经济学毕业论文外文翻译---英国陶瓷产业的技术创新之路

经济学毕业论文外文翻译---英国陶瓷产业的技术创新之路
经济学毕业论文外文翻译---英国陶瓷产业的技术创新之路

英国陶瓷产业的技术创新之路

英国陶瓷产业的技术创新之路

原始文献

国际生产经济学杂志,65卷,第1期,2000年4月1日, 85-98页.

Matthew P Warren, Paul L Forrester, John S Hassard, John W Cotton

摘要

通常情况下,创新在行业中发挥的作用是至关重要的。以往学者专门讨论在技术上更新兴的产业(例如,汽车和药品)。但在传统和成熟的行业上,如纺织品和陶瓷产业,往往被忽视。本文在英国陶瓷产业技术创新中的作用纠正这种让失衡。回顾以往的和当前的创新,根据同行业中的案例分析,其中包括用突出创新和技术创新取得成功的例子。

1.英国陶瓷行业的一个简史

陶瓷,定义为无机非金属材料,陶瓷派生于的希腊扎罗斯,大致翻译为烧土。著名陶艺家乔赛亚·韦奇伍德,托马斯·明顿和斯波德乔赛亚在18世纪在英国斯塔福德郡成立了陶器联盟,合并成为特伦特河畔斯托克。这个地区由于其当地丰富的粘土窑煤是最适合陶瓷生产。这些资源在1777年在特伦特和默西运河畔有力的助力了英国陶瓷产业的初期成长。

2. 创新和新技术的作用

可以说,英国陶瓷产业已亲眼目睹了两个技术创新和新技术革命。当第一个陶工在特伦特斯托克河畔开始他们的陶瓷生产,迅速地由一个工艺作坊转变为一个行业。这个传统陶瓷行业的初始生产(即,餐具,瓷砖,砖和卫生洁具行业)带来了创新的主要问题即生产的连续性,制造一个杯子,砖瓦如前所述。为了应对这种革命性的生产经营单位产生了,这个先行者就是韦奇伍德。许多行业经过了长时间的巩固,直到二十世纪中叶,陶瓷产品的制造很难再从200年来的生产发生改变。

今天,新技术的重要性对英国的陶瓷生产与日俱增。与其他产品的出现(例如,玻璃和塑料)和国外市场的竞争增加,需要新的技术提供更快的生产和更高的质量是非常重要的。这种创新活动关注的大多数是陶瓷产品生产更快,更便宜,更可靠和更耐用。提高机械化水平成了瓷砖、卫生洁具和餐具制品生产厂家的重要工作。陶艺工业生产商的理想是在机器的一端放入原材料,在机器的另一端成品就出来了。

3. 研究和技术组织(RTO)的作用

实时系统和研究协会是专门为英国和国际公司提供技术服务,是一家创新技术的生成和扩散的私营公司。一个RTO通常代表一个技术型行业并建立在提供技术服务的公司成员的基础上。其独特的地位,使他们更加了解其特定的行业或部门,这使得他们在该部门的创新提供理想的经纪人机制,要求和需求。他们与监管机构,以及企业的合作,也让他们占尽地利,并提供他们的行业技术创新的驱动力。致力于陶瓷行业的陶瓷技术研究所(RTO)是成立于1948年,它为所有陶瓷企业提供广泛的服务(例如,咨询,测试和技术支持),其中包括传统陶瓷精粹文化和先进的陶瓷技术。陶瓷技术的协助和创新,是组织成员之间的主要凝聚力,可以促进企业间合作研究、开发新技术和有利于技术转让项目,提高公司的资金和管理能力。

还有就是,试图改善这种商业意识,在同行业中的证据。发展各种工业认为,坦克和战略方向的团体,例如,制造改进会,研究项目的引进,类似于此,强调以进一步cognise创新过程具有一定的意愿。在一些组织中,更多的接受和好奇的业务态度也显示,积极探索在非常不同行业的其他行业,以适用于制造工艺技术,生产技术和业务观点。最近,虽然轻微,用人经理和管理人员从其他的趋势,技术更先进,产业强调这个。

然而,尝试提高在同行业中经营意识的证据。各种发展的工业认为,坦克和战略方向的团体,例如,制造改进会,研究项目的引进,类似于此,强调以进一步创新过程具确定的意愿。在一些组织中,更多的接受和好奇的业务态度也显示,积极探索在不同行业的其他行业,以适用于制造工艺技术,生产技术和业务的观点。近来,虽然轻微,但雇用来自其他国家的经理和管理人员的趋势,技术更先进,产业强调到。

