高中数学课时作业:二项分布与正态分布

高中数学课时作业:二项分布与正态分布
高中数学课时作业:二项分布与正态分布

课时作业69 二项分布与正态分布

一、选择题

1.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则它们都中靶的概率是( D )

A.35

B.34

C.1225

D.1425

解析:由题意知甲中靶的概率为45,乙中靶的概率为7

10,两人打靶相互独立,同时中靶的概率P =45×710=1425.

2.两个实习生每人加工一个零件,加工为一等品的概率分别为23和3

4,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( B )

A.12

B.512

C.14

D.16

解析:恰有一个一等品即一个是一等品,另一个不是一等品,则情形为两种,所

以P =23×? ????1-34+? ??

??1-23×34=512. 3.(广东珠海一模)夏秋两季,生活在长江口外浅海域的中华鲟洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长大到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鲟鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为( C )

A .0.05

B .0.007 5 C.13

D.16 解析:设事件A 为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B 为雌性个体成功溯流产卵繁殖,由题意可知P (A )=0.15,P (AB )=0.05,∴P (B |A )=

P (AB )P (A )=0.050.15=1

3

.故选C. 4.甲、乙两类水果的质量(单位:kg)分别服从正态分布N (μ1,σ21),N (μ2,σ2

2),其

正态分布密度曲线如图所示,则下列说法错误的是( D )

A .甲类水果的平均质量为0.4 kg

B .甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右

C .甲类水果的平均质量比乙类水果的平均质量小

D .乙类水果的质量服从的正态分布的参数σ2=1.99

解析:由图象可知甲的正态曲线关于直线x =0.4对称,乙的正态曲线关于直线x =0.8对称,所以μ1=0.4,μ2=0.8,故A 正确,C 正确.由图可知甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右,故B 正确.因为乙的正态曲线的最大值为1.99,即12πσ2

=1.99,所以σ2≠1.99,故D 错误,于是选D.

5.若同时抛掷两枚骰子,当至少有5点或6点出现时,就说这次试验成功,则在3次试验中至少有1次成功的概率是( C )

A.125729

B.80243

C.665729

D.100243

解析:一次试验中,至少有5点或6点出现的概率为1-? ????1-13×? ????1-13=1-49=5

9,设X 为3次试验中成功的次数,则X ~B ? ??

??3,59,故所求概率P (X ≥1)=1-P (X

=0)=1-C 0

3×?

????590×? ??

??493=665

729,故选C. 6.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相

互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( D )

A.12

B.13

C.14

D.16

解析:记第i 名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i 、B i 、C i ,i =1、2、3.由题意知,事件A i 、B i 、C i (i =1、2、3)相互独立,则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=1

6(i =1、2、3),故这3名民工选择的项目所属类别互异的概率是P =A 3

3P (A i B i C i )=6×12×13×16=16.故选D.

二、填空题

7.(江西南昌模拟)口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为35.

解析:口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,设事件A 表示“第一次取得红球”,事件B 表示“第二次取得白球”,则P (A )=26=13,P (AB )=26×35=1

5,∴第一次取得红球后,第二次取得白球的概率为P (B |A )=P (AB )P (A )=1

513

=3

5

.

8.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是1

2.质点P 移动五次后位于点(2,3)的概率是516.

解析:因为质点移动五次后位于点(2,3),所以质点P 必须向右移动2次,向上移动3次.

故其概率为

C 35?

????123·? ????122=C 35? ??

??125=516.

9.已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4).现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有8_186件.

附:若X 服从正态分布N (μ,σ2),则P (μ-σ

2σ)≈0.954 5.

解析:由题意知μ=100,σ=2,则P (98

2[P (μ-σ

10.在四次独立重复试验中,事件A 在每次试验中出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 恰好发生一次的概率为32

81.

解析:设事件A 在每次试验中发生的概率为p ,则事件A 在4次独立重复试验

中,恰好发生k 次的概率为P (X =k )=C k 4p k

(1-p )4-k (k =0,1,2,3,4),∴P (X =0)=C 04

p 0(1-p )4=(1-p )4,由条件知1-P (X =0)=6581,∴(1-p )4=1681,∴1-p =23,∴p =13.∴P (X =1)=C 14p ·

(1-p )3=4×13×? ????233=32

81

. 三、解答题

11.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场且甲篮球队胜3场,已知甲球队第5,6场获胜的概率均为3

5,但由于体力原因,第7场获胜的概率为25.

