商用车驾驶性能评价的新方法—AVL-Drive for Truck系统

商用车驾驶性能评价的新方法—AVL-Drive for Truck系统
商用车驾驶性能评价的新方法—AVL-Drive for Truck系统

4.2-需求管理-信息中心XX系统性能评估报告

XX性能评估报告 (20XX年XX月份) 1性能评估结论 通过对XX服务器一个月指定实体业务的业务量分时统计和IT资源使用 率的性能分析,结合服务器处理能力TpmC的计算公式,建议XX应用服务器和Web服务器的CPU配置应从原先的3个CPU增加到4个CPU,当前内存配置保持不变。 2评估过程分析 2.1应用当前配置环境 XX应用部署在南海数据中心一台IBM P780小型机上。小型机的Model Type为9179-MHB,共64个CPU,每个CPU有4个Core。服务器的处理能力一般是由TpmC来计算的,TpmC是指在服务器CPU中每个Core每分钟的处理能力。基于部署XX的P780的配置,通过官方数据查到所配64个CPU的TpmC值为10,366,254,单个CPU的TpmC值为161,973。 XX应用共使用两个逻辑分区(LPAR)。两个LPAR的当前配置信息如下:

服务器主机名称所属应用 名称 IP地址 操作系 统版本 已分配的 CPU个数 CPU的频 率(GHZ) 已分配的 内存(GB) gdweb03 社保费系 统web服务 器 150.17.30.1 66 AIX 6.1 3(CPU) 3.86GHZ 32GB gdsbapp01 社保费系 统核心应 用服务器 150.17.30.1 70 AIX 6.1 3(CPU) 3.86GHZ 44GB 2.2应用业务量情况分析 以下是对指定实体业务基于2013年4月12日以来一个月数据的全天业务量的峰值情况进行分析。 增减员业务量统计 增减员业务在一天内有一个高峰时间段,下午15点-17点。具体的实体业务量的峰值如下: 业务时间实体业务量图表统计说明 08:00 3785 09:00 11035 10:00 27124 11:00 30041 12:00 32760 13:00 11301 14:00 15060 15:00 37066 16:00 38749 17:00 60384 18:00 60069 19:00 10370 20:00 5022 21:00 5217 22:00 1067 23:00 648 申报业务量统计

2021年驾驶行为评价系统

《驾驶行为表征指标及阐发办法研究》(吉林年夜学博士论文) 欧阳光明(2021.03.07) 目录: 1.国内外文献综述 2.驾驶行为信息收集计划 3.驾驶行为表征指标体系构建 4.平安性评估办法 5.驾驶人认知能力评估指标体系及办法 6.典范应用 1.国内外文献综述 研究布景:车越来越多、交通事故多、平安很重要、交通事故的预防亟待解决、国家重视、驾驶人员的错。 研究意义:1.驾驶行为平安性提升提供技术支持(改良驾驶培训质量和教育质量)2.车辆平安性……理论基础3.路途平安性……理论基础4.后续研究……理论基础。

研究现状:内容多、要求高、难度年夜。研究框架如下: (1)驾驶行为信息收集:实验环境(各种平台)、车辆运动及操控信息收集(仿真驾驶车辆信息、实际车辆信息收集系统、监控记录仪)、驾驶人生理、信息收集。 (2)驾驶行为技术阐发:面向驾驶行为阐发的虚拟交通情景构建技术;驾驶行为表征体系研究;实验设计及数据阐发办法研究。 (3)驾驶行为理论研究:建模、状态辨识、适应性、 后面:略 2.驾驶行为信息收集系统设计及实现 驾驶行为信息分类:感知、决策、操控 驾驶行为数据收集阐发: 驾驶人基本信息 姓名 年龄 身份证号码 文化水平1文盲2初中级以下3高中4年夜学及以上5不明 3年内交通肇事次数 驾驶员视觉信息: 注视行为表征参数注视点坐标

驾驶人生理特征信息 驾驶人心理特征指标 驾驶人把持行为信息

标的目的盘转角度驾驶人转动标的目的盘的角度 档位档位所处的状态 1 倒档、0 空档、15 档加速踏板开合度% 加速踏板踩踏水平占总行程的比例 制动踏板开合度% 制动踏板踩踏水平占总行程的比例 转向灯状态用于表征转向灯的状态 车辆运行状态信息 指标名称单位指标解释 速度公里/小时车辆运行实时丈量速度值 纵向加速度米/秒平方描述车辆纵向加减速行为 横向加速度米/秒平方描述车辆的横向侧倾特征 距离信息米描述车辆驶过的距离 路途基本信息 2.2.1 驾驶人生理、心理信息收集 (详细介绍了各种仪器) 2.2.2 驾驶人操控及车辆运行信息收集计划及技术实现 软件实现 2.2.3 基于GPS的路途信息收集计划及技术实现 ①数据坐标转换 ②样本点的识别与分类 ③计算模块设计及功能: 采样点坐标输入 ↓

(整理)linux系统监控性能评估.