4. 组织和管理创新

如过去文献显示,创新的组织和管理是整体业务成功的关键,特别是因为它是可以控制的东西。这是在陶瓷行业,有效的组织,规划,调度和实施创新是非常重要的,没有什么不同。因为如果它是一个企业用自己的权利,就会以面试答辩过程来对待:你不能在最后时处理从任何与业务目标以外成立的事。这个项目的规划和随之而来的管理是很重要的,但是,非常依赖于创新的资金来源。正如上文所强调的,很多陶瓷企业不具备资源,不能投入新技术对产品进行改良和创新。因此,他们寻求外部资金和项目管理的支持。这些来源包括政府,贸易和工业部(DTI)和欧洲委员会的经费。然而,当这种资金使用是要有保障的,通常得有具体目标集和交待所需资金原因。这是因为,今天,许多政府和欧洲商业研究和技术转让和资金使用需要充分的理由。因此,许多外部资助的项目的规划和管理程序被确定为资助机构和创新组织之间的合同协议。在陶瓷行业,真空干燥技术研究就是一个例子。

另一个组织和管理带来的显著作用,就是陶瓷行业的创新意识;组织可以引导和刺激创新过程中的个人和群体的工作积极性。经常在一些技术性的文献中提到,在陶瓷行业对人才非常重视。人才之所以被重视,因为观察和访谈都强调,这是推动创新向前的根本。采访还强调,像一些思维比较灵活的和有丰富行业经验的特征的人才往往是最重要的。

一个在陶瓷行业中经常被引用的例子是皮尔金顿。皮尔金顿想要制作平面玻璃,但不确定如何做到这一点。一天,皮尔金顿家族的成员之一在洗衣物时,发现水面上漂浮的油脂和洗涤液。在灵光一现的瞬间,他向他的组织提出问题,如何有可能类似漂浮的方式来生产偶数层的玻璃。其结果是液态锡玻璃产生了。无论是事实还是虚构的,这凸显了两个项目技术至关的作用。

5. 其他创新的影响

创新工作的时间是从计划文件审议通过审核和落实,到技术获得了有意义的回报这一段时间。在陶瓷行业,创新的时间表是非常重要的。这项研究确定了两个影响创新的时间段:成立到实现。创新这个工作性质的不同于生产,有时可长达数十年。比如花了大约7年时间的真空干燥技术,作为一个潜在的解决方案进入陶瓷行业,以低耗能和减短时间的要求,用于干燥的陶瓷洁具。固体氧化物燃料电池的研究已经持续了接近十年。即使很多人会说,这是一个英国制造商通常遇到的问题,但不影响到陶瓷行业的发展,这是很正常的时间表,并非刻意被延长了。

变现回报 - 一旦已经实现了一个创新技术,它被出售或应用于生产,就可以从它的使用效果或者收益判断出这个技术是成功或者失败。

这个时间表也说明,公司对于一个可能十五年才可能有收益的投资项目存在比较大的困难。资金方面的考虑也是行业中的成功创新的关键。根据组织内部集资方式和外部来源可分为五种形式的资金来源:内部来源,(1)内部的资金;(2)建设研究设施; 外部来源,(3)与企业的合作项目来源;(4)与其他组织的合作项目来源;(5)与最终用户的合作项目来源。

然而,正如上面提到,有些陶瓷行业的公司不具备的财政资源,以扩大公司的生产。因此,往往寻求外部资金。外部资金来源,包括英国政府(例如,贸工部,能源技术支持单位)和欧洲委员会(例如,焦耳合作组织)的。通常这种性质的资金技术创新研究为基础和应用工作准备的。一个例子是ETSU,最能代表政府的实践方案管理的使用效率。提供资金的机构目的在行业范围内,以刺激英国能源消耗的减少,当然,他们更多是为了新技术的应用和商业产值的导向基础上的研究和项目提供资金。

6. 总结和结论

陶瓷行业的发展借鉴许多以前传统的技术,通过技术创新,也取得了前所没有的发展速度,使陶瓷行业在众多行业中脱颖而出。行业中的技术创新组织的作用,是保持和进一步发展中发辉至关重要的作用。同时在陶瓷行业中,通过RTO组织促进了企业间的沟通,不仅使公司内的竞争力提升,而且还不断增加的外国竞争力与集体竞争力。也显示出资金来源和拥有深入的行业知识是创新的重要推动力。创新的范围也很重要,创新不只存在于一个组织,还可以转移到其它几家公司,整个工业部门,甚至在某些情况下,延伸到整个行业。

英文原文:

Technological innovation antecedents in the UK

ceramics industry

Technological innovation antecedents in the UK ceramics industry

Original Research Article

International Journal of Production Economics, V olume 65, Issue 1, 1 April 2000, Pages 85-98

Matthew P Warren, Paul L Forrester, John S Hassard, John W Cotton

Abstract

The role that innovation plays in industry is, usually, exclusively discussed in more technically advanced industries (for example, automotives and pharmaceuticals). More mature and established industries, such as textiles and ceramics, are often neglected. This article redresses this balance by considering the role of technological innovation in the UK ceramics industry. Case analysis comprising both retrospective and current innovation in the industry is used to highlight the role of innovation and some of the antecedents to successful technological innovation.