(1)求甲队以43获胜的概率;

(2)设X 表示决出冠军时比赛的场数,求X 的分布列和数学期望. 解:(1)设甲队以43获胜的事件为B ,

∵甲队第5,6场获胜的概率均为35,第7场获胜的概率为2

5, ∴甲队以43获胜的概率 P (B )=? ????1-352·25=8125

, ∴甲队以43获胜的概率为8125.

(2)随机变量X 的可能取值为5,6,7,P (X =5)=3

5,P (X =6)=? ????1-35·35=625,P (X =

7)=? ????1-352·25+1-352·?

?

???1-25=425,∴随机变量X 的分布列为

X 5 6 7 P

35 625 425

E (X )=5×35+6×625+7×425=139

25.

12.(河北石家庄新华模拟)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标值,所得频率分布直方图如下:

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表);

(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布N (μ,σ2),利用该正态分布,求Z 落在(14.55,38.45)内的概率;

②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.

附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为σ=142.75≈11.95;

②若Z ~N (μ,σ2),则P (μ-σ

(2)①∵Z 服从正态分布N (μ,σ2),且μ=26.5,σ≈11.95,

∴P (14.55

②根据题意得X ~B ?

?

?

??4,12,

P (X =0)=C 04

? ????124=116; P (X =1)=C 14

? ????124=14;

P (X =2)=C 24

? ????124=38;

P (X =3)=C 34

? ????124=14; P (X =4)=C 44

? ??

??124=116.

∴X 的分布列为

X 0 1 2 3 4 P

116

14

38

14

116

∴E (X )=4×1

2=2.

13.(唐山市摸底考试)

某篮球队在某赛季已结束的8场比赛中,队员甲得分统计的茎叶图如图.

(1)根据这8场比赛,估计甲每场比赛中得分的均值μ和标准差σ;

(2)假设甲在每场比赛的得分服从正态分布N (μ,σ2),且各场比赛间相互没有影响,依此估计甲在82场比赛中得分在26分以上的平均场数.

参考数据:

32≈5.66,32.25≈5.68,32.5≈5.70.

正态总体N (μ,σ2)在区间(μ-2σ,μ+2σ)内取值的概率约为0.954. 解:(1)μ=1

8(7+8+10+15+17+19+21+23)=15,

σ2=1

8[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.所以σ≈5.68. 所以估计甲每场比赛中得分的均值μ为15,标准差σ为5.68. (2)由(1)得甲在每场比赛中得分在26分以上的概率

P (X ≥26)≈12[1-P (μ-2σ

2(1-0.954)=0.023,设在82场比赛中,甲得分在26分以上的次数为Y ,则Y ~B (82,0.023).

Y 的均值E (Y )=82×0.023=1.886.

由此估计甲在82场比赛中得分在26分以上的平均场数为1.886. 尖子生小题库——供重点班学生使用,普通班学生慎用

14.(惠州市调研考试)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p =2

3,记该班级完成n 首背诵后的总得分为S n .

(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的分布列及数学期望.

解:(1)当S 6=20时,即背诵6首后,正确的有4首,错误的有2首.

由S i ≥0(i =1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;

若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.

则所求的概率P =(23)2×C 24(23)2×(13)2+23×13×23×C 2

3(23)2×13=1681. (2)由题意知ξ=|S 5|的所有可能的取值为10,30,50,又p =23, ∴P (ξ=10)=C 35(

23)3×(13)2+C 2

5(23)2×(13)3=4081,

P (ξ=30)=C 45(23)4×(13)1+C 1

5(23)1×(13)4=3081, P (ξ=50)=C 55(

23)5×(13)0+C 0

5(23)0×(13)5=1181,

∴ξ的分布列为

∴E (ξ)=10×4081+30×3081+50×1181=1 850

81.

社会统计学习题集--二项分布与正态分布.