总控服务器性能: 一、Cpu性能评估 Vmstat命令的参数解释: 对上面每项的输出解释如下: procs r列表示运行和等待cpu时间片的进程数,这个值如果长期大于系统CPU的个数,说明CPU 不足,需要增加CPU。? b列表示在等待资源的进程数,比如正在等待I/O、或者内存交换等。 Memory swpd列表示切换到内存交换区的内存数量(以k为单位)。如果swpd的值不为0,或者比较大,只要si、so的值长期为0,这种情况下一般不用担心,不会影响系统性能。 free列表示当前空闲的物理内存数量(以k为单位)? buff列表示buffers cache的内存数量,一般对块设备的读写才需要缓冲。 cache列表示page cached的内存数量,一般作为文件系统cached,频繁访问的文件都会被cached,如果cache值较大,说明cached的文件数较多,如果此时IO中bi比较小,说明文件系统效率比较好。 swap si列表示由磁盘调入内存,也就是内存进入内存交换区的数量。 so列表示由内存调入磁盘,也就是内存交换区进入内存的数量。 一般情况下,si、so的值都为0,如果si、so的值长期不为0,则表示系统内存不足。需要增加系统内存。? IO项显示磁盘读写状况? Bi列表示从块设备读入数据的总量(即读磁盘)(每秒kb)。 Bo列表示写入到块设备的数据总量(即写磁盘)(每秒kb) 这里我们设置的bi+bo参考值为1000,如果超过1000,而且wa值较大,则表示系统磁盘IO有问题,应该考虑提高磁盘的读写性能。 system 显示采集间隔内发生的中断数 in列表示在某一时间间隔中观测到的每秒设备中断数。 cs列表示每秒产生的上下文切换次数。 上面这2个值越大,会看到由内核消耗的CPU时间会越多。 CPU项显示了CPU的使用状态,此列是我们关注的重点。 us列显示了用户进程消耗的CPU 时间百分比。us的值比较高时,说明用户进程消耗的cpu 时间多,但是如果长期大于50%,就需要考虑优化程序或算法。 sy列显示了内核进程消耗的CPU时间百分比。Sy的值较高时,说明内核消耗的CPU资源很多。 根据经验,us+sy的参考值为80%,如果us+sy大于 80%说明可能存在CPU资源不足。 id 列显示了CPU处在空闲状态的时间百分比。 wa列显示了IO等待所占用的CPU时间百分比。 wa值越高,说明IO等待越严重,根据经验,wa的参考值为20%,如果wa超过20%,说明IO等待严重,引起IO等待的原因可能是磁盘大量随机读写造成的,也可能是磁盘或者磁盘控制器的带宽瓶颈造成的(主要是块操作)。综上所述,在对CPU的评估中,需要重点注意

福特绩效考核

福特绩效考核 篇一:福特绩效考核 福特汽车公司组织结构属矩阵式组织结构。在矩阵型结构中,经营单位或产品经理与职能部门经理都有独立的职权。优点: 1)灵活机动性和适应性较强。(它按产品,经营单位或某项目的要求,将具有各种专长的有关人员调集在一起,便于沟通意见,集思广益,接受新观念和新方法,有助于解决一些难题) 2)便于把自己的工作同整个工作联系起来(所有成员都了解整个小组的任务和问题)3)利于把管理中的垂直联系和水平联系更好地结合起来,加强各职能部门以及职能部门同经营单位之间的合作。缺点:职能经理和经营单位经理具有重叠的而且经常是矛盾的权利和责任,成员接受双重领导,两个部门意见不一致时,他们将对工作无所适从。矩阵式结构的出现是企业管理水平的一次飞跃。当环境一方面要求专业技术知识,另一方面又要求每个产品线能快速做出变化时,就需要矩阵式结构的管理。前面我们讲过,职能式结构强调纵向的信息沟通,而事业部式结构强调横向的信息流动,矩阵式就是将这两种信息流动在企业内部同时实现。 在实际操作中,这种双重管理的结构建立和维持起来都很困难,因为有权力的一方常常占据支配地位。因此比较成熟的矩阵式管理模式为带有项目/产品小组性质的职能型组织。职能部门照常行使着管理职

能,但公司的业务活动是以项目的形式存在的。项目由项目经理全权负责,他向职能经理索要适合的人力资源,在项目期间,这些员工归项目经理管理。而职能经理的责任是保证人力资源合理有效的利用。篇二:绩效考核之我见 绩效考核之我见 绩效考核的说法和做法不是新鲜内容,在国内的管理理论和实践也至少有十几年的历史了。此处笔者试图结合实践中的情况简要谈谈个人的见解和体会。其实每一个小标题提都可以展开来举例说明、分析论述。但是篇幅所限,可能没有新意、也可能有谬误,或者挂一而漏万,权做交流吧。 一,从定义出发,理解绩效考核的意义 所谓绩效的考核当然是指对绩和效的考核。绩,应该是指成绩、政绩;效,应该包含效能、效力、效率等含义。所以绩效考核就应该是对考核对象工作的全面而实际的考核。管理上有句名言,叫没有考核就没有管理。通过考核,对人员的绩效进行合理的评价,让有才能的人脱颖而出,让有贡献的人得到合理回报。这样就会逐步形成奖优惩劣、崇尚绩效、崇尚执行的企业文化。 综上来说,绩效考核既保证企业核心目标达成,又能给人员充分的激励,从而实现企业与人员的双赢,这就是为什么绩效考核的说法和做法一再被人们称道,众多企业趋之若骛的原因。 然而虽然绩效考核名噪一时,许多企业纷纷聘请咨询公司或亲自操刀,或全面指导来进行绩效考核设计。老总们视绩效考核为灵丹妙药,