1. A brief history of the UK ceramics industry

Ceramics are defined as non-metallic inorganic materials and the word ceramics derives from the Greek Karamos, which roughly translates as fired earth. The famous potters Josiah Wedgwood, Thomas Minton and Josiah Spode founded potteries in Staffordshire, in the UK, in the 18th century in the towns that were to amalgamate and become known as Stoke-on-Trent. This region was most suitable for pottery production due to its abundance of local clay and coal for kilns. These resources aided the initial growth of the UK pottery industry along with the Trent and Mersey Canal in 1777.

2. The role of innovation and new technology

It can be argued that the UK ceramics industry has witnessed two technological innovation and new technology revolutions. When the first potters started production of ceramics in Stoke-on-Trent they, effectively, turned what was a craft into an industry. This initial production of traditional ceramic goods (i.e., tableware, tile, brick and sanitaryware sectors) brought with it the main innovating problem of obtaining output continuity; manufacturing one cup, tile or brick as mentioned previously. To respond to this, revolutionary production units were established, the forerunner to this being Wedgwood. Much of the industry then witnessed an extended period of consolidation and, up until the middle of the twentieth century, the manufacturing of ceramics goods had hardly changed from the revolutionary production units of 200 years ago.

Today, new technology is of increasing importance to the UK ceramic producer. With increased competition from both other materials (for example, glass and plastic) and foreign markets, the need for new technology to provide faster throughput times and greater reliability is of great importance. The majority of this innovation activity is concerned with making ceramic goods quicker, cheaper, more reliable and long lasting. Increased mechanisation is also being sought in the majority of the main manufacturers from tile, sanitaryware and tableware manufactures: The industrial potter's ideal is a single machine into which are fed the powdered raw materials at one end and which turns out the fully finished pieces of ware, ready for despatch, at the other end.

3. The role of the research and technology organisation (RTO)

RTOs and Research Associations are private sector companies that specialise in the provision of services to the complete spectrum of UK and international companies, generating and diffusing innovation across the technology spectrum. An RTO will usually represent an industry or technology-type and draw its member base from the companies it serves. Their unique position enables them to understand the mechanisms, requirements and needs of their particular industry or sector, which makes them the ideal broker in the provision of innovation for that sector. Their discourse with regulatory bodies, as well as the member base, also makes them ideally placed to understand technological and innovation drivers in their industry.1 The RTO for the ceramics industry is CERAM Research. Established in 1948, it offers a wide range of services (for example, consultancy, testing and technical support) for all ceramic sectors; which includes traditional ceramics and structural (bricks and roof tiles) and advanced ceramics. However, CERAM's major strength in aiding and facilitating innovation amongst members of the industry, is its ability to facilitate funding and management of collaborative research, development and technology transfer projects.

There is, however, evidence of attempts to improve this business awareness in the industry. The development of various industrial think-tanks and strategic direction groups, for

example, the Manufacturing Improvement Club , and the introduction of research projects, akin to this, have highlighted a certain willingness to further cognise innovation processes. In some organisations, more accepting and inquisitive business attitudes are also displayed by being enthusiastic about exploring other industries in grossly different sectors in order to apply manufacturing process technology, productive technologies and business perspectives.

A recent, although slight, trend of employing managers and executives from other, more technologically advanced, industries underlines this.

There is, however, evidence of attempts to improve this business awareness in the industry. The development of various industrial think-tanks and strategic direction groups, for example, the Manufacturing Improvement Club , and the introduction of research projects, akin to this, have highlighted a certain willingness to further cognise innovation processes. In some organisations, more accepting and inquisitive business attitudes are also displayed by being enthusiastic about exploring other industries in grossly different sectors in order to apply manufacturing process technology, productive technologies and business perspectives.

A recent, although slight, trend of employing managers and executives from other, more technologically advanced, industries underlines this.

