光电功能材料与器件复习题

光电功能材料与器件复习题
光电功能材料与器件复习题

光电器件研究进展和发展趋势

光电器件研究进展和发展趋势 原荣信息产业部电子第三十四研究所研究员 摘要:建设光纤接入网和DWDM系统离不开各种光学材料和器件,诸如光纤和光缆、连接器和耦合器、光发射/接收器、光波分复用/解复用器、光滤波器、光放大器、光开关以及光分插复用器等。本文就光纤通信系统用到的光电器件的研究进展和发展趋势作一个简要介绍。 一、光有源器件 1.1 可调谐激光器 可调谐激光器是实现宽带测试、WDM和光纤放大器泵浦的最重要的器件,近年制成的单频激光器都用多量子阱(MQW)结构、分布反馈(DFB)式或分布布喇格反射(DBR)式结构,有些能在80nm范围内调谐。在半导体激光器后面加上一个光纤布喇格光栅,可使波长稳定,如美国E-TEK研制的980nm泵浦激光器,输出光功率达220mW,又如法国alcatel Optronics公司研制的1480nm泵浦激光器,不但在半导体激光器后面加了一个光纤布喇格光栅,而且尾纤采用保偏光纤,既使波长稳定,又使功率也稳定。美国MPB公司推出的EBS-4022宽带光源,其输出功率达22dBm,在C波段40nm的带宽上,其平坦度≤1dB。美国Santec公司推出的TSL-220可调谐激光器,为保证pm数量级的波长精度,内置一个波长监测器;为去除ASE啐噪声,还内置一个可调谐滤波器,可调谐范围竟达80nm。 1.2光放大器 目前广泛使用的是光纤放大器,它有掺铒和掺氟2种,其单泵浦的增益典型值为17dB,双泵浦的增益典型值为35dB,噪声系数一般为5~7dB,带宽为30nm,在带宽内的增益偏差为1dB。在氟基光纤上掺镨就可制作出掺镨光纤放大器(PDFFA),可应用于工作在1.3mm波段上的G.652光纤。 半导体激光放大器(SLA)芯片具有高达30~35dB的增益,除输入和输出端存在总共8~10dB 的耦合损耗外,还有22~25dB的增益,另外行波半导体激光器具有很宽的带宽,可以对窄至几个ps的超窄光脉冲进行放大。SLA的另一个重要优点是它可与光发射机和接收机一起被单片集成在一起。欧洲ACTS KEOPS计划资助的全光分组交换系统采用的全光分组交换节点,在输入输出接口、光交换矩阵中都使用了半导体光放大器,在ns量级范围内实现了光门电路波长选择和波长转换器件的功能。 1.2.3 光纤喇曼放大器 当强激光通过光纤时,将产生受激喇曼散射(SRS)。光纤喇曼放大器(FRA)就是利用强泵浦光束通过光纤传输产生的受激喇曼散射。光纤喇曼放大器可覆盖的光谱范围宽,比泵浦光波长大约长100nm的波长区均可获得最大的增益,目前增益带宽已达132nm。这样通过选择泵浦光波长,就可实现任意波长的光放大,所以喇曼放大器是目前唯一能实现1290~1660nm光谱放大的器件。另外,它适用于任何种类的光纤。 光纤喇曼放大器由于其自身固有的全波段可放大的特性和可利用传输光纤做在线放大的优点,1999年已成功地应用于DWDM系统中。使用分布光纤喇曼放大器,可以增大传输距离,提高传输比特率,另外还允许通过加密信道间隔,提高光纤传输的复用程度和传输容量。传输跨距的延伸,有时可免除在两地之间安装昂贵的3R中继器,特别是在大陆和海岛、海岛和海岛间的海缆通信中,具有特别的意义。富士通在211×10Gb/s的DWDM系统中,使无中继传输距离从50km增加到80km,使系统传输距离达到7200km。朗讯和阿尔卡特也有类似的实验。阿尔卡特报道已将32×40Gb/s的无中继DWDM系统的传输距离延伸到250km。 1.3 光纤激光器