系统性能评估

第7章 1.工程工作站:具有实现工程计算、程序编制和调试、作图、通信、资源共享的计算机环 境。 2.早期CAD环境:“大型机(超级小型机)+多路终端 3.工作站从应用对象、范围和功能需求上都不同于普通PC机 4.工作站与PC在配置上的一般区别:1. 图形处理能力:专业图形卡2. 可靠性: 采用多种 可靠性措施3. 性能: 采用高性能器件4. 扩展能力: 内存、多处理器等5. 软件配置: 操作系统、高性能图形处理软件等。 5.系统性能评价技术:从技术上, 主要有分析、模拟、测量三种技术 6.常采用的分析技术有:常采用排队论、随机过程、均值分析等方法进行近似求解,比如 流水线性能、多处理器系统性能分析、软件可靠性静态评估等。 7.分析技术的特点:特点是理论严密, 对基础理论的掌握要求较高。优点是节约人力/物 力, 可应用于设计中的系统。 8.模拟技术的特点:既可以应用于设计中或实际应用中的系统, 也可以与分析技术相结 合, 构成一个混合系统。 9.测量技术的特点: 10.模拟技术是基于试验数据的系统建模, 主要有: (1) 按系统的运行特性建立系统模型; (2) 按系统工作负载情况建立工作负载模型; (3) 编写模拟程序, 模拟被评价系统的运 行。 11.测量技术:该技术是对已投入使用的系统进行测量, 通常采用不同层次的基准测试程序 评估。不同层次指的是:核心程序、实际应用程序、合成测试程序 12.几乎所有基于模拟的评价方法都依赖于测试数据或实验值 13.总结:分为三种性能评价技术,分别是分析、模拟、测量,这三种技术分别对用不同成 熟度的系统。分析技术对应理论研究,特点是理论严密,基础知识掌握度高。模拟技术是对正在设计以及已经用于实际应用的系统进行建模,建模数据来源是实验数据。而测量技术的应用是对已经投入使用的系统进行测量。通常采用不同层次的基准测试程序,不同层次值的是:核心程序、实际应用程序、合成测试程序。 14.系统性能评价对象:内存、I?O、网络、操作系统、编译器的性能。 15.与程序执行的时间相关的两大因素:(1) 时钟频率(MHz);(2) 执行程序使用的总时钟周期 数。 16.CPU时间= 总时钟周期数?时钟周期= 总时钟周期数/ 时钟频率 17.IC(程序执行的指令数)和CPI(每条指令所需时钟数 18.CPU时间= CPI?IC ?时钟周期= CPI?IC /时钟频率 19.(1) 时钟频率: 反映计算机实现、工艺和组织技术; 20.(2) CPI: 反映计算机实现、指令集结构和组织; 21.(3) IC: 反映计算机指令集结构和编译技术。 22.系统性能评价标准:(1) 时钟频率(主频): 用于同类处理机之间(2) 指令执行速度法 (MIPS —定点运算) (3) 等效指令速度:吉普森(Gibson)法4)数据处理速率PDR(processing data rate)法(5) 基准程序测试法 23.MIPS指标的主要缺点是不能反映以下情况: ①不能反映不同指令对速度的影响②不能 反映指令使用频率差异的影响③不能反映程序量对程序执行速度的影响 24.吉普森(Gibson)法的主要缺点:(1) 同类指令在不同的应用中被使用的频率不同;(2) 程序 量和数据量对Cache 影响; (3) 流水线结构中指令执行顺序对速度的影响;(4) 编译程序对系统性能的影响。

电脑系统性能分析与评价

浅谈计算机系统性能评价的认识和理解 随着科学技术的日益进步,计算机也得到快速发展,计算机性能成为人们关注的重点。计算机性能评价不仅是计算机网络和计算机系统研究与应用的重要理论基础和支撑技术,也是当今通信和计算机科学领域的重要研究方向。因此,进行计算机系统性能评价成为当务之急。 计算机性能评价是指对系统的动态行为进行研究和优化,包括对实际系统的行为进行分析、测量和模拟按照一定的性能要求对方案进行选择,对现有系统的性能缺陷和瓶颈进行改进,对未来系统的性能进行预测,以及在保证一定服务质量的前提下进行设计。性能评价技

术研究使性能成为数量化的、能进行度量和评比的客观指标,以及从系统本身或从系统模型获取有关性能信息的方法。性能评价通常是与成本分析综合进行的,借以获得各种系统性能和性能价格比的定量值,从而指导新型计算机系统(如分布式计算机系统)的设计和改进,以及指导计算机应用系统的设计和改进,包括选择计算机类型、型号和确定系统配置等。 1 计算机系统性能评测指标 计算机系统性能指标有两类:可用性、工作能力。 可用性:它指计算机能够持续工作时间,一般用平均无故障时间和可恢复性来表示。 工作能力:它指计算机在正常工作状态下所具有的能力。它们是系统性能评价的主要研究对象。常用的工作能力指标由:吞吐量、延迟和资源利用率。 吞吐量:单位时间内系统的处理能力,指单位时间内完成的任务数。对于不同目标可能含义不同。例如,在评价一个数据库系统时,所指的吞吐量可以是单位时间内交易完成的个数;在评价一个网络系统是,吞吐量指单位时间内传输的字节数等。 延迟:完成一个指定任务所花费的时间。例如,在评价一个数据库系统时,可以考察它完成一个查询,或完成一个数据处理所需要的时间;在评价一个网络系统时,可以考察发送一个网络包所需要的时间等。 资源利用率:指完成一个任务所需要花费的系统资源。例如完成一个数据处理、所占用处理器的时间、占用内存的大小或占用网络带宽的大小等。 吞吐量越高、延迟越少、资源利用率越低则表示系统的性能越好。 2 计算机性能的主要评测手段 计算机性能的主要评测手段主要包括测量、模拟、分析方法。 测量方法:测量是最基本、最重要的系统性能评价手段。测试设备向被测设备输入一组测试信息并收集被测设备的原始输出,然后进行选择、处理、记录、分析和综合,并且解释其结果。上述这些功能一般是由被测的计算机系统和测量工具共同完成的,其中测量工具完成测量和选择功能。测量工具分硬件工具和软件工具两类。硬件测量工具附加到被测计算机系统内部去测量系统中出现的比较微观的事件(如信号、状态)。典型的硬件检测器有定时器、序列检测器、比较器等。例如,可用定时器测量某项活动的持续时间;用计数器记录某一事件出现的次数;用序列检测器检测系统中是否出现某一序列(事件)等。数据的采集、状态的监视、寄存器内容的变化的检测,也可以通过执行某些检测程序来实现。这类检测程序即软件测量工具。例如,可按程序名或作业类收集主存储器、辅助存储器使用量、输入卡片数、打印纸页数、处理机使用时间等基本数据;或者从经济的角度收集管理者需要的信息;或者收集诸如传送某个文件的若干个记录的传送时间等特殊信息;或者针对某个程序或特定的设备收集程序运行过程中的一些统计量,以及发现需要优化的应用程序段等。硬件监测工具的监测精度和分辨率高,对系统干扰少;软件监测工具则灵活性和兼容性好,适用范围广。测量方法是最直接、最基本的方法,其他方法也要依赖于测量的量,但是它比较浪费时间,只适合于已经存在并运行的系统。 分析方法:分析方法可为计算机系统建立一种用数学方程式表示的模型,进而在给定输入条件下通过计算获得目标系统的性能特性。该方法一般应用于系统的设计阶段,这时候因