4. Organisation and management of innovation

As past literature illustrates, the organisation and management of innovation is key to overall business success, especially since it is something that can be controlled. This is no different in the ceramics industry, where effective organisation, planning, scheduling and implementation of innovation is of great importance. One interview respondent commented that the process had to be treated as if it were a business in its own right:

You can't handle it from the inception point in anything other than with business objectives at the end.

Much of this project planning and consequent management is, however, very dependent on the source of funding for innovation. As emphasised above, many ceramics companies do not have the resources to innovate beyond incremental improvements and amendments, in the form of product range additions, etc. Therefore, they seek external funding and project management support. Such sources include government, Department of Trade and Industry (DTI) and European Commission funding. However, when such funding is secured, there are often concrete targets set and deliverables required by the funding source. This is because, today, much Government and European funding for commercial research and technology transfer requires comprehensive justification. Consequently, much of the planning and management procedures for externally funded projects are determined as a result of contractual agreements between the funding body and the innovating organisation. An example of this, in the Ceramics industry, is Airless Drying.

Another significant organisation and management related influence on innovation in the ceramicsindustry is that of personalities; individuals and groups that facilitate and stimulate the process of innovation. Often referred to in the literature as project champions or (technical) gatekeepers, there is much emphasis on the need for such individuals in the ceramics industry. The term personalities is used purposefully, since observation and interviews have highlighted that this is often what is needed in order to drive innovation forward. Interviews also emphasised some of the traits such as thorough flexibility and experience of the industry a personality should have.

An often cited example of a project champion in the ceramics industry is that of Pilkington. Particulate material folklore has it that Pilkington wanted to produce flat screen glass, yet was unsure how to do it. One day, one of the members of the Pilkington family was washing up and noticed how the grease and washing fluid floated on the surface of the water. In a Eureka moment he posed the question to his organisation if it was possible to float glass in a similar fashion to produce an even layer. The result was a process for floating glass on liquid tin and drawing it through. Be it fact or fiction, this highlights the role of both the project champion and the technical gatekeeper.

5. Other influences on innovation

The time that an innovation effort can take from the point of inception, through realisation and exploitation and to gaining a meaningful payback is something that is not often considered in the literature. In the ceramicsindustry, the timescale of innovation is of great importance. The research identified two timescales which affected innovation: Inception to realisation – Depending on the nature of the innovation this can take up to a decade. Airless Drying took about seven years from first entering the ceramics industry as a potential solution to high energy and time demands in the drying of ceramic-ware. Solid Oxide Fuel Cell research has been ongoing for approaching a decade. Although, many would say that this is a perennial problem for the UK manufacturers, and not specific to the ceramics industry, this does represent an elongated timescale.

Realisation to payback – Once an innovation has been realised, it has to be either sold or installed before it can be judged as a success or failure and before any payback can be achieved from its use.

These timescales highlight how organisations are no longer investing today to reap for tomorrow, but to possibly reap in anything up to 15 years.

Funding considerations are also key to innovation success in the industry. Interviews highlighted five forms of funding, based on sources both internal and external to the organisation:

Internal source: (1) in-house funding; (2) building research facility;

External sources: (3) private projects with other organisations; (4) collaborative projects with RTO and member companies and (5) with end-users.

However, as referred to, the ceramics industry is proliferated by companies that do not have the financial resources to fund internally. Therefore, external funding is often sought. Sources of external funding include both the UK government (for example, DTI, Energy Technology Support Unit) and European Commission (for example, Joule, Themie). Funding of this nature is usually available for both the basic and more applied research efforts. An example is ETSU, who manage the Energy Efficiency Best Practice programme on behalf of the Government. They offer funding to organisations in a range of industries, for projects that seek, as their aim, to stimulate a reduction in the UK energy consumption. They offer funds for both basic research and more applied and commercially orientated projects.

6. Summary and conclusions

The ceramics industry illustration reiterates many previously identified antecedents to technological innovation and also brings to the fore other influences not previously emphasised. The role of the RTO in the industry is vital to maintain and further technological development. In an industry, such as ceramics, that is so geographically close, the RTO facilitates communications that not only allows companies to compete within, but also to collectively contest with an ever increasing foreign competition.

Sources of funding and possessing individuals with in-depth knowledge of the industry are also shown to be important facilitators of innovation. Again, these are two areas in which the industry's RTO can play a role. The scope of innovation is also important, showing that innovation need not exist exclusively in one organisation, but can migrate to several companies, an entire industrial sector or, in some cases, the entire industry.

