风能与风力发电技术

风能与风力发电技术
风能与风力发电技术

风能与风力发电技术

书 名: 风能与风力发电技术

作 者: 张志英 等编著

出 版 社: 化学工业出版社

出版时间: 2010-5-1

I S B N : 9787122077967

定 价: ¥49.00

内容简介

本书介绍了有关风力发电的基本知识和技术,通俗地分析了风的形成、风的分类和风能定量评估。详细阐述了风轮

机的基本工作原理、工程设计方法和风轮机优化设计;对风轮机的结构、空气动力学特性、安全运行、风力机发电系统及风轮机材料等进行了说明和分析。对风轮机的一些特殊问题,例如变速/恒频技术、迎风调节、风轮叶片材料和制造、风电场优化分析、风资源对性能的影响等搜集了大量的数据资料供参考查询。

本书第二版除全部订正了和时间相关的数据外,还增加了风力机设计要求、大型风力机设计和特殊用途用风力机(

海上风力机、低温风力机、高原风力机和直接驱动式风力机)等内容,使本书更具工程参考价值,对风电从业人员更加适用。

本书适合于从事风电领域内工作的工程师和技术人员阅读参考,也适合作为高等院校热动力专业的教学参考书,对想了解风能发电的读者也是一本极好的科普读物。

图书目录

1.1 风

1.2 风能

1.3 风电场选址

1.4 风电场风能资源评估

第2章 风能发电

2.1 风力机的型式

2.2 风能发电

2.3 并网风力发电的价值分析

2.4 风力发电装置

2.5 大中型风电场设计

2.6 风力发电设备的优化分析

2.7 风力机安全运行

第3章 风力发电技术

3.1 功率调节

3.2 变转速运行

3.3 发电机变转速/恒频技术

3.4 风轮机迎风技术

3.5 风电品质

3.6 风力机结构和空气动力学

3.7 风力机控制技术

第4章 风轮机设计

4.1 风轮机的基本理论

4.2 风力机设计要求

4.3 风轮机工程设计

4.4 风轮机优化设计

4.5 风轮机模化设计

4.6 风轮机工程设计图例

4.7 风轮机的设计与制造

4.8 风轮机材料

4.9 风力机设计风速问题

第5章 风轮机和风电场数值计算

5.1 风电场数值模型

5.2 风轮机设计软件

5.3 风电场数值计算软件包

5.4 风力机设计软件包的开发

5.5 风力机可靠性数值研究

第6章 大型风力机设计

6.1 250~1200kW风力机系列

6.2 1000kW级风力机设计

6.3 1500kW级风力机设计

6.4 2000kW级风力机设计

6.5 2500 kW级风力机设计

6.6 3000kW级风力机设计

6.7 5000kW级风力机设计

第7章 风力机发电系统

第8章 特殊用途风力机设计

附录

参考文献

原文地址:https://www.360docs.net/doc/464258376.html,/baike/1079.html

风电技术现状及发展趋势

风电技术现状及发展趋势 Current Situation and Developing Trend of Wind Power Technique The paper mainly discusses the current situation and developing trend of wind power technique. Abstract: Key words: anemo-electric generator ; current situation ; developing trend 0 引言 风电古老而现代,但之所以到近代才得以发展,是因为在这方面存在许多实际困难。主要表现在:(1)风本身随机性大且不稳定,对其资源的准确测量与评估存在误差;(2)风速大小、风力强弱、风的方向都随时间在变化,设计制造在不同风况下都能保持稳定运行的风电系统,并使其风电输出功率效率高且理想平滑十分困难;(3)风为间歇式能源,有功功率与无功功率都将随风速的变化而变化,在与电网连接时,需要考虑输出功率的波动对地区电网的影响。此外,在降低制造成本和运行维护费用的前提下如何提高系统运行的安全性与可靠性、如何延长的寿命以及改善系统储能措施使其容量更大、体积更小、效率更高且寿命更长等问题上尚有待于得到更完善的解决。 1 风力发电技术发展现状 现代风力发电系统由风能资源、组、控制装置及检测显示装置等组成。组是风电系统的关键设备,通常包括风轮机、发电机、变速器及相应控制装置,用来实现能量的转换。完整的并网风力发电系统结构示意图见图1。

率曲线比较 长期以来风力发电系统主要采用恒速恒频发电方式( Constant Speed Constant Frequency 简称CSCF)和变速恒频发电方式(Variable Speed Constant Frequency 简称VSCF)两种。 恒速恒频发电方式,概念模型通常为“恒速风力机 +感应发电机”,常采用定桨距失速或主动失速调节实现功率控制。在正常运行时,风力机保持恒速运行,转速由发电机的极数和齿轮箱决定。由于风速经常变化,功率系数C p不可能保持在最佳值,不能最大限度地捕获风能,效率低。 变速恒频发电方式, 概念模型通常为“变速风力机+变速发电机(双馈异步发电机或低速永磁同步发电机)”,采用变桨距结构,启动时通过调节桨距控制发电机转速;并网后,在额定风速以下,调节发电机反转矩使转速跟随风速变化以保持最佳叶尖速比从而获得最大风能;在额定转速以上,采用变速与桨叶节距的双重调节限制风力机获取的能量以保证发电机功率输出的稳定性。 前者结构简单、运行可靠,但其发电效率较低,而且由于机械承受应力较大,相应的装置成本较高。后者可以实现不同风速下高效发电从而使得系统的机械应力和装置成本都大大降低。两者运行功率曲线比较如图 3所示。可以看出,采用变速恒频发电方式, 能在风速变化的情况下实时调节风力机转速,使之始终在最佳转速上运行,捕获最大风能[2]。 2 风力发电技术发展趋势