第七章假设检验 第一节二项分布 二项分布的数学形式·二项分布的性质 第二节统计检验的基本步骤 建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定 第三节正态分布 正态分布的数学形式·标准正态分布·正态分布下的面积·二项分布的正态近似法 第四节中心极限定理 抽样分布·总体参数与统计量·样本均值的抽样分布·中心极限定理 第五节总体均值和成数的单样本检验 σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验·关于总体成数的检验一、填空 1.不论总体是否服从正态分布,只要样本容量n足够大,样本平均数的抽样分布就趋于(正态)分布。 2.统计检验时,被我们事先选定的可以犯第一类错误的概率,叫做检验的( 显著性水平,它决定了否定域的大小。 3.假设检验中若其他条件不变,显著性水平的取值越小,接受原假设的可能性越(大),原假设为真而被拒绝的概率越(小)。 4.二项分布的正态近似法,即以将B(x;n,p视为(( np ,npq查表进行计算。 5.已知连续型随机变量~(0,1,若概率P{≥}=0.10,则常数= ()。 6.已知连续型随机变量~(2,9,函数值,则概率=()。 二、单项选择

1.关于学生t分布,下面哪种说法不正确( B )。 A 要求随机样本 B 适用于任何形式的总体分布 C 可用于小样本 D 可用样本标准差S代替总体标准差 2.二项分布的数学期望为( C )。 A n(1-np B np(1- p C np D n(1- p。 3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为( D )。 A 大于0.5 B -0.5 C 1 D 0.5。 4.假设检验的基本思想可用( C )来解释。 A 中心极限定理 B 置信区间 C 小概率事件 D 正态分布的性质 5.成数与成数方差的关系是(D)。 A 成数的数值越接近0,成数的方差越大 B 成数的数值越接近0.3,成数的方差越大 C 成数的数值越接近1,成数的方差越大 D 成数的数值越接近0.5,成数的方差越大 6.在统计检验中,那些不大可能的结果称为( D 。如果这类结果真的发生了, 我们将否定假设。 A 检验统计量 B 显著性水平 C 零假设 D 否定域 7.对于大样本双侧检验,如果根据显著性水平查正态分布表得Zα/2=1.96,则当零假设被否定时,犯第一类错误的概率是( C 。 A 20% B 10% C 5% D.1% 8.关于二项分布,下面不正确的描述是( A )。 A 它为连续型随机变量的分布;

高三数学 正态分布和线性回归(知识点和例题)

正态分布和线性回归高考要求 1.了解正态分布的意义及主要性质 2.了解线性回归的方法和简单应用 知识点归纳 1.正态分布密度函数: 2 2 () 2 () 2 x f x e μ σ πσ - - =,(σ>0,-∞<x<∞) 其中π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为) , (2 σ μ N 2.正态分布) , (2 σ μ N)是由均值μ和标准差σ唯一决定的分布 例1、下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)2 2 2 1 ) ( x e x f- = π ,(-∞<x<+∞) (2) 2 (1) 8 () 22 x f x e π - - =,(-∞<x<+∞) 解:(1)0,1 (2)1,2 3.正态曲线的性质:正态分布由参数μ、σ唯一确定,如果随机变量ξ~N(μ,σ2),根据定义有:μ=Eξ,σ=Dξ。 正态曲线具有以下性质: (1)曲线在x轴的上方,与x轴不相交。 (2)曲线关于直线x =μ对称。 (3)曲线在x =μ时位于最高点。 (4)当x <μ时,曲线上升;当x >μ时,曲线下降。并且当曲线向左、

右两边无限延伸时,以x 轴为渐近线,向它无限靠近。 (5)当μ一定时,曲线的形状由σ确定。σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。 五条性质中前三条较易掌握,后两条较难理解,因此应运用数形结合的原则,采用对比教学 4.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其 相应的函数表示式是2 221)(x e x f - = π ,(-∞<x <+∞) 其相应的曲线称为标准正态曲线 标准正态总体N (0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题 5.标准正态总体的概率问题: 对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率, 即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x <只要有标准正态 分布表即可查表解决.从图中不难发现:当00