毕业论文外文翻译模版

吉林化工学院理学院 毕业论文外文翻译English Title(Times New Roman ,三号) 学生学号:08810219 学生姓名:袁庚文 专业班级:信息与计算科学0802 指导教师:赵瑛 职称副教授 起止日期:2012.2.27~2012.3.14 吉林化工学院 Jilin Institute of Chemical Technology

1 外文翻译的基本内容 应选择与本课题密切相关的外文文献(学术期刊网上的),译成中文,与原文装订在一起并独立成册。在毕业答辩前,同论文一起上交。译文字数不应少于3000个汉字。 2 书写规范 2.1 外文翻译的正文格式 正文版心设置为:上边距:3.5厘米,下边距:2.5厘米,左边距:3.5厘米,右边距:2厘米,页眉:2.5厘米,页脚:2厘米。 中文部分正文选用模板中的样式所定义的“正文”,每段落首行缩进2字;或者手动设置成每段落首行缩进2字,字体:宋体,字号:小四,行距:多倍行距1.3,间距:前段、后段均为0行。 这部分工作模板中已经自动设置为缺省值。 2.2标题格式 特别注意:各级标题的具体形式可参照外文原文确定。 1.第一级标题(如:第1章绪论)选用模板中的样式所定义的“标题1”,居左;或者手动设置成字体:黑体,居左,字号:三号,1.5倍行距,段后11磅,段前为11磅。 2.第二级标题(如:1.2 摘要与关键词)选用模板中的样式所定义的“标题2”,居左;或者手动设置成字体:黑体,居左,字号:四号,1.5倍行距,段后为0,段前0.5行。 3.第三级标题(如:1.2.1 摘要)选用模板中的样式所定义的“标题3”,居左;或者手动设置成字体:黑体,居左,字号:小四,1.5倍行距,段后为0,段前0.5行。 标题和后面文字之间空一格(半角)。 3 图表及公式等的格式说明 图表、公式、参考文献等的格式详见《吉林化工学院本科学生毕业设计说明书(论文)撰写规范及标准模版》中相关的说明。

毕业论文英文参考文献与译文

Inventory management Inventory Control On the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion. The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility. Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored: First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments . Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field of

概率论毕业论文外文翻译

Statistical hypothesis testing Adriana Albu,Loredana Ungureanu Politehnica University Timisoara,adrianaa@aut.utt.ro Politehnica University Timisoara,loredanau@aut.utt.ro Abstract In this article,we present a Bayesian statistical hypothesis testing inspection, testing theory and the process Mentioned hypothesis testing in the real world and the importance of, and successful test of the Notes. Key words Bayesian hypothesis testing; Bayesian inference;Test of significance Introduction A statistical hypothesis test is a method of making decisions using data, whether from a controlled experiment or an observational study (not controlled). In statistics, a result is called statistically significant if it is unlikely to have occurred by chance alone, according to a pre-determined threshold probability, the significance level. The phrase "test of significance" was coined by Ronald Fisher: "Critical tests of this kind may be called tests of significance, and when such tests are available we may discover whether a second sample is or is not significantly different from the first."[1] Hypothesis testing is sometimes called confirmatory data analysis, in contrast to exploratory data analysis. In frequency probability,these decisions are almost always made using null-hypothesis tests. These are tests that answer the question Assuming that the null hypothesis is true, what is the probability of observing a value for the test statistic that is at [] least as extreme as the value that was actually observed?) 2 More formally, they represent answers to the question, posed before undertaking an experiment,of what outcomes of the experiment would lead to rejection of the null hypothesis for a pre-specified probability of an incorrect rejection. One use of hypothesis testing is deciding whether experimental results contain enough information to cast doubt on conventional wisdom. Statistical hypothesis testing is a key technique of frequentist statistical inference. The Bayesian approach to hypothesis testing is to base rejection of the hypothesis on the posterior probability.[3][4]Other approaches to reaching a decision based on data are available via decision theory and optimal decisions. The critical region of a hypothesis test is the set of all outcomes which cause the null hypothesis to be rejected in favor of the alternative hypothesis. The critical region is usually denoted by the letter C. One-sample tests are appropriate when a sample is being compared to the population from a hypothesis. The population characteristics are known from theory or are calculated from the population.

毕业论文 外文翻译#(精选.)