风能和风力发电技术论文

甘肃机电职业技术学院 现代装备制造工程系毕业论文风能和风力发电技术 姓名:酸菜 学号:G1******* 班级: G142701 年级: 2014级 指导老师:酸菜

摘要 (Ⅰ) 第1章风力发电的现状背景 (1) 1.1、风力发电的现状 (1) 1.2、风力发电的潜力 (2) 第2章风力发电类型特点 (4) 2.1风力发电特点 (4) 2.2风能发电优缺点 (4) 2.3风力发电结构 (4) 第3章发电机主要类型 (7) 3.1恒速风力发电机 (7) 3.2有限变速风力发电机 (7) 3.3变速风力发电机 (7) 第4章风力发电控制技术 (9) 4.1变桨距风力发电技术 (9) 4.2风力发电系统控制 (9) 4.3不同发电机的比较 (10) 第5章发展趋势建议 (12) 第6章总结 (13) 参考文献 (14) 致谢 (15)

风能是太阳能的一种转换形式,是一种重要的自然能源。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。风能作为一种无污染、可再生的绿色能源,它对于解决全球性的能源危机和环境危机有着重要的意义。因此,风力发电成为各国学者研究的重点。 风力发电的原理是利用风带动风车叶片旋转,再通过增速器将转速提高促使发电机发电。依据目前的风车技术,大约3m/s的微风速度便可以开始发电。风力发电的原理是最简单的风力风力发电机可由叶片和发电机两部分构成,空气流动作用在叶轮上,将动能转化为机械能,从而推动叶片旋转如果将叶轮的转轴与发电机的转轴相连,就会带动发电机发电,从而产生电能。 关键词:风能,风力发电;