光电技术简答题复习资料

“光电技术简答题”复习资料 一、回答问题: 7、什么是朗伯辐射体? 在任意发射方向上辐射亮度不变的表面,即对任何θ角Le 为恒定值(理想辐射表面)。朗伯辐射表面在某方向上的辐射强度与该方向和表面法线之间夹角的余弦成正比。 θc o s 0I I = 10、写出光源的基本特性参数。 (1)辐射效率和发光效率 (2)光谱功率分布 (3)空间光强分布 (4)光源的色温 (5)光源的颜色 11、光电探测器常用的光源有哪些? 热辐射光源:太阳;白炽灯,卤钨灯;黑体辐射器(模拟黑体,动物活体)。 气体放电光源:汞灯,钠灯,氙灯,荧光灯等。 固体发光光源:场致发光灯,发光二极管等。 激光器:气体激光器,固体激光器,染料激光器,半导体激光器等。 12、画出发光二极管的结构图并说明其工作原理。 发光二极管的基本结构是半导体P-N 结。 工作原理:n 型半导体中多数载流子是电 子,p 型半导体中多数载流子是空穴。P-N 结未加电压时构成一定势垒。加正向偏压时,内 电场减弱,p 区空穴和n 区电子向对方区域的 扩散运动相对加强,构成少数载流子的注入,从而p-n 结附近产生导带电子和价带空穴的复合,复合中产生的与材料性质有关的能量将以热能和光能的形式释放。以光能形式释放的能量就构成了发光二极管的光辐射。 13、说明发光二极管的基本特性参数有哪些。 (1)量子效率: 1)内发光效率:PN 结产生的光子数与通过器件的电子数的比例。 2)外发光效率:发射出来的光子数与通过器件的电子数的比例。 (2)发光强度的空间分布: (3)发光强度与电流关系:电压低于开启电压时,没有电流,也不发光。电压高于开启电压时显示出欧姆导通性。在额定电流范围内,发光强度与通过的电流成正比。 (4)光谱特性:发射功率随光波波长(或频率)的变化关系。 (5)响应时间:从注入电流到发光二极管稳定发光或停止电流到发光二极管熄灭所用的时间。表达了发光二极管的频率特性。 (6)寿命:亮度随时间的增加而减小。当亮度减小到初始值的e -1时所延续的时间。 17、简述PN 结光伏效应(分正偏、反偏、零偏三种情况)。 S i O 2 铝电极 背电极 P N + - 图 发光二极管的结构图

最新《光电子材料与器件》复习提纲

《光电子材料与器件》复习提纲 Sciprince 一、1、激光的原理、特点、本质P4 2、受激辐射三能级、四能级系统(为什么四能级系统效率高) 3、固体激光器如何锁模P36 4、光谱线的宽度线性函数P5 5、均匀加宽(碰撞加宽、自然加宽)线性函数P5 6、增益饱和的物质实质 二、1、红宝石激光器P18 2、Nd3+:YAG激光器P18 3、自由电子激光器P22 三、1、横模选择技术P40 2、纵模选择技术P43 3、稳频技术P46 4、兰姆凹陷稳频P48 5、Q调制原理P25 6、锁模的基本原理P33 四、1、电光调制概念P53 2、怎么调制(怎么调,计算栅极调制和正负调制) 3、光电振幅调制原理P53 4、电光效应P55 五、1、声光衍射现象P63 2、耦合波理论和耦合波方程P64 3、磁光调制P68 4、Ramman-Nath衍射图P63 5、Bragg衍射图P64 六、1、光纤衰减P75 2、光纤弧子P76 七、1、光伏探测器 2、光电池P85 八、1、光电子学研究对象F1 2、 3、爱因斯坦受激辐射理论P2 4、几种激光器工作物质和原理P15 5、声光调制概念P65 5、两种调制的区别 6、光纤衰减有哪些(09诺贝尔)P75 7、光电转换器概念P84 8、哪几种物理效应P83 9、CCD工作原理,反型层,转移,P型n型,外加电压正负,栅极电压P88

