*(1)初始化ListInitiate(SLNode * * head)*/ void ListInitiate(SLNode * * head) { /*如果有内存空间,申请头结点空间并使头指针head指向头结点*/ if((*head=(SLNode *)malloc(sizeof(SLNode)))==NULL)exit(1);

数据结构实验线性表基本操作

学 《数据结构》课程 实验报告 实验名称:线性表基本操作的实现实验室(中心): 学生信息: 专业班级: 指导教师: 实验完成时间: 2016

实验一线性表基本操作的实现 一、实验目的 1.熟悉C语言的上机环境,进一步掌握C语言的结构特点。 2.掌握线性表的顺序存储结构的定义及C语言实现。 3.掌握线性表的链式存储结构——单链表的定义及C语言实现。 4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。 5.掌握线性表在链式存储结构——单链表中的各种基本操作。 二、实验内容及要求 1.顺序线性表的建立、插入、删除及合并。 2.链式线性表的建立、插入、删除及连接。 三、实验设备及软件 计算机、Microsoft Visual C++ 6.0软件 四、设计方案(算法设计) ㈠采用的数据结构 本程序顺序表的数据逻辑结构为线性结构,存储结构为顺序存储;链表的数据逻辑结构依然为线性结构,存储结构为链式结构。 ㈡设计的主要思路 1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度,顺序表的长度和元素由用户输入; 2.利用前面建立的顺序表,对顺序表进行插入、删除及合并操作; 3.建立一个带头结点的单链表,结点的值域为整型数据,链表的元素由用户输入;

4.对前面建立的链表进行插入、删除及连个链表的连接操作; ㈢算法描述 1、顺序表 void Init(sqlist &);//初始化顺序表 BOOL Inse(sqlist &,int,char); //在线性表中插入元素 BOOL del(sqlist&,int,char &); //在线性表中删除元素 int Loc(sqlist,char); //在线性表中定位元素 void print(sqlist); //输出顺序表 void combine( sqlist & , sqlist & , sqlist &);//两个线性表的合并 2、链表 void CreaL(LinkList &,int); //生成一个单链表 BOOL LInsert(LinkList &,int,char); //在单链表中插入一个元素 BOOL LDele(LinkList &,int,char &); //在单链表中删除一个元素 BOOL LFind_key(LinkList,char,int &); //按关键字查找一个元素 BOOL LFind_order(LinkList,char &,int); //按序号查找一个元素 void LPrint(LinkList); //显示单链表所有元素 void LUnion(LinkList &,LinkList &,LinkList &,int); //两个链表的连接 五、程序代码 1、顺序表 #include #include

数据结构 线性表 课后答案

第2章线性表 1.选择题 (1)顺序表中第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是()。 A.110 B.108 C.100 D.120 答案:B 解释:顺序表中的数据连续存储,所以第5个元素的地址为:100+2*4=108。 (2)在n个结点的顺序表中,算法的时间复杂度是O(1)的操作是()。 A.访问第i个结点(1≤i≤n)和求第i个结点的直接前驱(2≤i≤n) B.在第i个结点后插入一个新结点(1≤i≤n) C.删除第i个结点(1≤i≤n) D.将n个结点从小到大排序 答案:A 解释:在顺序表中插入一个结点的时间复杂度都是O(n2),排序的时间复杂度为O(n2)或O(nlog2n)。顺序表是一种随机存取结构,访问第i个结点和求第i个结点的直接前驱都可以直接通过数组的下标直接定位,时间复杂度是O(1)。 (3)向一个有127个元素的顺序表中插入一个新元素并保持原来顺序不变,平均要移动的元素个数为()。 A.8 B.63.5 C.63 D.7 答案:B 解释:平均要移动的元素个数为:n/2。 (4)链接存储的存储结构所占存储空间()。 A.分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针 B.只有一部分,存放结点值 C.只有一部分,存储表示结点间关系的指针 D.分两部分,一部分存放结点值,另一部分存放结点所占单元数 答案:A (5)线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。 A.必须是连续的B.部分地址必须是连续的 C.一定是不连续的D.连续或不连续都可以 答案:D (6)线性表L在()情况下适用于使用链式结构实现。 A.需经常修改L中的结点值B.需不断对L进行删除插入 C.L中含有大量的结点D.L中结点结构复杂 答案:B

数据结构实验线性表及其应用

计算机系数据结构实验报告(1) 实验目的: 帮助学生掌握线性表的基本操作在顺序和链表这两种存储结构上的实现,尤以链表的操作和应用作为重点。 问题描述: 1、构造一个空的线性表L。 2、在线性表L的第i个元素之前插入新的元素e; 3、在线性表L中删除第i个元素,并用e返回其值。 实验要求: 1、分别利用顺序和链表存储结构实现线性表的存储,并设计出在不同的存储结构中线 性表的基本操作算法。 2、在实验过程中,对相同的操作在不同的存储结构下的时间复杂度和空间复杂度进行 分析。 算法分析: 由于两种存储结构都用来创建线性结构的数据表,可采用相同的输出模式和整体结构类似的算法,如下: 实验内容和过程: 顺序存储结构线性表程序清单: //顺序存储结构线性表的插入删除 #include #include <> using namespace std; # define LISTSIZE 100 # define CREMENTSIZE 10 typedef char ElemType; //定义数据元素类型为字符型 typedef struct { ElemType *elem; //数据元素首地址

int len; //当前元素个数 int listsize; //当前存储最大容量 }SqList; //构造一个空的线性表L int InitList(SqList &L) { =(ElemType *)malloc(LISTSIZE*sizeof(ElemType)); if (! exit(-2); //分配空间失败 =0; =LISTSIZE; } //在顺序线性表L中第i个位置之前插入新的元素e int ListInsert(SqList &L,int i,ElemType e) { if (i<1||i>+1) return -1; //i值不合法 if >= { ElemType *newelem=(ElemType *)realloc,+CREMENTSIZE)*sizeof(ElemType)); //存储空间已满,增加分配 if(!newelem) exit (-2); //分配失败 =newelem; +=CREMENTSIZE; } ElemType *q=&[i-1]) ; for (ElemType *p=&[]);p>=q;--p) *(p+1)=*p; //插入位置及其后的元素后移 *q=e; ++; return 1; } //在顺序线性表L中删除第i个元素,并用e返回其值 int ListDelete(SqList &L,int i,ElemType&e) { if (i<1||i> return -1; //i值不合法

相关文档
最新文档