海上风力发电及其关键技术分析 林亮

海上风力发电及其关键技术分析林亮 发表时间:2019-09-05T10:34:49.077Z 来源:《中国电业》2019年第09期作者:林亮屈伟 [导读] 随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。 中国船舶重工集团(天津)海上风电工程技术有限公司天津 300450 摘要:随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。 关键词:海上;风力发电;关键技术 1我国风力发电技术发展所面临的障碍 1.1发电机组安全性能不足 即使风力发电技术在今年来备受国家和企业重视,然而在安全性能方面没有过多关注,无法保证发电机组的安全性与稳定性,甚至部分设备存在安全隐患。发电机组是风力发电系统重要组成部分,机组运行效率与安全稳定性直接关系到系统的运行效率。国家与电力企业对风力发电技术推广不到位,部分地区没有科学进行技术改革,导致发电机组缺乏安全性,经常出现机组事故,给风力发电系统带来不良影响,降低系统安全性与稳定性,不利于新能源产业的可持续发展。 1.2成本高且监管力度薄弱 经济是限制海上风电发展的重要原因,对比化石能源电力,海上风电的发电成本高,现在我国近海风电统一电价0.85元/千瓦时,一些海域预期投资收益不理想。海上风电对设备和施工技术要求严格,海上风电机组要克服台风、盐雾腐蚀问题,且施工需要专业施工队伍和施工船舶。除此,有的海上设施寿命短,以及停止使用后的拆除与续期的问题都不可避免。海底电缆审批和海域论证审批的分离加大了企业成本,事中事后监管不足,相关配套政策的缺失也加大了建设与运营维护的难度。 1.3风力发电的市场化水平低 风力发电虽然已经有一定的发展时期,但在和市场对接方面仍处于起步阶段,商品化程度依旧很低。风力发电在商品化这一方面仍需要长时间的发展,才能有一台完善的市场机制。相应的市场化人才也是不可或缺的,风力发电需要的商品化人才依旧处于空缺阶段。国家和社会仍需要投入大量的人力物力财力发展相配套的设施和人员。 2海上风力发电及其关键技术分析 2.1海上风力发电技术概述 与传统能源的开采利用相比,利用海上风力资源面临空前的技术难题,如:能量转换设备的设计研发、发电设备的安装施工、海上风力发电电能的传输和供电网络的建设以及海上风力电场的运维管理等方面。因此尽管早在二十世纪的七十年代就有人提出了利用海上风力发电的设想,但是全面的科学研究和实践应用到上个世纪末才真正的全面展开。这由于与陆地风力发电技术的研究相比,海上风力发电面临的复杂施工地质环境缺乏成熟和可借鉴的工程技术做为基础,针对海水的波浪冲击、海冰影响、海水腐蚀以及海上风力和风向变化也没有系统的荷载计算和分析标准。另一方面因为特殊的工程环境和施工、运输以及运维技术需要等因素,造成海上风力发电场建设缺少足够的成熟经验做为参考,导致建设海上风力发电场的投资规模和回报率具有很多不确定性,因而海上风力发的商用推广近十年才随着相关技术的日渐成熟真正展开。 2.2关键技术 (1)海上风力发电机的选择 1)双馈式感应风力发电机双馈式感应风力发电机在海上风力发电站的应用最广泛,基本上普及了海上风力发电站。根据电刷和滑环调节转子电功率频率方式的不同,又可以分为有刷和无刷两种。2)永磁直驱式风力发电机永磁直驱式风力发电机组是目前海上风机发电的主要研究方向。它的涡轮机可以直接进行驱动,减少了齿轮箱环节,有效降低了发电机组运行过程中产生的噪音,且故障率较低,维护成本较低。永磁同步发电机直接与涡轮机连接,利用涡轮机的转化能力,将风能转化为机械能,然后利用永磁同步发电机将传递过来的机械能转化为交流电,并利用并网变频器实现对交流电的蒸馏、升压及逆变处理,最终得到三相电压频率恒定的交流电,并入到电网系统。3)无铁芯电机随着科学技术的发展,无铁芯电机具有安装和运输成本低的优点,越来越多地应用到海上风力发电机组设计中。例如:通过定子和转子均无铁芯的辐条式结构设计,降低了电机重量,同时有效扩大了电机容量。 (2)完善风力产业结构 风力发电技术发展过程中,需要重视风力产业结构的科学与完善。近日,某智慧新能源企业开展“变频控制风力发电系统的拓扑结构”,项目结构简单,功能全面且造价成本低。企业研究部署海上风力发电产业建设工作,推动区域内产业结构调整和风能结构调整,技术人员实地调研生产车间与大数据中心。技术人员使用3MW风机在珠海进行台风测试,设备在每秒68.5m风速下依旧可以稳定运行,并利用台风中的风资源为企业提供额外发电量。例如电白黄岭风电场,与同兆瓦级风电场单机相比,电白黄岭的电机累计发电量高达78.6%,真正意义上实现了风力产业的高质量发展与绿色发展。 (3)桩基式基础技术原理及其应用 在目前已经建成的海上风力发电场当中,桩式基础的应用占有最大的比例,尤其是其中的单桩式基础,是海上风电大国丹麦海上电场建设的主要基础形式。这一方面是因为这一设计形式的施工技术相对简单和经济,另一方面与丹麦沿海的海床工程地质条件有关。单桩式基础的材料采用大径空心柱形钢管,利用大功率的打桩设备直接嵌入海床,为了实现风电设施在海上的可靠稳定运行,单体式的钢管直径最大可达六米,能够适用的海水最大深度为30m。但是由于来自海水、海风和风机运行荷载的承载形式所限,这种风电设施基础形式对海床工程地质的要求相对较高,而且由于目前海上风力发电机组的单机容量越来越大,单桩的直径过大导致其经济性变差和面临施工技术瓶颈。因此在实践应用过程中又演化出了单立柱三桩、导管架式以及多桩承台式等多种桩基式基础,通过复杂的结构形式来增强基础的稳定性和对施工地质条件、荷载变化规律的适应性。其中的导管架式基础由于良好的经济性和广泛的适用性而获得了较多应用,而多桩承台式基础在桥梁和码头的建设中有着广泛应用,因此在我国有着比较丰富的设计使用经验和施工技术资源,因此在国内的海上风力发电场建设