二项分布与正态分布 练习题

二项分布与正态分布 1.用电脑每次可以自动生成一个(0,1)内的实数,且每次生成每个实数都是等可能的,若用该电脑连续生成3个实数,则这3个实数都大于1 3 的概率为( ) A.1 27 B.23 C. 827 D.49 解析:选C 由题意可得,用该电脑生成1个实数,且这个实数大于1 3的概率为P = 1-13=23,则用该电脑连续生成3个实数,这3个实数都大于13的概率为? ????233=8 27.故选 C. 2.(2019·汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和3 4,甲、乙两人是否获得一等奖相互独立,则这两个人中 恰有一人获得一等奖的概率为( ) A.34 B.23 C.57 D.512 解析:选D 根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是23×? ????1-34+34×? ????1-23=5 12 ,故选D. 3.(2018·厦门二模)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( ) A.25 B.35 C.18125 D.54125 解析:选D 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率为35,∴3次中恰有2次抽到黄球的概率是P =C 23? ????352? ????1-35= 54 125 . 4.(2018·唐山二模)甲、乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( ) A.2 9 B.49

C.23 D.79 解析:选D 甲不跑第一棒共有A 13·A 3 3=18种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A 33=6种情况;(2)乙不跑第一棒,共有A 12·A 12·A 2 2=8 种情况,∴甲不跑第一棒的条件下,乙不跑第二棒的概率为6+818=79 .故选D. 5.(2019·福建四校联考)某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩X 近似服从正态分布N (100,a 2)(a >0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的1 10,则此次数学考试成绩在100 分到110分之间的人数约为( ) A .400 B .500 C .600 D .800 解析:选A 由题意得,P (X ≤90)=P (X ≥110)=110,所以P (90≤X ≤110)=1-2× 1 10=45,所以P (100≤X ≤110)=2 5,所以此次数学考试成绩在100分到110分之间的人数约为 1 000×2 5 =400.故选A. 6.(2018·河北“五个一名校联盟”二模)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为1 5, 则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.1 10 B.15 C.25 D.12 解析:选C 设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=1 5,则在第一次闭合后出现红灯的条件 下第二次闭合出现红灯的概率是P (B |A )=P AB P A =1 512 =25 .故选C. 7.(2019·淄博一模)设每天从甲地去乙地的旅客人数为随机变量X ,且X ~ N (800,502),则一天中从甲地去乙地的旅客人数不超过900的概率为( )

高中数学正态分布知识点+练习

正态分布 要求层次 重难点 正态分布 A 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. (一) 知识内容 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近 的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22 ()2()2πx f x e μσσ --=?,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作 2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线. ⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. 例题精讲 高考要求 正态分布 x=μ O y x

⑶重要结论: ①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%. ②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则. (二)典例分析: 【例1】 已知随机变量X 服从正态分布2(3)N a , ,则(3)P X <=( ) A .1 5 B . 1 4 C .1 3 D . 12 【例2】 在某项测量中,测量结果X 服从正态分布() ()210N σσ>,,若X 在()01, 内取值的概率为0.4,则X 在()02, 内取值的概率为 . 【例3】 对于标准正态分布()01N , 的概率密度函数()2 2 x f x -=,下列说法不正确的是( ) A .()f x 为偶函数 B .()f x C .()f x 在0x >时是单调减函数,在0x ≤时是单调增函数 D .()f x 关于1x =对称 【例4】 已知随机变量X 服从正态分布2(2)N σ, ,(4)0.84P X =≤,则(0)P X =≤( ) A .0.16 B .0.32 C .0.68 D .0.84 【例5】 某种零件的尺寸服从正态分布(04)N ,,则不属于区间(44)-,这个尺寸范围的零件约占总数 的 . 【例6】 已知2(1)X N σ-, ~,若(31)0.4P X -=≤≤-,则(31)P X -=≤≤( ) A .0.4 B .0.8 C .0.6 D .无法计算 【例7】 设随机变量ξ服从正态分布(29)N ,,若(2)(2)P c P c ξξ>+=<-,则_______c =.