毕业论文(设计)外文翻译 题目:中国上市公司偏好股权融资:非制度性因素 系部名称:经济管理系专业班级:会计082班 学生姓名:任民学号: 200880444228 指导教师:冯银波教师职称:讲师 年月日

译文: 中国上市公司偏好股权融资:非制度性因素 国际商业管理杂志 2009.10 摘要:本文把重点集中于中国上市公司的融资活动,运用西方融资理论,从非制度性因素方面,如融资成本、企业资产类型和质量、盈利能力、行业因素、股权结构因素、财务管理水平和社会文化,分析了中国上市公司倾向于股权融资的原因,并得出结论,股权融资偏好是上市公司根据中国融资环境的一种合理的选择。最后,针对公司的股权融资偏好提出了一些简明的建议。 关键词:股权融资,非制度性因素,融资成本 一、前言 中国上市公司偏好于股权融资,根据中国证券报的数据显示,1997年上市公司在资本市场的融资金额为95.87亿美元,其中股票融资的比例是72.5%,,在1998年和1999年比例分别为72.6%和72.3%,另一方面,债券融资的比例分别是17.8%,24.9%和25.1%。在这三年,股票融资的比例,在比中国发达的资本市场中却在下跌。以美国为例,当美国企业需要的资金在资本市场上,于股权融资相比他们宁愿选择债券融资。统计数据显示,从1970年到1985年,美日企业债券融资占了境外融资的91.7%,比股权融资高很多。阎达五等发现,大约中国3/4的上市公司偏好于股权融资。许多研究的学者认为,上市公司按以下顺序进行外部融资:第一个是股票基金,第二个是可转换债券,三是短期债务,最后一个是长期负债。许多研究人员通常分析我国上市公司偏好股权是由于我们国家的经济改革所带来的制度性因素。他们认为,上市公司的融资活动违背了西方古典融资理论只是因为那些制度性原因。例如,优序融资理论认为,当企业需要资金时,他们首先应该转向内部资金(折旧和留存收益),然后再进行债权融资,最后的选择是股票融资。在这篇文章中,笔者认为,这是因为具体的金融环境激活了企业的这种偏好,并结合了非制度性因素和西方金融理论,尝试解释股权融资偏好的原因。

毕业论文外文翻译模板

农村社会养老保险的现状、问题与对策研究社会保障对国家安定和经济发展具有重要作用,“城乡二元经济”现象日益凸现,农村社会保障问题客观上成为社会保障体系中极为重要的部分。建立和完善农村社会保障制度关系到农村乃至整个社会的经济发展,并且对我国和谐社会的构建至关重要。我国农村社会保障制度尚不完善,因此有必要加强对农村独立社会保障制度的构建,尤其对农村养老制度的改革,建立健全我国社会保障体系。从户籍制度上看,我国居民养老问题可分为城市居民养老和农村居民养老两部分。对于城市居民我国政府已有比较充足的政策与资金投人,使他们在物质和精神方面都能得到较好地照顾,基本实现了社会化养老。而农村居民的养老问题却日益突出,成为摆在我国政府面前的一个紧迫而又棘手的问题。 一、我国农村社会养老保险的现状 关于农村养老,许多地区还没有建立农村社会养老体系,已建立的地区也存在很多缺陷,运行中出现了很多问题,所以完善农村社会养老保险体系的必要性与紧迫性日益体现出来。 (一)人口老龄化加快 随着城市化步伐的加快和农村劳动力的输出,越来越多的农村青壮年人口进入城市,年龄结构出现“两头大,中间小”的局面。中国农村进入老龄社会的步伐日渐加快。第五次人口普查显示:中国65岁以上的人中农村为5938万,占老龄总人口的67.4%.在这种严峻的现实面前,农村社会养老保险的徘徊显得极其不协调。 (二)农村社会养老保险覆盖面太小 中国拥有世界上数量最多的老年人口,且大多在农村。据统计,未纳入社会保障的农村人口还很多,截止2000年底,全国7400多万农村居民参加了保险,占全部农村居民的11.18%,占成年农村居民的11.59%.另外,据国家统计局统计,我国进城务工者已从改革开放之初的不到200万人增加到2003年的1.14亿人。而基本方案中没有体现出对留在农村的农民和进城务工的农民给予区别对待。进城务工的农民既没被纳入到农村养老保险体系中,也没被纳入到城市养老保险体系中,处于法律保护的空白地带。所以很有必要考虑这个特殊群体的养老保险问题。