大数据环境下商用网联车驾驶行为评价系统的设计与实现

大数据环境下商用网联车驾驶行为评价系统的设计与实现 随着物流行业的迅速发展,商用车联网系统越来越受到国内外研究机构和学者的关注,驾驶人的驾驶行为习惯得到了越来越多关注。文章提出了一种大数据环境下,基于OBD技术的驾驶行为评价系统。利用行车过程中的行驶数据对驾驶行为进行量化评价。文章的数据源于由陕汽天行健集团提供的车载OBD设备读取的车辆信息。文章提出了数据清洗,数据转换的标准,并在此基础上开发了一系列驾驶行为识别算法。最后我们开发了Web端和App端的驾驶行为评价系统软件。 标签:OBD;大数据;驾驶行为 Abstract:With the rapid development of logistics industry,more and more domestic and foreign research institutions and scholars pay attention to the commercial vehicle networking system,and more and more attention has been paid to the driving behavior habits of drivers. This paper presents a driving behavior evaluation system based on OBD technology in the big data environment. The driving behavior is evaluated by driving data. The data of the article is derived from the vehicle information read by the vehicle OBD equipment provided by Shaanxi Auto Tianxingjian Group. In this paper,the standard of data cleaning and data conversion is put forward,and a series of driving behavior recognition algorithms are developed. Finally,we developed the driving behavior evaluation system software of Web and App. Keywords:OBD;big data;driving behavior 引言 随着智能交通系统在全球范围内的高速发展,商用车联网系统越来越受到国内外研究机构和学者的关注。例如福田戴姆勒开发的“iFOTON”超级车队管理系统,实现的功能包括车辆监控、油耗管理、驾驶员行为分析、金融服务、行车服务、售后服务、车货匹配,远程控制等一系列功能。这些帮助物流车队提高运营效率,真正实现超级车队,智能管理。国内车联网企业陕汽集团开发的天行健车联网系统,其相关功能:有位置服务、油耗/气耗管理、驾驶行为分析、远程故障诊断、偏线报警、重卡专用导航等功能。 以上的这些系统在车辆监控跟踪等方面有着卓越的表现,但随着商用网联车的普及,随之带来的驾驶数据量的骤增,物流企业对司机驾驶行为的关注,上面的平台无法满足要求。因此本文提出并建立了一种大数据环境下商用网联车驾驶行为评价系统,实现了对行车数据的存储,驾驶行为的识别,驾驶行为的评价等功能。 1 系统结构与原理

【CN109910901A】一种具有驾驶员行为分析监测功能的智能辅助驾驶系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910115450.8 (22)申请日 2019.02.15 (71)申请人 苏州工业园区职业技术学院 地址 215000 江苏省苏州市工业园区独墅 湖高等教育区若水路1号 (72)发明人 陈跃  (74)专利代理机构 苏州广正知识产权代理有限 公司 32234 代理人 孙茂义 (51)Int.Cl. B60W 40/09(2012.01) (54)发明名称 一种具有驾驶员行为分析监测功能的智能 辅助驾驶系统 (57)摘要 本发明公开了一种具有驾驶员行为分析监 测功能的智能辅助驾驶系统,包括:驾驶员动作 捕捉模块、汽车行驶状态采集模块、驾驶行为分 析控制模块、驾驶行为反馈模块。通过上述方式, 本发明一种具有驾驶员行为分析监测功能的智 能辅助驾驶系统,可以准确、快速的对驾驶员行 为和汽车行驶状态进行判断,及时的控制和提醒 驾驶员,防止出现意外, 提高安全性能。权利要求书1页 说明书3页 附图1页CN 109910901 A 2019.06.21 C N 109910901 A