人教版高中数学(理科)选修正态分布(一)

正态分布(一) 教学目的: 1 掌握正态分布在实际生活中的意义和作用 2.结合正态曲线,加深对正态密度函数的理理 3.通过正态分布的图形特征,归纳正态曲线的性质 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 教学难点:通过正态分布的图形特征,归纳正态曲线的性质 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的其密度函数可写成: 2 () 2 (),(,) x f x x μ σ - - =∈-∞+∞,(σ>0) 由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为) , (2 σ μ N 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征 5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过) ( ) ( σ μ - Φ = x x F转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为 2 2 1 2 1 ) (x e x F- = π ,x∈(-∞,+∞),从而使正态分布的研究得以简化 6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质教学过程: 一、复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

高考数学百大经典例题 正态分布

借助于标准正态分布表求值 例 设ξ服从)1,0(N ,求下列各式的值: (1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP 分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地. 解:(1);0094.09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P (2);1075.08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP (3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P .8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ= 说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用. 求服从一般正态分布的概率 例 设η服从)2,5.1(2N 试求: (1));5.3(<ηP (2));4(-<ηP (3));2(≥ηP (4)).3(<ηP 分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(?? ? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=??? ??-Φ=<ηP

二项分布与正态分布

二项分布与正态分布 [最新考纲] 1.了解条件概率和两个事件相互独立的概念. 2.理解n 次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题. 知 识 梳 理 1.条件概率及其性质 设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 若事件A ,B 相互独立,则P (B |A )=P (B );事件A 与B ,A 与B ,A 与B 都相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). (2)二项分布 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发 生的概率为p ,则P (X =k )=C k n p k (1-p ) n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 4.正态分布 (1)正态分布的定义及表示 如果对于任何实数a ,b (a

机变量X 服从正态分布,记为X ~N (μ,σ2). 函数φμ,σ(x )=,x ∈R 的图象(正态曲线)关于直线x =μ对称,在x =μ处达到峰值1σ2π. (2)正态总体三个基本概率值 ①P (μ-σ

高中数学必修2-3第二章2.4正态分布

2.4 正态分布 1.问题导航 (1)什么是正态曲线和正态分布? (2)正态曲线有什么特点?曲线所表示的意义是什么? (3)怎样求随机变量在某一区间范围内的概率? 2.例题导读 请试做教材P 74练习1题. 1.正态曲线 函数φμ,σ(x )=1 2πσ e -(x -μ)2 2σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数, φμ,σ(x )的图象为__________________正态分布密度曲线,简称正态曲线. 2.正态分布 一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=??a b φ μ,σ (x)d x , 则称随机变量X 服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X 服从正态分布,则记为________X ~N (μ,σ2). 3.正态曲线的性质 正态曲线φμ,σ(x)=1 2πσ e -(x -μ)22σ2,x ∈R 有以下性质: (1)曲线位于x 轴________上方,与x 轴________不相交; (2)曲线是单峰的,它关于直线________x =μ对称; (3)曲线在________x =μ处达到峰值________1 σ2π ; (4)曲线与x 轴之间的面积为________1; (5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图①; (6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②. 4.正态总体在三个特殊区间内取值的概率值

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

二项分布与正态分布的特点及联系

二项分布与正态分布的特点及他们的联系 2008-05-23 09:22:10| 分类:数学|举报|字号订阅 正态分布的特点如下: 1.正态分布的形式是对称的,它的对称轴是过平均数点的垂直线,即关于x=u对称。 2.曲线在Z=0处为最高点,向左右延伸时,在正负1个标准差之内,既向下又向内弯。从正负1个标准差开始,既向下又向外弯。拐点位于正负一个标准差处,曲线两端向靠近基线处无限延伸和接近,但不相交。 3.正态分布下的面积为1,过平均数的垂直线将面积分为左右各0.50的部分。正态曲线下的每一面积都可以被看成是概率,即对应着横坐标值的随机变量出现的概率。 4.正态分布是一族分布,它随着随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。但是所有的正态分布都可以通过公式Z=(Xl—M)/S,转换成标准正态分布,即平均数为0,标准差为1的正态分布。 5.在正态分布曲线中,标准差与概率(面积)有一定的关系。 二项分布的特点如下: 1、二项分布的均值为np,方差为npq。 2、以事件A出现的次数为横坐标,以概率为纵坐标,画出二项分布的图象,可以看出: (1)、二项分布是一种离散性分布 (2)、当p=q=0.5时,图象对称;当p不等于q时,图形是偏斜的。p>q 时,呈负偏态; 3、n->∞时,趋近于正态分布N(np,npq)