大学毕业论文---软件专业外文文献中英文翻译

软件专业毕业论文外文文献中英文翻译 Object landscapes and lifetimes Tech nically, OOP is just about abstract data typing, in herita nee, and polymorphism, but other issues can be at least as importa nt. The rema in der of this sect ion will cover these issues. One of the most importa nt factors is the way objects are created and destroyed. Where is the data for an object and how is the lifetime of the object con trolled? There are differe nt philosophies at work here. C++ takes the approach that con trol of efficie ncy is the most importa nt issue, so it gives the programmer a choice. For maximum run-time speed, the storage and lifetime can be determined while the program is being written, by placing the objects on the stack (these are sometimes called automatic or scoped variables) or in the static storage area. This places a priority on the speed of storage allocatio n and release, and con trol of these can be very valuable in some situati ons. However, you sacrifice flexibility because you must know the exact qua ntity, lifetime, and type of objects while you're writing the program. If you are trying to solve a more general problem such as computer-aided desig n, warehouse man ageme nt, or air-traffic con trol, this is too restrictive. The sec ond approach is to create objects dyn amically in a pool of memory called the heap. In this approach, you don't know un til run-time how many objects you n eed, what their lifetime is, or what their exact type is. Those are determined at the spur of the moment while the program is runnin g. If you n eed a new object, you simply make it on the heap at the point that you n eed it. Because the storage is man aged dyn amically, at run-time, the amount of time required to allocate storage on the heap is sig ni fica ntly Ion ger tha n the time to create storage on the stack. (Creat ing storage on the stack is ofte n a si ngle assembly in structio n to move the stack poin ter dow n, and ano ther to move it back up.) The dyn amic approach makes the gen erally logical assumpti on that objects tend to be complicated, so the extra overhead of finding storage and releas ing that storage will not have an importa nt impact on the creati on of an object .In additi on, the greater flexibility is esse ntial to solve the gen eral program ming problem. Java uses the sec ond approach, exclusive". Every time you want to create an object, you use the new keyword to build a dyn amic in sta nee of that object. There's ano ther issue, however, and that's the lifetime of an object. With Ian guages that allow objects to be created on the stack, the compiler determines how long the object lasts and can automatically destroy it. However, if you create it on the heap the compiler has no kno wledge of its lifetime. In a Ianguage like C++, you must determine programmatically when to destroy the

电子信息工程专业毕业论文外文翻译中英文对照翻译

本科毕业设计(论文)中英文对照翻译 院(系部)电气工程与自动化 专业名称电子信息工程 年级班级 04级7班 学生姓名 指导老师

Infrared Remote Control System Abstract Red outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique,drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn, the baud rate be quick, point to point SSL, be free from electromagnetism thousand Raos etc.characteristics, can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage.Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application. The purpose that design this system is transmit cu stomer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit. It use coding chip to modulate signal and use decoding chip to demodulate signal. The coding chip is PT2262 and decoding chip is PT2272. Both chips are made in Taiwan. Main work principle is that we provide to input the information for the PT2262 with coding keyboard. The input information was coded by PT2262 and loading to high frequent load wave whose frequent is 38 kHz, then modulate infrared transmit dioxide and radiate space outside when it attian enough power. The receive circuit receive the signal and demodulate original information. The original signal was decoded by PT2272, so as to drive some circuit to accomplish

毕业论文外文资料翻译

毕业论文外文资料翻译题目(宋体三号,居中) 学院(全称,宋体三号,居中) 专业(全称,宋体三号,居中) 班级(宋体三号,居中) 学生(宋体三号,居中) 学号(宋体三号,居中) 指导教师(宋体三号,居中) 二〇一〇年月日(宋体三号,居中,时间与开题时间一致)

(英文原文装订在前)

Journal of American Chemical Society, 2006, 128(7): 2421-2425. (文献翻译必须在中文译文第一页标明文献出处:即文章是何期刊上发表的,X年X 卷X期,格式如上例所示,四号,右对齐,杂志名加粗。) [点击输入译文题目-标题1,黑体小二] [点击输入作者,宋体小四] [点击输入作者单位,宋体五号] 摘要[点击输入,宋体五号] 关键词[点击输入,宋体五号] 1[点击输入一级标题-标题2,黑体四号] [点击输入正文,宋体小四号,1.25倍行距] 1.1[点击输入二级标题-标题3,黑体小四] [点击输入正文,宋体小四,1.25倍行距] 1.1.1[点击输入三级标题-标题4,黑体小四] [点击输入正文,宋体小四,1.25倍行距] 说明: 1.外文文章必须是正规期刊发表的。 2.翻译后的中文文章必须达到2000字以上,并且是一篇完整文章。 3.必须要有外文翻译的封面,使用学校统一的封面; 封面上的翻译题目要写翻译过来的中文题目; 封面上时间与开题时间一致。 4.外文原文在前,中文翻译在后; 5.中文翻译中要包含题目、摘要、关键词、前言、全文以及参考文献,翻译要条理