权 利 要 求 书1/1页CN 109910901 A 1.一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,包括:驾驶员动作捕捉模块、汽车行驶状态采集模块、驾驶行为分析控制模块、驾驶行为反馈模块,所述驾驶员动作捕捉模块:用于捕捉和获取驾驶员在开车过程中的动作; 所述汽车行驶状态采集模块:用于获取在行驶过程中的汽车行驶状态信息和周边路况信息; 所述驾驶行为分析控制模块:根据获取到的驾驶员工作信息、在行驶过程中的汽车行驶状态信息和周边路况信息,判断对应时段内驾驶员行为是否存在异常,并根据判断结果对汽车进行干预控制; 所述驾驶行为反馈模块:根据用户提供的查询条件生成对应的驾驶行为反馈报告。 2.根据权利要求1所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述驾驶员动作捕捉模块包括动作获取模块、人脸识别模块、身体指数检测模块和空气检测模块。 3.根据权利要求2所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述动作采集模块包括手部动作获取模块、眼部动作获取模块、头部动作获取模块、脚部动作获取模块、嘴部动作获取模块。 4.根据权利要求2所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述身体指数检测模块包括脉搏监测模块、心率监测模块、呼吸监测模块。 5.根据权利要求2所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述空气检测模块包括酒精检测模块、毒气检测模块。 6.根据权利要求1所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述汽车行驶状态采集模块包括汽车运动监测模块、驾驶时长监测模块、驾驶速度监测模块。 7.根据权利要求6所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述汽车运动监测模块包括直线状态监测模块、转弯状态监测模块、超车状态监测模块、变道状态监测模。 8.根据权利要求1所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述驾驶行为分析控制模块包括判断信息设置模块、分析信息获取模块、行驶路况信息获取模块、驾驶员行为判断模块、驾驶干预控制模块,所述分析信息获取模块获取所述驾驶员动作捕捉模块、所述汽车行驶状态采集模块中的信息,并将信息传输至驾驶员行为判断模块,所述驾驶干预控制模块根据驾驶员行为判断模块的判断结果,对驾驶员进行提醒并对汽车进行制动控制。 9.根据权利要求8所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述行驶路况信息包括路面信息、位置信息、天气信息、路况信息。 10.根据权利要求1所述的一种具有驾驶员行为分析监测功能的智能辅助驾驶系统,其特征在于,所述驾驶行为反馈模块包括查询条件提取模块、查询信息检索模块、查询报告生成模块。 2

CN201310151019-一种基于场景的驾驶行为评价方法

SooPAT 一种基于场景的驾驶行为评价方 法 申请号:201310151019.1 申请日:2013-04-26 申请(专利权)人广州通易科技有限公司 地址510630 广东省广州市天河区翰景路1号金星大厦14楼 发明(设计)人蔡文学 主分类号G07C5/08(2006.01)I 分类号G07C5/08(2006.01)I 公开(公告)号103247092A 公开(公告)日2013-08-14 专利代理机构广州市华学知识产权代理有限公司 44245 代理人黄磊

(10)申请公布号 (43)申请公布日 2013.08.14C N 103247092 A (21)申请号 201310151019.1 (22)申请日 2013.04.26 G07C 5/08(2006.01) (71)申请人广州通易科技有限公司 地址510630 广东省广州市天河区翰景路1 号金星大厦14楼 (72)发明人蔡文学 (74)专利代理机构广州市华学知识产权代理有 限公司 44245 代理人 黄磊 (54)发明名称 一种基于场景的驾驶行为评价方法 (57)摘要 本发明公开了一种基于场景的驾驶行为评价 方法,该评价方法的步骤为:S1、通过车辆ECU 数 据采集装置采集车辆工况数据和车辆性能数据, 并把采集到的数据通过无线网络实时同步到云端 智能平台;S2、云端智能平台利用大数据分析方 法,对与该行程路线相同的驾驶行程记录数据进 行分析;S3、云端智能平台接收移动智能终端发 送过来的数据,将这些数据存储在平台中,通过大 数据分析方法,利用历史行程数据,对本次驾驶行 程做出准确的分析。本发明准确性高,可准确地评 价司机在不同场景下驾驶动作的恰当程度,客观 地反应司机的驾驶技能水平,同时计算效率高,可 快速地对司机的驾驶行为做出评价,及时地反馈 评价结果。 (51)Int.Cl. 权利要求书2页 说明书4页 附图2页 (19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书2页 说明书4页 附图2页(10)申请公布号CN 103247092 A *CN103247092A*

驾驶行为预研报告

驾驶行为预研报告 人工智能-于海悦 2018年5月3日 1.驾驶行为分析: 驾驶行为的分析和研究,通常是作为其他车内应用的支撑技术而存在的。例如车道偏离预警(1ane departure warning,LDW)、车道保持(1ane keeping,LKS)、巡航控制系统(adaptive cruise control,ACC),都使用了相关的技术。 模型或理论: 1938年:安全行驶区域理论 1964年:紧张或焦虑状况下自调整驾驶模型 1974年:零危险模型 1977年:主被动安全模型 1980年:推理行为理论 1982年:危险自平衡理论 1983年:人行为能力模型 1984年:威胁规避模型 1985年:规划行为理论 1988年:阶梯型危险模型 1988年:激励建模方法 1989年:生成规则模型/基于规则模型 1992年:内模型 2000年:任务容量界面模型 1)驾驶员外部特性按照研究对象的不同,可以分为两类:针对特定信号的研究、以及针对特定场景的研究。针对特定信号的研究,主要是通过分析某一传感器所获得数据,进而研究与其相关联的特定驾驶行为。例如,通过分析方向盘夹角和刹车,判断驾驶员注意力是否集中、是否醉酒;通过分析眼睛注视位置,判断驾驶员的操作序列是否合理。针对特定场景的研究,则是考察最容易出事故的驾驶环节。通常会对这些场景、以及场景中的操作进行数学建模,进而描述和评定驾驶行为。常见的场景有停车、超车、变道等。 2)驾驶认知行为建模,这一类的研究,主要是将认知学的理论应用到驾驶行为研究领域。其研究目标是通过分析驾驶操作的内在机理,从本质上解释和理解驾驶行为,完成建模。由于人类对自我处理机制的理解还不够深刻,因此其建模结果很难用实验验证其准确性,更多的只能从定性的层面上对行为进行阐述。 3)驾驶心理研究,该类方法主要是通过调查问卷的方式,由驾驶员自己主观的进行自我评价,大致分为违规(violations)和失误(errors)两类。违规操作指的是驾驶员在明知危险的情况下故意执行的行为,通常用来评价驾驶风格;失误操作则是无意识中做出的危险操作,通常用来评定驾驶水平。 基于驾驶模拟器的数据采集和驾驶行为识别: 驾驶模拟器,通常指的是那些能够提供虚拟驾驶环境的机器。通过3D仿真软件,模拟汽车的真实行车环境;通过传感器,完成驾驶相关数据采集,并将这些信号的变动如实的反映到虚拟驾驶场景中。汽车的各项数据经由两种方式完成传递:传感器数据经由特殊的总线传输,并最终转换为数字信号为程序所使用:场景信息则以消息的形式在软件内部传递。这两种相异的传递方式为数据的采集带来了一定的困难。在驾驶模拟器内,数据的传输并不单单只在汽车总线内部,会在程序间,和网络间传输。在多驾驶模拟器的环境下,通常需要将数据发送到局域网内,供其他机器上的应用使用。 最重要的是:数据采集模块、驾驶行为模块、服务模块。数据采集模块主要是实现驾驶数据的收集和保存,构建模型训练的原始数据,同时为驾驶行为识别模块提供特征向量序列。驾驶行为模块提供了两个功能,