一般1/2np>=5且nq>=5时,二项分布就非常接近正态分布。 二项分布函数在教育中主要用来判断试验结果的机遇性与真实性的界限,例如,求测验猜测行为的判断标准:在选择题测验中,通过二项分布计算得出被试凭猜测答对N道以上的概率。 阅读(744)|评论(0)

二项分布、超几何分布、正态分布总结归纳及练习

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均 为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ???? ==?= ? ????? ∴; 12 13 1448(1)55125 P X C ???? ==?= ? ?????; 21 231412(2)55125P X C ???? ==?= ? ?????; 3 33 141(3)55125 P X C ???? ==?= ? ?????. 因此,X 的分布列为 X 0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101 (2)15 C C P Y C ===. 因此,Y 的分布列为 Y 0 1 2 P 715 715 115 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 超几何分布和二项分布都是离散型分布

高中正态分布经典练习题

正 态分布 一、选择题 1.已知随机变量ξ服从正态分布)9,2(N ,若)1()1(-<=+>c P c P ξξ,则c 等于() A.1 B.2 C.3 D.4 2.已知随机变量ξ服从正态分),2(2σN ,且8.0)4(=<ξP ,则)20(<<ξP 等于() A.0.6 B.0.4 C.0.3 D.0.2 3.已知随机变量ξ服从正态分布),2(2σN ,(4)0.84P ξ=≤,则(0)P ξ≤等于() A.0.16 B.0.32 C.0.68 D.0.84 4.已知随机变量X 服从正态分布),2(2σN ,8.0)40(=<X P 等于() A .0.1B.0.2C.0.4D.0.6 5.已知随机变量ξ服从正态分布),3(2σN ,且3.0)2(=<ξP ,则)42(<<ξP 等于() A.0.5 B.0.2 C.0.3 D.0.4 6.已知随机变量ξ服从正态分布),3(2σN ,(4)0.842P ξ=≤,则(2)P ξ≤等于() 7.已知随机变量X 服从正态分布)1,3(N ,且6826.0)42(=<X P 等于() A.0.1588 B.0.158 C.0.1586 D.0.1585 8.已知随机变量X 服从正态分布),0(2σN ,若023.0)2(=>X P ,则(22)P X -≤≤等于() A.0.477 B.0.628 C.0.954 D.0.977 9.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.2 10.已知随机变量X 服从正态分布2(,)N μσ,且(22)0.9544P X μσμσ-<<+=,()0.6826P X μσμσ-<<+=,若4,1μσ==,则(56)P X <<=() A.0.1358 B.0.1359 C.0.2716 D.0.2718 11.某商场经营的一种袋装的大米的质量服从正态分布)1.0,10(2N (单位kg ),任选一袋这种大米,其质量在9.8~10.2kg 的概率为() A.0.0456 B.0.6826 C.0.9544 D.0.9974 12.一批电池的使用时间X (单位:小时)服从正态分布)4,36(2N ,在这批灯泡中任取一个“使用时间不小于40小时”的概率是() C.0.3174 D.0.1587 二、填空题

二项分布、超几何分布、正态分布总结归纳与练习

二项分布?还是超几何分布 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用 这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 1 袋中有 8 个白球、 2 个黑球,从中随机地连续抽取 3 次,每次取 1 个球.求:( 1)有放回抽样时,取到黑球的个数X的分布列; ( 2)不放回抽样时,取到黑球的个数Y的分布列. 解:( 1)有放回抽样时,取到的黑球数X可能的取值为0,1, 2, 3.又由于每次取到黑球的概率 均为1 , 3 次取球可以看成 3 次独立重复试验,则 1 ,.5X~B 35 0312 ∴ P(X 0) C301 464 ;P(X 1)C31 1 448 ; 5512555125 21 P(X 3) C33 130 P(X 2) C321 412 ;4 1 .5512555125 因此, X 的分布列为 X0123 P 6448121 125125125125 (2)不放回抽样时,取到的黑球数Y可能的取值为0, 1,2,且有: P(Y 0)C20C837 ;P(Y1)C21C82 7 ;P(Y2)C22C81 1 . C10315C10315C10315 因此, Y 的分布列为 Y012 771 P 1515 15 例 2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40 件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495] , (495,500] ,,, ,(510,515] ,由此得到样本的频率分布直方图,如图4 ( 1)根据频率分布直方图,求重量超过505 克的产品数量 , ( 2)在上述抽取的40 件产品中任取 2 件,设 Y 为重量超过505 克 的产品数量,求Y 的分布列; ( 3)从该流水线上任取 5 件产品,求恰有 2 件产品的重量超过505 克的概率。