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

浅谈风力发电及其控制技术

浅谈风力发电及其控制技术 发表时间:2020-03-10T13:22:48.110Z 来源:《中国电业》2019年20期作者:黄晓芳[导读] 随着我国电力事业的快速发展,新能源的应用也日益成熟摘要:随着我国电力事业的快速发展,新能源的应用也日益成熟,文章主要以风力发电为基础,对我国风力发电现状进行分析,并探讨控制技术在其中的应用,结合实际情况提出几点建议。 关键词:风力发电;控制技术;风力技术;发电控制引言 近年来,我国风力发电事业迅猛发展,在理论研究和技术应用两方面都取得了较突出的成果。随着风力发电的广泛应用,风能的最大化利用成为当前研究的重要课题。风能的最大化利用关键在于风力发电机组的最大风能捕获以及与风电场内其他风力发电设备的合理配套,从而实现风能资源的优化利用。 1我国风力发电的产能现状我国地大物博,风场资源丰富,利用风能可发电量超过10亿千瓦,这些风力资源地区主要分布在地广人稀的地区,例如西北地区、华北、东北以及东南沿海部分地区。我国20世纪实现了对小型发电机的自主研发和批量生产,缓解和满足了农牧民和岛屿地区人们的用电需求。东部沿海地区风能资源丰富,目前许多重大的风力发电设备就主要建于东部沿海地区,如建于重大的跨海大桥周边,其他主要分布于风能较丰富的丘陵地区。当然,我国风电事业也不是一帆风顺的,前些年由于风电行业的无序发展导致一系列的问题,例如风机事故、弃风限电等问题。之后国家要求各地区相关部门在审核风电项目时,要向国家能源局提交申请,有效地遏制了地方政府无限制的风能资源开发,也解决了风能过剩的问题。近两年,部分经营不好实力较弱的风电企业也退出市场,我国风电行业走向成熟化,并实现稳定发展的业态。 2风力发电控制技术的应用 2.1风轮的控制技术 第一,利用功率信号的反馈进行控制。利用功率信号的反馈进一步控制风轮的功率信号,当风轮运行时,它们的功率与实际条件的改变是一致的,然后再对功率的关系作出分析,之后绘制出最大功率的曲线图,完成以上工作后接着做后面的工作。在实际操作时,还应该对比最大功率与系统中的实际输出功率,获取它们的差值大小,之后再进行风轮桨矩的调整工作,这样才有助于风轮的运行功率最大化。这种方式使成本无须花费过多,但是风机在正常运行时要获得最大功率曲线较为困难。第二,对叶尖速比的控制。受到风力作用的影响,风轮中叶片尖端转动时具有线速度,并且将其称为叶尖速。其中叶尖速比表示为叶尖速与同一时间风速的比值。对叶尖速比进行控制的主要方法是控制叶轮的转速,从而进一步改善风机的运行系统。因为风速是不断变化的,所以很难有效地确定出最合适的叶尖速比,应该适当地改变和调节叶尖速,并调节好风轮转矩,从而更好地调整风轮外边缘的速度,使叶尖速比得到最优控制。 2.2自适应控制技术的应用 自适应控制技术是信息控制技术中的一种,其应用对业务理解要求比较高,将这项技术应用到风力发电机组控制系统中,可以对系统的各项性能情况进行分析并优化控制,确保各项控制参数的合理性及最优化。传统的风力发电机组控制系统需要构建参数模型来对各项参数进行调节,其对模型的完整性要求比较高。但是这类模型在工程实践转化过程中具有较大的难度,所以无法保证风力发电机组的控制效果。而自适应控制技术的合理应用可以对系统中各方面的变化情况进行实时掌握,并根据外界环境进行调整,具有明显的应用优势,提升风力发电机组的控制效率及发电性能。 2.3现代化的控制技术 风力发电中现代化的控制技术可以分为以下几种类型:鲁棒控制技术、变结构控制技术、智能控制技术以及自适应控制技术,风力发电机组控制系统中,以变结构控制技术为主,该技术运用广泛是因为具有很快的反应力、设计较为简单、实现难度不大;处理一些多变量问题时,鲁棒控制技术可以发挥出很好的作用,具有较强稳定性的鲁棒控制技术还能有效地处理好参数不准、建模出现误差或者物质系统受影响的问题;而智能控制技术最突出的方法是模糊控制,它无须过度依赖数学模型,只需凭借专家经验就能克服一些非线性因素带来的影响。目前,一套准确的风力发电机组被控对象数学模型的实现概难度很大,所以对风力发电机组进行控制的过程中,可以多使用模糊控制方法。 2.4风电无功电压自动控制技术 该技术主要是由多个系统共同参与实现风电场无功自动化控制的一种方法,具体包括风电场无功电压自动控制子站及相关的监控系统等。其中子站可作为模块集成到综合监控系统中,也可采用外挂的方法使其独立运行,其负责对风电场内设备的无功电压运行状态进行监视,利用通信线路将调节设备的无功电压控制指令发给相应的监控系统。监控系统的控制方式有两种,一种是远程控制,另一种是就地控制。在远控模式下,子站会自动对无功电压控制目标进行追踪,而在就地控制模式下,子站可按预先给定的并网点电压目标曲线进行控制。子站的运行及控制状态可以通过人工进行设置,同时,风电场内的各类控制设备可通过人工进行闭锁和解锁,设备的投退则可由系统自动控制。当电网处于稳定运行状态的条件下,子站能够对风电机组的无功调节能力进行充分利用,实现调节电压的目标,如果机组的无功调节能力不足,则会由动态无功补偿装置完成无功调节。此外,子站能够对风电机组的无功补偿状态进行协调,从而有效避免了不合理的无功输出。 3风力发电并网控制技术的发展策略 3.1做好谐波抑制措施 风力发电机组并网过程中,要提升其电能质量控制效果,并结合静止无功补偿器来有效抑制谐波危害问题,这种补偿器是用多台可投切电容器、电抗器和谐波滤波装置构成的,这一设备最大的特点是反应速度快,对于无功功率的变化能够实现实时跟踪。针对风速变化导致的电压变化也能够实现有效的调节,实现有效的谐波滤除,提升整体电网的电能供应质量。 3.2优化风能发电的输电结构 目前我国风力资源地区分布不均衡,必须加大对远距离电力传输装备和技术的研发力度。第一,要研发适合我国国情的远距离电力传输装备和技术,逐步解决我国不同地区风电资源分布平衡的问题;第二,要加大投资力度,全世界范围内引进优秀人才,让风力发电技术给风力资源匮乏地区带去便利和经济效益,与此同时,让环境欠发达地区享受风电资源带来的益处。通过发电与用电地区的分配平衡,将风能的利用率持续提升,减少对于化石燃料的依赖,减低污染性气体的排放,坚持走低碳环保路线,促进生态平衡。 3.3电压波动与闪变控制