“计算机网络与计算机系统的性能评价”

计算机网络与计算机系统的性能评价” 1 背景 计算机网络和计算机系统目前已经成为现代信息社会 最重要的基础设施之一,其应用遍布社会的各个领域,成为国家发展和社会进步的基本需求,是知识经济的基本载体和支撑环境。性能评价是计算机网络和计算机系统研究与应用的重要理论基础和支撑技术,是通信和计算机科学领域的重要研究方向,也是一门理论与实践紧密相连、内容丰富、体系完整的学科。许多IEEE的权威会刊也都有专门的性能评价专栏,还有许多关于性能评价的国际学术年会。此外,性能评价也是国外计算机、通信、信息科学等专业大学高年级学生和研究生的必修课程之一。 长期以来,虽然学习数学系开设的纯数学有利于夯实研 究生的基础理论,但要在计算机和网络系统建模分析的具体研究中应用随机观念解决实际问题,偏重理论体系完备性和严密性的纯数学略显抽象,不容易被深刻理解,进而阻碍学生在实际系统与抽象的理论方法之间建立自然联系。为此清华大学计算机科学与技术系于 2000 年开设“计算机网络与计算机系统的性能评价”课程,任课教师为林闯教授,笔者于 2012 年加入课程建设队伍,开始承担部分教学任务; 2014 年独立承担课程教学。十多年来,课程在林闯教授及其教学

团队的努力下,多次荣获清华大学研究生精品课程。 2课程定位 计算机网络与计算机系统的性能评价”属于专业基础 理论课程,强调用工程数学解决实际问题,是基础理论课和学科专业课之间的桥梁。课程教学强调培养研究生对计算机网络和计算机系统的性能模型方法和性能分析的直观理解,熟悉基本思路,通晓性能建模与分析的一般方法,熟练并尽可能创造性地应用随机过程、排队论、随机 Petri 网等方法开展计算机网络与系统性能评价的相关研究。课程着重培养研究生应用随机概念分析和评价计算机系统性能的基本研究能力。此外,课程建设也致力于以学生能力培养为核心,注重理论深度,体现研究型教学的特色。 3课程建设 3.1用“领会方法精髓”的思想指导教学 课程内容按照系统性能评价的模型技术与方法分为3个部分:第一部分讲解基本概念和基础理论,包括随机变量及期望的相关定理、马尔可夫过程和更新过程等随机过程以及随机稳定性分析等。第二部分是排队论,包括各种典型单节点排队模型以及乘积解 / 非乘积解排队网络。第三部分是随机 Petri 网与性能评价,主要内容有 Petri 网和各种随机 Petri 网及其在系统性能评价中的应用。我们在教学实践中强调数学基础理论中的相关概念、定义和定理等在描述实际物理系统 如计算机和计算机网络系统)时的映射关系,注意用简单的模型和示例讲述基础理论在描述和刻画实际系统时的本质。课程讲授过程中采用幻灯讲义,但对较难的数学推导和分析内容则采用板书方式,同时在讲解详细的分析推导过程之前增加了轮廓性的介绍,之后注意总结主要结论的本质,并结合实际系统阐述理论所揭示的物理意义,适当增加应用举例,力图将抽象的数学理论讲解得直观而易理解,启发同学思考和领会方法的精髓。如讲授离散时间马尔可夫链模型时,首先剖析单机双核 CPU共享内存系统的建模,然后扩展到多机多核计算机系统的建模,使同学们由浅入深、循序渐进地理解并掌握应用离散时间马尔可夫链建立计算机系统分析模型的关键一一结合实际系统的工作过程,

可靠性及系统性能评价

两个部件的可靠度R 均为0.8,由着两个部件串联构成的系统可 靠度为:0.64;由这两个部件并联构成的系统的可靠度为:0.96。 串联系统: 设系统各个子系统的可靠性分别用R1,R2,R3、、、、、,Rn 表 示,则系统的可靠度R=R1*R2*R3*、、、、、*Rn 。 如果系统的各个子系统的失效率分别用R1,R2,R3、、、、 Rn 表示,则系统的失效率为R=R1+R2+、、、、+Rn 。 并联系统: 系统的可靠性R=1-(1-R1)*(1-R2)*、、、、、*(1-Rn )。 系统的失效率R=∑=n j j R 1111 平均无故障时间(MTBF )与失效率的关系为:MTBF=1/R 。 内存按字节编址,地址从90000(H )到CFFFF (H ),可以通过 内存容量的计算公式:内存容量=终止地址-起始地址+1, 内存容量=CFFFF (H )-90000(H )+1=40000(H )=256KB 。 基于Windows 、Linux 和UNIX 等操作系统的服务器称为开放系 统。开放系统的数据存储方式分为内置存储和外挂存储两种,而外挂 存储又根据连接方式分为直连式存储和网络话存储,目前应用的网络