二项分布与正态分布习题理含答案

一、选择题 1.某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是() A.0.18B.0.28 C.0.37 D.0.48 [答案] A [解析]C0.43·0.6+C·0.44=0.1792.故应选A. 2.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为() A.0.2 B.0.41 C.0.74 D.0.67 [答案] C [解析]设事件A为“预报一次,结果准确”P=P(A)=0.8,至少有4次准确这一事件是下面两个互斥事件之和:5次预报,恰有4次准确;5次预报,恰有5次准确,故5次预报,至少有4次准确的概率为P5(4)+P5(5)=C×0.84×0.2+C×0.85×0.20≈0.74.故应选C. 3.(2011·湖北理,5)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=() A.0.6 B.0.4 C.0.3 D.0.2 [答案] C [解析]本题考查利用正态分布求随机变量的概率. ∵P(ξ<4)=0.8,∴P(ξ≥4)=0.2,又μ=2, ∴P(0<ξ<2)=P(2<ξ<4)=0.5-P(ξ≥4) =0.5-0.2=0.3.

4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率是.质点P移动五次后位于点(2,3)的概率是() A.()5B.C()5 C.C()3D.CC()5 [答案] B [解析]由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动二次,向上移动三次,故其概率为C()3·()2=C()5=C()5.故应选B. 5.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是() A.[0.4,1) B.(0,0.6] C.(0,0.4] D.[0.6,1) [答案] A [解析]CP(1-P)3≤CP2(1-P)2,4(1-P)≤6P,P≥0.4,又01>σ2>σ3>0 B.0<σ1<σ2<1<σ3 C.σ1>σ2>1>σ3>0 D.0<σ1<σ2=1<σ3 [答案] D [解析]当μ一定时,曲线由σ确定,当σ越小,曲线越高瘦,反之越矮胖.故选D. 二、填空题 7.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0).若X在(0,1)内取值的概率为0.4,则X在(0,2)内取值的概率为________. [答案]0.8

高中数学 典型例题 正态分布 新课标

借助于标准正态分布表求值 例 设ξ服从)1,0(N ,求下列各式的值: (1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP 分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地. 解:(1);0094 .09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P (2);1075 .08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP (3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P .8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ= 说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用. 求服从一般正态分布的概率 例 设η服从)2,5.1(2N 试求: (1));5.3(<ηP (2));4(-<ηP (3));2(≥ηP (4)).3(<ηP 分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(?? ? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=??? ??-Φ=<ηP (2);0030.0)75.2(1)75.2(25.14)4(=Φ-=-Φ=??? ? ?--Φ=-<ηP

(原创)最新高中数学正态分布练习及解析

最新高中数学正态分布练习及解析 【2020年高考考查】 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. 【复习指导】 掌握好正态密度曲线的特点,尤其是其中的参数μ、σ的含义,会由其对称性求解随机变量在特定区间上的概率. 基础梳理 1.正态曲线及性质 (1)正态曲线的定义 函数φμ,σ(x )=12πσ e -(x -μ)2 2σ2, x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,我们称φμ,σ(x )的图象(如图)为正态分布密度曲线,简称正态曲线. (2)正态曲线的解析式 ①指数的自变量是x 定义域是R ,即x ∈(-∞,+∞). ②解析式中含有两个常数:π和e ,这是两个无理数. ③解析式中含有两个参数:μ和σ,其中μ可取任意实数,σ>0这是正态分布的两个特征数. ④解析式前面有一个系数为 12πσ,后面是一个以e 为底数的指数函数的形式,幂指数为-(x -μ)2 2σ2.