永磁悬浮风力发电机国内外技术发展及专利简介

永磁悬浮风力发电机国内外技术发展及专利简 介 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

永磁悬浮风力发电机国内外技术发展及专利简介 供稿人:张蓓文 现行的风力发电机多为螺旋桨式结构,由于结构上的原因,一般都是定向安放,需要4级以上的风力才可以运行发电。对于2级以下的微风状态,基本上很难正常工作,这使得风能的利用和技术推广受到一定限制。随着永磁风力发电机的产生,使发电机的结构得到简化,效能提高,各种损耗也有明显的降低。它具有在额定的低转速下输出功率较大、效率高、温升低、起动阻力矩小、建压转速低等优点。在此基础上,研究人员又引入了磁力传动技术和磁悬浮技术,研制成了更为先进、高效的永磁悬浮风力发电机。 相关专利列举 以“(磁+悬浮)*风*(发电+风电)”及“wind and (turbine or generat) and (magnet and levitat or MAGLEV or breeze)”为检索策略,对中国知识产权局网站及欧洲专利局网站进行检索,现列举检索到的相关专利: 1、磁悬浮永磁风力发电机 申请人:赵克发明人:赵克 摘要: 一种磁悬浮永磁风力发电机,它采用了磁力传动技术和磁悬浮技术,从系统上解决了风力发电机向大功率发展中遇到需启动风力达一定大的难题,同时,通过磁力传动技术和磁悬浮技术的结合,克服了永磁转子风力发电机输出特性偏软的缺点。该磁悬浮永磁风力发电机,它是由原动力传送装置,磁力传动调速装置,磁

轮,磁悬浮永磁发电机等几部分组成的。因其启动风力小的特点,它可广泛用于各种交通工具,工厂,农村,城市住宅小区,高层建筑等领域。 主权项: 一种磁悬浮永磁风力发电机,它包括:原动力传送装置、磁力传动调速装置、磁轮、磁悬浮永磁发电机等几部分。其特征在于:原动力传送装置中的磁轮,与由不同规格大小、不同转速比的磁轮组成的磁力传动调速装置,保持着一定的间隙;同时,磁力传动调速装置中的磁轮,与安装在磁悬浮永磁发电机转轴上的磁轮,也保持着间隙;在转轴与磁悬浮永磁发电机的端盖之间,安装有磁悬浮装置。 2、新型永磁风力发电机 申请人:白晶辉发明人:白晶辉 摘要: 本实用新型公开了一种新型永磁风力发电机,其特征在于发电机部分中的发电机定子绕组,其结构采用双线并绕的形式进行绕制,两个绕组的头尾通过开关器件串联在一起,控制电路B通过D1、D2对由运算放大器IC1组成的电压比较电路进行供电,运算放大器IC1组成的电压比较电路对发电机定子绕组L1和L2上的电压进行检测,并输出信号,通过对开关器件J1、J2的通、断,改变发电机定子绕组L1和L2为串联或并联。 主权项: 一种新型永磁风力发电机,其特征在于发电机部分中的发电机定子绕组,其结构采用双线并绕的形式进行绕制,两个绕组的头尾通过开关器件串联在一起,控制电路B通过D1、D2对由运算放大器IC1组成的电压比较电路进行供电,运算放

风能技术

风能技术 内容简介 《风能技术》是“新能源技术”丛书之一。风能作为一种重要的可再生能源,其具有清洁、无污染、安全、储量丰富的特点,受到世界各国的普遍重视。《风能技术》主要讲解了风车和风力发电发展史、风的特性和风能资源、风力发电机组的布置、风力发电机组基础理论、风力发电系统设计、风力发电系统控制等内容。《风能技术》内容丰富、图文并茂、重点突出、应用性强。 《风能技术》可供风力发电技术领域的工程技术人员、研发人员、管理等相关人员阅读,也可作为高等院校相关专业师生的参考书。 图书目录 1 风车和风力发电发展史 1.1 20世纪以前的风力利用技术 1.2 风力发电发展简史 1.2.1 风力发电机组诞生的背景 1.2.2 风力发电的先驱者 1.2.3 以丹麦为中心的风力发电的发展史 1.2.4 20世纪风力发电机组技术的发展 2 风的特性和风能资源 2.1 风速功率谱 2.2 风速随高度变化 2.2.1 对数率分布 2.2.2 指数率分布 2.3 风速频率分布 2.4 风能 2.5 地形和风 2.5.1 日本各地由于区域地理环境形成的地形风 2.5.2 峡谷风 2.5.3 山脉对气流的抬升作用 2.6 风况分布图 2.6.1 局部地区风况预测模型LAwEPS

2.6.2 风况分布图 2.6.3 风速的历年变化 3 风力发电机组的布置 3.1 风和风能 3.2 风的特性 3.2.1 海陆风 3.2.2 山谷风 3.2.3 季风 3.2.4 高压低压引起的风 3.2.5 台风 3.2.6 地理环境形成的地形风 3.3 风的统计分析 3.3.1 逐时、月、年平均风速 3.3.2 风向玫瑰图 3.3.3 风速频率分布 3.3.4 威布尔分布 3.3.5 风功率密度 3.4 年发电量 3.5 风况数据的利用 3.5.1 风况观测站 3.5.2 日本的风况分布图 3.6 影响风况的各种因素 3.6.1 地表面的粗糙度 3.6.2 地形 3.6.3 障碍物 3.7 风况预测 3.7.1 基于风况观测数据进行风况预测的方法 3.7.2 利用气象模型进行风况预测方法