化存储方式有两种,即网络接入存储和存储区域网络。 开始系统的直连式存储(DAS) 网络接入存储(NAS)是将存储设备连接到现有的网络上,来提供数据存储和文件访问服务的设备。DAS服务器是在专用主机上安装简化了的瘦操作系统文件服务器。 存储区域网络(SAN)是一种连接存储设备和存储管理子系统的专用网络。 廉价磁盘冗余阵列RAID RAID分为0~7这8个不同的冗余级别,其中RAID0级无冗余校验功能;RAID1采用磁盘镜像功能,磁盘容量的利用率是50%;RAID3利用一台奇偶校验盘来完成容错功能。所以如果利用4个盘组成RAIDS阵列,可以用3个盘用于有效数据,磁盘容量的利用率为75%。RAID0的磁盘容量利用率是最高的。 P239 项目段式管理页式管理段页式管理划分方式 虚地址 虚实转换 主要优点简化了任意增长和收缩的 数据段管理,利于进程间共消除了页外碎片结合了段与页的有点 便于控制存取访问

基于车辆运行监控系统的驾驶行为安全与节能评价方法研究

目录 第一章绪论 (1) 1.1研究背景 (1) 1.1.1我国道路交通安全与能源形势分析 (1) 1.1.2研究驾驶行为安全与节能的必要性 (2) 1.2 国内外研究现状 (3) 1.2.1国外研究现状 (3) 1.2.2国内研究现状 (5) 1.3研究意义 (7) 1.4研究的主要内容 (8) 1.5 本章小结 (9) 第二章驾驶行为安全与节能评价指标研究 (10) 2.1 驾驶行为安全评价指标研究 (10) 2.1.1客车重特大交通事故原因分析 (10) 2.1.2货车重特大交通事故原因分析 (13) 2.1.3驾驶行为安全评价指标 (17) 2.2驾驶行为节能评价指标研究 (18) 2.2.1驾驶行为规范性对车辆节能的影响 (18) 2.2.2驾驶行为节能评价指标 (23) 2.3驾驶行为安全与节能评价指标体系 (24) 2.4本章小结 (25) 第三章驾驶行为安全与节能评价方法研究 (26) 3.1驾驶行为安全与节能评价指标理论模型 (26) 3.1.1 车辆预热 (26) 3.1.2 起步加速操作 (27) 3.1.3挡位操作 (28) 3.1.4 加速操作 (30) 3.1.5减速操作 (31) III

3.1.6车速控制 (32) 3.1.7转向操作 (33) 3.1.8 车辆怠速 (34) 3.1.9灯光操作 (35) 3.1.10 安全带使用 (35) 3.1.11 车辆技术状况 (35) 3.1.12 车辆内温度调节 (36) 3.1.13驾驶员状态 (37) 3.2驾驶行为安全与节能评价指标理论模型参数设定方法 (37) 3.2.1 评价模型参数需求 (37) 3.2.2车载CAN总线数据信息提取 (38) 3.3 驾驶行为综合评分方法 (40) 3.4 本章小结 (43) 第四章驾驶行为综合评价软件开发 (44) 4.1软件设计框架 (44) 4.2 软件的功能 (45) 4.3本章小结 (47) 第五章车辆运行监控下驾驶行为安全与节能评价的试验验证 (48) 5.1驾驶行为评价模型预设信息 (48) 5.2驾驶行为安全与节能评价方法的试验验证 (52) 5.2.1 城市道路驾驶模式下驾驶行为安全与节能评价方法的试验验证 (52) 5.2.2高速公路驾驶模式下驾驶行为安全与节能评价方法的试验验证 (57) 5.3本章小结 (61) 结论与展望 (62) 1 结论 (62) 2展望 (62) 参考文献 (63) 攻读学位期间取得的研究成果 (66) 致谢 (67) IV

福特QOS质量运行系统

1 卓亚咨询

2 内容纲要Course Outline 一. QOS 是什么? 二. 实施步骤一:工厂管理委员会的形成三. 实施步骤二:工厂管理委员会典礼四. 步骤三:客户期望五. 实施步骤四: 六. 实施步骤五:量化指标和过程七. 实施步骤六:数据资料的管理八. 实施步骤七:工作计划的形成九.审核和评价十. 推动开展 QOS

3 QOS-Quality Operating System 质量运行系统 ?由福特总部发行的一致性生产质量运行系统,涵盖所有生产厂区(车身、涂装、整车。。。)的要求?以ISO9001、ISO/TS16949为基础,结合其它管理方法(TQM 、Six-sigma )?目的在推行一致性的福特组装厂最佳质量系统,以达到监控并持续 改善新车的出厂质量

4 为福特公司和其供应商提供有效性应用QOS 的策略。福特公司要求供应商如何根据顾客的要求,建立战略性目标,并通过对指标的分解,建立指标系统,落实到流程和岗位,并通过对指标的评估、分析和改进来实现整个经营系统的改善。

5 ■挑战和机遇●顾客期望 我们的顾客日益增长的需要…… 产品和服务的多样化缩短产品投产周期 以及增强生产、交付和服务的灵活性 由此产生日益增长的内部要求…… 针对目前顾客期望监控我们的绩效 迅速诠释顾客期望,转化为新的产品和服务●竞争压力 我们的竞争对手与我们一样清楚顾客的期望我们的顾客需要减少汽车供应商数量

6 ●QOS 的反应 去迎接这些挑战,我们必须…… 能够迅速获得正确信息开发人的潜能 实施过程确保永无止境的持续改进的过程 这些内部需求导致了更本性的变革,例如: 跨功能方式管理注重过程 数据资料的应用由多功能小组的力量摒弃陈旧的模式 应对这些要求,你必须以最快的时间和最低的成本生产出最好的产品和服务。这就是QOS 的目的。