六条性质 正态曲线的性质 正态曲线φμ,σ(x)=12πσ e -(x -μ)2 2σ2,x ∈R 有以下性质: (1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称; (3)曲线在x =μ处达到峰值1σ2π; (4)曲线与x 轴围成的图形的面积为1; (5)当σ一定时,曲线随着μ的变化而沿x 轴平移; (6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 三个邻域 会用正态总体在三个特殊区间内取值的概率值结合正态曲线求随机变量的概率.落在三个邻域之外是小概率事件,这也是对产品进行质量检测的理论依据. 双基自测 1.设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=18πe -(x -10)2 8,则这个正态总体的平均数与标准差分别是( ). 2.正态分布 (1)正态分布的定义及表示 如果对于任何实数a ,b (a

2020届高考数学一轮复习条件概率、二项分布及正态分布练习含解析

专题10.6 条件概率、二项分布及正态分布 【考试要求】 1.了解条件概率,能计算简单随机事件的条件概率,了解条件概率与独立性的关系; 2.会利用乘法公式计算概率,会利用全概率公式计算概率; 3.了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的实际问题; 4.了解服从正态分布的随机变量,通过具体实例,借助频率直方图的几何直观,了解正态分布的特征. 【知识梳理】 1.条件概率 2.事件的相互独立性 (1)定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B -,A -与B ,A -与B - 也都相互独立,P (B |A )=P (B ),P (A |B )=P (A ). 3.全概率公式 (1)完备事件组: 设Ω是试验E 的样本空间,事件A 1,A 2,…,A n 是样本空间的一个划分,满足: ①A 1∪A 2∪…∪A n =Ω. ②A 1,A 2,…,A n 两两互不相容,则称事件A 1,A 2,…,A n 组成样本空间Ω的一个完备事件组. (2)全概率公式 设S 为随机试验的样本空间,A 1,A 2,…,A n 是两两互斥的事件,且有P (A i )>0,i =1,2,…,n ,∪n i =1 A i =S ,则对任一事件 B ,有P (B )=∑n i =1 P (A i )P (B |A i )称满足上述条件的A 1,A 2,…,A n 为完备事件组. 4.独立重复试验与二项分布 (1)独立重复试验 在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ).

二项分布与正态分布习题理含答案完整版

二项分布与正态分布习 题理含答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、选择题 1.某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是( ) A.0.18 B.0.28 C.0.37 D.0.48 [答案]A [解析]C0.43·0.6+C·0.44=0.1792.故应选A. 2.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为( ) A.0.2 B.0.41 C.0.74 D.0.67 [答案]C [解析]设事件A为“预报一次,结果准确”P=P(A)=0.8,至少有4次准确这一事件是下面两个互斥事件之和:5次预报,恰有4次准确;5次预报,恰有5次准确,故5次预报,至少有4次准确的概率为P5(4)+P5(5)=C×0.84×0.2+C×0.85×0.20≈0.74.故应选C. 3.(2011·湖北理,5)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=( ) A.0.6 B.0.4 C.0.3 D.0.2 [答案]C [解析]本题考查利用正态分布求随机变量的概率.

∵P(ξ<4)=0.8,∴P(ξ≥4)=0.2,又μ=2, ∴P(0<ξ<2)=P(2<ξ<4)=0.5-P(ξ≥4) =0.5-0.2=0.3. 4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率是.质点P移动五次后位于点(2,3)的概率是( ) A.()5B.C()5 C.C()3D.CC()5 [答案]B [解析]由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动二次,向上移动三次,故其概率为C()3·()2=C()5=C()5.故应选B. 5.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是( ) A.[0.4,1) B.(0,0.6] C.(0,0.4] D.[0.6,1) [答案]A [解析]CP(1-P)3≤C P2(1-P)2,4(1-P)≤6P,P≥0.4,又01>σ2>σ3>0 B.0<σ1<σ2<1<σ3 C.σ1>σ2>1>σ3>0 D.0<σ1<σ2=1<σ3

相关文档
最新文档