风力发电及其控制技术研究 (2)

风力发电及其控制技术研究 风力发电是当前我国经济社会发展中,是具有代表性的一种环保型的发电方式,对于推动社会经济可持续性增长具有不可比拟的积极作用。本文以风力发电为切入点分析其现存问题,就提出具体的控制技术要点进行深入探究,旨在为相关从业人员积累更多的实践经验。 标签:风力发电;控制技术;发展前景 我国风力发电技术水平在不断提高,但是仍旧有许多问题亟待解决,所以要正视目前风力发電技术存在的问题,积极争取社会各方的支持,在原有的基础上不断突破创新,投入一定的资金,不断完善相关政策,从而实现风力发电技术的良性发展,让风力发电技术真正成为我国电力供应的主流技术。 1加强风力发电控制的重要性 由于自然风速度快慢及方向大小存在着明显差异性,客观上要求相关技术人员重视风力发电控制技术,例如:控制机组切入及切出电网、限制输出功率、检测风轮运行期间中各种故障予以保护等。近几年来我国风力发电控制技术日趋成熟,即由定桨距恒速运行技术向变桨距变速运行技术转变,基本达到预期的生产目标。从风力发电机组角度来看,以调节机组功率为核心技术之一,其调节方法可划分为变桨距调节、定桨距失速调节及主动失速度调节。目前我国风力发电机组基本实现变桨距变速运行,结合风速风向的变化情况基本实现脱网、并网及调向控制各个发电机组,充分发挥变距系统作用,控制机组转速及功率。 2当前我国风力发电技术存在的问题 2.1风力资源分布不均 我国的国土面积十分广阔,每个地区的自然环境也有着很大差异,所以不同地区的风力资源分布十分不均匀,这就给风力发电工作带来了一定的困难。目前我国风力发电影视工作呈现出了,东南沿海和西北内陆发达,中部落后的趋势,风力发电事业发展十分不均衡。 2.2产业结构不合理 风力发电技术在我国不断更新发展,单机容量不断扩充,目前已经取得瞩目的进步,但是当前整个行业的产业结构仍然缺乏完善性,在零部件生产和产品创新方面,大多数发电技术都已经取得良好成果,实现了经济效益,但在核心零件生产过程中,仍没有实现自主式创新和开发,电力企业在进行风力发电技术改造时,大部分设备都来源于国外,国内缺乏独立资助的研发团队,这也进一步导致风力产业结构发展失衡,所以,还需要进一步加速产业结构变革,促进产业结构转型,形成完整的、具有发展潜力的风力发电产业结构。

风能发电3000字论文

关于新能源风能发电论文 姓名:王刚 班级:0801013328

风能发电 在不断持续的能源紧张中,不少人想到了新能源利用。利用洁净的能源(可再生能源)是人类社会文明进步的表现、是科学技术的发展、是环保理念的体现。洁净能源指太阳能、风能、潮汐能、生物能等,这都是可再生取之不尽的能源,特别是风能技术最为成熟,经济可行性较高,是一种较理想的发展能源。风是地球上的一种自然现象,它是由太阳辐射热引起的。风能是太阳能的一种转换形式,是一种重要的自然能源。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。 我国风能资源总量约42亿千瓦,技术可开发量约3亿千瓦。目前东南沿海是最大风能资源区,风能密度为200W/M2~300W/M2,大于6m/s的风速时间全年3000h以上就可取得较大经济效益。 一风力发电的现状 21世纪是可再生能源的世纪,由于风能非常丰富、价格非常便宜、能源不会枯竭,又可以在很大范围内取得,非常干净、没有污染,不会对气候造成影响,因而风力发电具有极大的推广价值。在中国,风能资源丰富的地区主要集中在北部、西北和东北的草原、戈壁滩以及东部、东南部的沿海地带和岛屿上。这些地区缺少煤炭及其他常规能源,并且冬春季节风速高,雨水少;夏季风速小,降雨多,风能和水能具有非常好的季节补偿。另外,在中国内陆地区,由于特殊的地理条件,有些地区具有丰富的风能资源,适合发展风电,比如江西省都阳湖地区以及湖北省通山地区。目前我国的风能利用方面与国际水平还在一定差距,但是发展很快,无论在发展规模上还是发展水平上,都有很大提高。据资料显示,2004年全国在建项目的装机容量约150万千瓦,其中正在施工的约42万千瓦,可研批复的68万千瓦,项目建议书批复的45万千瓦,包括五个10万千瓦特许权项目。 江西都昌老爷庙风电场风能资源丰富,建设条件较好,已被列为全国大型风电场预可研项目。目前,江西省能源结构性矛盾突出,一次能源只有煤炭和水电;而且电煤大部分需要从省外运入,水电开发程度又较低。风电和水电具有不同步发生规律,风力发电高峰处于秋季与冬季,水利发电高峰期处于春季和夏季,风电和水电具有季节性特性,可实现季节性互补;风力发电是环保型可再生能源,可改善电源结构,替代一部分火电容量,节约煤炭,减少污染,保护环境。 据资料显示,“十一五”末九江电网电力开始出现缺额,2010年缺额将达158兆瓦。老爷庙风电场的建设,可以缓解九江电网电力不足的矛盾,满足九江电网日益增长的电力需要;同时可就近向当地供电,减少了长距离输送的网损,提高供电可靠性和经济性。 据初步测算,目前风电场造价成本约为8000~9000元/KW,机组(设备)占75%左右,基础设施占20%,其它占5%。风能利用小时数在2700~3200小