清晰,中文翻译要与英文一一对应。 6.翻译中的中文文章字体为小四,所有字母、数字均为英文格式下的,中文为宋体, 标准字符间距。 7.原文中的图片和表格可以直接剪切、粘贴,但是表头与图示必须翻译成中文。 8.图表必须居中,文章段落应两端对齐、首行缩进2个汉字字符、1.25倍行距。 例如: 图1. 蛋白质样品的PCA图谱与8-卟啉识别排列分析(a)或16-卟啉识别排列分析(b)。为了得到b 的 数据矩阵,样品用16-卟啉识别排列分析来检测,而a 是通过捕获首八卟啉接收器数据矩阵从 b 中 萃取的。

本科毕业设计外文翻译(原文)

Real-time interactive optical micromanipulation of a mixture of high- and low-index particles Peter John Rodrigo, Vincent Ricardo Daria and Jesper Glückstad Optics and Plasma Research Department, Ris? National Laboratory, DK-4000 Roskilde, Denmark jesper.gluckstad@risoe.dk http://www.risoe.dk/ofd/competence/ppo.htm Abstract: We demonstrate real-time interactive optical micromanipulation of a colloidal mixture consisting of particles with both lower (n L < n0) and higher (n H > n0) refractive indices than that of the suspending medium (n0). Spherical high- and low-index particles are trapped in the transverse plane by an array of confining optical potentials created by trapping beams with top-hat and annular cross-sectional intensity profiles, respectively. The applied method offers extensive reconfigurability in the spatial distribution and individual geometry of the optical traps. We experimentally demonstrate this unique feature by simultaneously trapping and independently manipulating various sizes of spherical soda lime micro- shells (n L≈ 1.2) and polystyrene micro-beads (n H = 1.57) suspended in water (n0 = 1.33). ?2004 Optical Society of America OCIS codes: (140.7010) Trapping, (170.4520) Optical confinement and manipulation and (230.6120) Spatial Light Modulators. References and links 1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997). 2. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). 3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003). 4. M. P. MacDonald, G. C. Spalding and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003). 5. J. Glückstad, “Microfluidics: Sorting particles with light,” Nature Materials 3, 9-10 (2004). 6. A. Ashkin, “Acceleration and trapping of particles by radiation-pressure,”Phys. Rev. Lett. 24, 156-159 (1970). 7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986). 8. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807-809 (1992). 9. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524-533 (1998). 10. K. T. Gahagan and G. A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533 (1999). 11. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, P. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26, 863-865 (2001). 12. R. L. Eriksen, V. R. Daria and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597-602 (2002), https://www.360docs.net/doc/467918708.html,/abstract.cfm?URI=OPEX-10-14-597. 13. P. J. Rodrigo, R. L. Eriksen, V. R. Daria and J. Glückstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10, 1550-1556 (2002), https://www.360docs.net/doc/467918708.html,/abstract.cfm?URI=OPEX-10-26-1550. 14. V. Daria, P. J. Rodrigo and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323-325 (2004). 15. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268-282 (2001). 16. S. Maruo, K. Ikuta and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133-135 (2003). #3781 - $15.00 US Received 4 February 2004; revised 29 March 2004; accepted 29 March 2004 (C) 2004 OSA 5 April 2004 / Vol. 12, No. 7 / OPTICS EXPRESS 1417

电气专业毕业论文外文翻译分析解析

本科毕业设计 外文文献及译文 文献、资料题目:Designing Stable Control Loops 文献、资料来源:期刊 文献、资料发表(出版)日期:2010.3.25 院(部):信息与电气工程学院 专班姓学业:电气工程与自动化级: 名: 号: 指导教师:翻译日期:2011.3.10

外文文献: Designing Stable Control Loops The objective of this topic is to provide the designer with a practical review of loop compensation techniques applied to switching power supply feedback control. A top-down system approach is taken starting with basic feedback control concepts and leading to step-by-step design procedures,initially applied to a simple buck regulator and then expanded to other topologies and control algorithms. Sample designs are demonstrated with Math cad simulations to illustrate gain and phase margins and their impact on performance analysis. I. I NTRODUCTION Insuring stability of a proposed power supply solution is often one of the more challenging aspects of the design process. Nothing is more disconcerting than to have your lovingly crafted breadboard break into wild oscillations just as its being demonstrated to the boss or customer, but insuring against this unfortunate event takes some analysis which many designers view as formidable. Paths taken by design engineers often emphasize either cut-and-try empirical testing in the laboratory or computer simulations looking for numerical solutions based on complex mathematical models.While both of these approach a basic understanding of feedback theory will usually allow the definition of an acceptable compensation network with a minimum of computational effort. II. S TABILITY D EFINED Fig. 1.Definition of stability Fig. 1 gives a quick illustration of at least one definition of stability. In its simplest terms, a system is stable if, when subjected to a perturbation from some source, its response to that

相关文档
最新文档