控制系统性能评估1

对于一个控制系统来说,系统稳定是前提,在这个前提下,控制系统性能评估主要关心控制系统的动态性能和稳态性能。动态性能指标反映给定输入信号快速平稳的跟踪能力,或者扰动下恢复正常工作的能力。稳态性能指标反映控制性能的最终控制精度。动态性能和稳态性能的性能指标对评估一个控制系统有较重要的作用。 对于控制系统的分析主要有三种方法:时域分析法,频域分析法,根轨迹法。不同的分析方法有不同的稳态和动态性能指标,下面是我的具体介绍。 一、时域:评估一个具体控制系统,我们要得到它的性能指标,在此我给控制系统输入一个阶跃信号,由控制系统输出响应曲线来求出性能指标,仿真可在MATLAB或Simulink进行。 1、一阶系统:数学模型: 阶跃响应曲线: 图一 性能指标:过渡时间ts=4T(98%),上升时间tr=0.13T。上升时间和过渡时间越小,说明其稳态性能和动态性能越好。 2、二阶系统: 数学模型:

单位阶跃响应(衰减振荡形式): 图二 (1)衰减比:n=B/B1,B表示第一个波振幅,B1表示第二个波振幅,n是恒大于1的,n越大稳定性越高,实际操作将n控制在4:1到10:1范围内,则控制性能较好。 (2)超调量δ%:超过目标值的最大偏差量与目标值之比,用百分比表示。阻尼比越小,超调量越大,与自然频率无关。在实际系统中阻尼比一般在0.5-0.8之间。 超调量越大说明稳定性越差,而快速性越好,它们是相互制约的、矛盾的。 (3)调节时间ts:从开始上升到不断调整后进入到稳定的误差范围内的时间。正是这段时间也可以称作动态过程,之后的时间称为稳态。通常所指的动态性能指标包括稳定性和快速性,稳态性能指标就是准确性。稳定性和稳态是不能混为一谈的,一定要分清。 (4)振荡次数N:从开始上升到反复穿越目标值的次数。理想状态下希望N=0.5次。这是考虑到三项指标的综合性。 (5)上升时间tr:从开始上升时间到第一次到达目标值的时间。阻尼比不变时,Wn越大,上升时间越小;自然频率不变,阻尼比越小,上升时间越小。理想状态下希望越短越好,在实际的自动控制系统中是不可能的。 (6)稳态误差ess,反映控制系统的稳态精度,越小越好。 对于一些高阶,复杂的系统,可以在一定范围内简化为典型的系统,便于对控制系统进行分析。 3、高阶系统的性能分析:

系统性能评定方法

HKH系统性能评定方法 1.适用范围 1.1本办法适用于短时间内客观评价管道泄漏监测报警定位系统(以下称系统),属于采用测试的办法检验管道泄漏监测报警定位系统。 1.2本办法不适用于通过长时间运行效果统计评价管道泄漏监测报警定位系统(以下称系统)。 1.3本办法涉及到的名词术语凡是“管道泄漏检测技术名词术语解释”已有解释的,一律以“管道泄漏检测技术名词术语解释”为准。 1.4管道泄漏监测系统的性能以长期运行统计的效果为评价主要依据,本办法测试的结果只是测试时系统的性能,如果扩展其代表性,需要供需双方认可。 2.基本要求 2.1系统的主要性能指标是漏报率、误报率和定点误差,本办法适用于用试验的方法对这三项指标的考核。 2.2为检验系统性能,如果被监测管道原有可泄放流体处,最好采用这种方法试验。没有可泄放条件时最好采用开孔泄放的方法,如果不能开孔,可以采用改变信号的方法。 2.2.1选择开孔时,在管道有可能发生泄漏的位置开孔n个,孔径不得小于实际发生过的盗油开孔最小孔径,开孔采用密闭带压开孔方式。 2.2.2选择改变信号方法时,可以选择软件或硬件的方法,但是要尽量模拟管道发生泄漏的实际信号变化过程。 2.3试验必须在管道正常输送状态下进行。要求在试验前一小时内到试验结束前的时间段内,除试验外不得有任何可能导致管道压力发生波动的操作。 3试验方法 3.1在确认计算机已经处于正常监控和管道正常输送的状态下,从开孔处

放油和在两站调整外输管压,然后依据统计数据计算出上述三项指标,所取数据应有足够的代表性。 3.2开关放油阀操作时须连续,不得节流。放油一次时间不小于200s,每次停止放油后到下次操作的间隔时间不小于10分钟。 3.3调整管道压力一次时间不小于200s,每次恢复后到下次调整的间隔时间不小于10分钟。对于不能连续开动的阀门,每开动一下为一次操作。调整管道压力操作可采用在管线上放油(取样)、调回流、调外输量等办法,对于有变频调速器的场合,如果用调整频率的方法不能导致管道压力振荡时,也允许采用该方法。 4数据的收集和处理 4.1现场数据必须有专人记录,记录操作时间,操作内容和间隔时间,时间采用实时时间,要求操作员、记录员、审核员签字完整。 4.2漏报率: 漏报率=(放油次数-计算机报警次数)/放油次数×100% 4.3误报率: 误报率=调整管道压力时计算机报警次数/调整管道压力次数×100% 4.4定位误差: 定位误差=单个报警定点值-总平均定点值 4.5粗大误差 原始记录产生的粗大误差应予剔除,以消除非正常因素导致的不公正。 5操作规范 5.1在测试过程中,同一时刻不能进行另一项考核内容的操作。 5.2在测试的全过程中,不得调整外输管道压力,如化验取样需要,也必须在测试误报中取样,取样操作要符合本规范并统计在数据中。

相关文档
最新文档