中国海上风力发电发展现状以及趋势

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

国内外风力发电技术现状与发展

国内外风力发电技术现状与发展 风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。截止2005年世界装机容量已达58,982MW,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。 1 引言 风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。 风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。 2 风力发电基本知识 2.1 风能的计算公式 空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V 的风流经叶轮时,单位时间风传递给叶轮的风能为 (1) 其中:单位时间质量流量m=ρAV (2) 在实际中,(3) 式中: P W—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W; C p—叶轮的风能利用系数; ηm—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; ηe—发电机效率,一般为0.70—0.98; ρ—空气密度,kg/m3; A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。 2.2 贝茨(Betz)理论 第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建立的。 贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速

关于海上风力发电技术及风力发电机组可靠性问题的探析

关于海上风力发电技术及风力发电机组可靠性问题的探析 发表时间:2018-06-12T13:28:37.837Z 来源:《建筑学研究前沿》2018年第4期作者:李钢幕[导读] 我们应当积极借鉴并利用世界上已有的先进工程实例,充分挖掘我国沿海风力资源,推进海上风电场建设,为我国节能减排工作的顺利进行做出贡献。 中国电建集团核电工程有限公司摘要:本文作者结合多年工作经验,主要就海上风力发电技术及风力发电机组可靠性问题进行了相关研究,希望对加快我国海上风力发电发展有所帮助。 关键词:海上风力发电;风电场;能源海上风力发电是节能减排工作中的一项重要内容,具备诸多优势,海上风况明显优于陆地,湍流较小,空间大,环境污染和噪音污染较小便于开发,但海上风力发电也存在一定不足,其初期投资较大,并且在风电机组基础结构选型与实施、风电机组运输以及后期维护等方面的技术难度较大。此种情况下,加大力度探讨海上风力发电技术对于海上风能资源的开发和利用具有重要意义。 1 当前海上风力发电主要技术 1.1海上风场选址 海上风力发电场需要选择一个适合的地方进行,这将是一个繁琐复杂的工作。如果选址不正确的话很可能会导致项目建设的失败。那么,电场选址应该考虑的因素主要包括以下几方面:(1)关于项目建设的审批是否经过相关部门的许可。(2)建设之前一定要注意是否获得海域的使用权。(3)建设的时候要对环境进行相关的了解,包括水深度、海域的范围、风能资源的多少以及地质条件是否有优势。(4)要考虑环境制约的因素,相关人员要考虑到风力发电场的坚实是否会对当地的生态环境造成破坏。 1.2海上风力发电机的结构支撑 目前海上风力发电机的建造结构形式主要有四种,分别是:单桩、混凝土重力式陈翔、多桩、吸力式:(1)单桩:单桩的结构通常是在海床下十米到二十米深处,深度应该要按照海床的类型变化。通常桩径大约是两到四米左右,单桩的结构制造比较简单,缺点是施工安装费用都比较高。(2)混凝土沉箱。它的优势是造价比较低,不太受海床的影响,但是在进行建造的过程当中必须要海底准备,此外,它的尺寸和重量比较大,施工的时候也比较复杂。(3)多桩基础,它的特点是桩径比较小,但适用于深海的建造,由于多桩的建造经验较少,因而较少实际应用到工作方面。(4)吸力式基础,吸力式基础主要分为单柱和多柱沉箱基础。吸力式沉箱基础适用于软粘土,吸力式沉箱基础的安装费用比较高。 1.3海上风机机组 海上风电机组的安装主要包括两种方式:分体安装和整体安装。分体安装是指在目标海域按照基础→塔筒→机舱→叶片的顺序依次将机组的各主要部件装配成一个整体,这种施工方法与陆上风电场类似,适用于潮间带及近海区域,目前运行的多数风电场均按该方法建造;而整体安装则是在岸边将机组各部件装配成一个整体,竖直放置于运输船运送并安放至目标地点,以减少海况对装配精度的影响,作业费用较低,这种施工方法是近年发展起来的,也已有成功案例。 2海上风电机组运行可靠性问题研究 2.1 塔架基础的可靠性 目前海上风电机组基础主要分为两大类:悬浮式和底部固定式。悬浮式主要利用海水的浮力,及绳缆的固定作用,将风电机组“固定”在海里;底部固定式即利用单桩或多桩,直接把塔架与海底基础连接起来。目前浅海区域多采用单桩或三桩结构,而深海区域则多采用悬浮式基础。 悬浮式:悬浮式基础适用于深海区域,在保证风电机组正常运行的情况下,悬浮式基础可以大大降低基础的建设成本,从而降低海上风电的生产成本,但是在强风等恶劣环境下,其可靠性远远不及底部固定式,所以在其基础缆绳以及底部配重的设计上要求留有较大余量。 底部固定式:相对于悬浮式,稳定性更加优越,不会受海水波浪冲击效应的影响。由于其底部与海底直接刚性连接,所以不会有较大幅度的摆动,这很好的保证了塔顶发电机组的平稳运行,同时对于主轴而言,载荷的波动较小,这有力的延长了主轴的使用寿命,降低了风电机组的使用成本。 对于底部固定式基础,由于浸泡在海水中,长期受海浪、洋流的冲刷作用以及海水的腐蚀作用,基础易发生松动,严重时甚至会导致风电机组倾覆,这个问题必须引起重视。建议要在风电机组上安装基础实时监视装置,然后通过无线发射器将检测信号传输至主控室,以便安全检修人员及时发现和排除风电机组基础的安全隐患。 2.2机组的防腐蚀与防潮湿 风力机内部有很多的电气控制部分,其运行时不允许湿度过大,所以在海上高湿度的环境中,防潮防湿显得尤为重要。防湿的手段有很多,现在普遍采用的是密闭舱式,即把风电机组的机舱做成密闭形式,然后利用空调系统对风电机组内部构件散热和保温。这样能达到较好的防潮效果,但对空调系统运行的可靠性要求相对很高。除了防潮,防腐蚀也相当关键。由于海上的空气湿度大,并且海水中各种溶盐离子较多,致使风电机组结构很容易发生电化学腐蚀。一般风电机组的设计使用寿命都在二十年以上,所以还上的风电机组一定要有较强的抗腐蚀能力。现在比较常用的手段是在风电机组易腐蚀的部位适用抗腐蚀材料、在风电机组外表面涂刷防腐蚀涂料、使用不会被腐蚀的高强度复合材料等。这对风电机组有效的起到了防腐蚀作用。 2.3 极端恶劣天气的影响 我国南方沿海地区,在夏季和秋季经常会遭受台风和强热带风暴的影响,而在北方沿海地区,冬季经常会出现严寒低温、海面结冰情况,因此海上风电机组必须要考虑台风、海啸、冰冻、海冰等极端恶劣天气的影响。首先,风电场的选址要尽量选择风速稳定、台风路径较少经过的区域。对于北方可能出现海冰的区域,要根据往年气象资料,研究海冰厚度及对风电机组的影响,然后进行实验模拟,最后科学选址。其次,在风电机组设计时,要考虑破坏性天气发生时对风电机组的损坏,以及制定相应的安全防范措施。比如风电机组的叶片强度可以根据塔架及机舱的强度而设计,使其强度低于塔架的强度,这样在遇到破坏性强风的时候,叶片可以先行断裂脱落,从而最大程度的保护主机舱,把损失减小到最小。

风力发电控制技术

风力发电及其控制技术 摘要: 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。风力发电系统中的控制技术和伺服传动技术是其中的关键技术,这是因为自然风速的大小和方向是随机变化的,风力发电机组的切入(电网)和切出(电网)、输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和保护必须能够自动控制。同时,风力资源丰富的地区通常都是海岛或边远地区甚至海上,分散布置的风力发电机组通常要求能够无人值班运行和远程监控,这就对风力发电机组的控制系统的可靠性提出了很高的要求 一、风电控制系统简述 风电控制系统包括现场风力发电机组控制单元、高速环型冗余光纤以太网、远程上位机操作员站等部分。现场风力发电机组控制单元是每台风机控制的核心,实现机组的参数监视、自动发电控制和设备保护等功能;每台风力发电机组配有就地HMI人机接口以实现就地操作、调试和维护机组;高速环型冗余光纤以太网是系统的数据高速公路,将机组的实时数据送至上位机界面;上位机操作员站是风电厂的运行监视核心,并具备完善的机组状态监视、参数报警,实时/历史数据的记录显示等功能,操作员在控制室内实现对风场所有机组的运行监视及操作。风力发电机组控制单元(WPCU)是每台风机的控制核心,分散布置在机组的塔筒和机舱内。由于风电机组现场运行环境恶劣,对控制系统的可靠性要求非常高,而风电控制系统是专门针对大型风电场的运行需求而设计,应具有极高的环境适应性和抗电磁干扰等能力。 风电控制系统的现场控制站包括:塔座主控制器机柜、机舱控制站机柜、变桨距系统、变流器系统、现场触摸屏站、以太网交换机、现场总线通讯网络、UPS电源、紧急停机后备系统等。 风力发电的基本原理 风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。 风力发电的原理是利用风带动风车叶片旋 转,再通过增速器将旋转的速度提高来促 使发电机发电的。依据目前的风车技术, 大约3m/s的微风速度便可以开始发电。风 力发电的原理说起来非常简单,最简单的 风力发电机可由叶片和发电机两部分构成 如图1-1所示。空气流动的动能作用在叶 轮上,将动能转换成机械能,从而推动片 叶旋转,如果将叶轮的转轴与发电机的转

相关文档
最新文档