附件: 由光学和电子学结合形成的技术学科。电磁波范围包括X射线、紫外光、可见光和红外线。光电子学涉及将这些辐射的光图像、信号或能量转换成电信号或电能,并进行处理或传送;有时则将电信号再转换成光信号或光图像。 以光波代替无线电波作为信息载体,实现光发射、控制、测量和显示等。通常有关无线电频率的几乎所有的传统电子学概念、理论和技术,如放大、振荡、倍频、分频、调制、信息处理、通信、雷达、计算机等,原则上都可延伸到光波段。在激光领域中,激光器提供光频的相干电磁振荡源,光电子学是指光频电子学。光电子学有时也狭义地指光-电转换器件及其应用的领域。光电子学还包括光电子能谱学,它利用光电子发射带出的信息研究固体内部和表面的成分和电子结构。光电子学及其系统的发展,依赖于光-电和电-光转换、光学传输、加工处理和存储等技术的发展,其关键是光电子器件。光电子器件主要有作为信息载体的光源(半导体发光二极管、半导体激光器等)、辐射探测器(各种光-电和光-光转换器)、控制与处理用的元器件(各种反射镜、透镜、棱镜、光束分离器,滤光片、光栅、偏振片、斩光器、电光晶体和液晶等)、光学纤维(一维信息传输光纤波导、二维图像传输光纤束、光能传输光纤束、光纤传感器等)以及各种显示显像器件(低压荧光管、电子束管、白炽灯泡、发光二极管、场致发光屏、等离子体和液晶显示器件等)。将各类元器件按各种可能方式组合起来可构成各种具有重大应用价值的光电子学系统,如光通信系统、电视系统、微光夜视系统等。 由光学和电子学相结合而形成的新技术学科。电磁波范围包括 X射线、紫外线、可见光和红外线。它涉及将这些辐射的光图像、信号或能量转换成电信号或电能,并进行处理或传送;有时则将电信号再转换成光信号或光图像。它以光波代替无线电波作为信息载体,实现光发射、控制、测量和显示等。通常有关无线电频率的几乎所有的传统电子学概念、理论和技术,如放大、振荡、倍频、分频、调制、信息处理、通信、雷达、计算机等,原则上都可以延伸到光波段。在激光领域中,激光器提供光频的相干电磁振荡源,光电子学是指光频电子学。光电子学有时也狭义地专指光- 电转换器件及其应用的领域。光电子学还包括光电子能谱学。它是利用光电子发射带出的信息来研究固体内部和表面的成分和电子结构,如X射线光电子能谱学和紫外光电子能谱学。 光电子学的应用非常广泛。已制成和正在研制的光电子器件品种繁多。从能源角度来看,可将光能转换成电能,或将电能转换成光能。前者有晶态和非晶态太阳能电池,小者可用于电子表和电子计算器,大者可制成太阳能电站;后者有以电驱动的发光光源,如放电灯、霓虹灯、荧光灯、场致或阴极射线发光屏、发光二极管等。从信息角度来看,可利用光发射、放大、调制、加工处理、存储、测量、显示等技术和元件,构成具有特定功能的光电子学系统。例如,利用光纤通信可以实现迅速和大容量信息传送的目的。它使原来类似的技术水平得到大幅度的提高。 人所接受的信息,大约80%是由光通过眼睛输入的。然而,人眼的局限性大大地限制了人类获得光信息的能力,因而需要扩展人眼的功能。第一,要扩展人眼在低照度下的视觉能力,提供各种夜视装备以便能在低照度下进行科研和生产活动,或在夜间进行侦察和战斗。第二,要扩展人眼对电磁波波段的敏感范围。已制成将红外线、紫外线和 X射线的光图像转换成可见光图像的直视式或电视式光电子学装置。利用这些原理还可以扩展到观察中子和其他带电粒子所形成的图像。第三,要扩展人眼对光学过程的时间分辨本领,例如已经做到在几十飞秒(10-15秒)内就可观察到信息的变化。

光电材料与器件实验指导书

《光电材料与器件》实验指导书 何宁编 桂林电子科技大学信息与通信学院 2008年12月

实验一光电池及LED光源特性测试 一.实验目的 1 理解光电池的光电转换机理及主要特性参数。 2 理解LED光源的电光转换机理、驱动方式及主要特性参数。 3 掌握两种器件的应用及参数的测试方法。 二.实验内容 1 测量光电池的开路电压、短路电流和伏安特性。 2 测量LED光源的驱动特性及电光转换效率。 三.实验原理 光电池是由一个面积较大的PN结构成,它是一种直接将光能转换成电能的光电器件,这种器件是利用光生伏特效应,当光线照射到P-N结上时,就会在P-N结两端出现电动势(P区为正;N区为负),若负载接入PN结两端,光电池就有功率输出。光电池对不同的波长的光反映的灵敏度是不同的,按制作材料不同可分为硅光电池和硒光电池,光谱特性如图1所示。 图1 光谱特性图2 光电特性 图1中硅光电池的光谱响应范围是波长4000?——12000?,在波长为8000?时达到峰值,而硒光电池的峰值出现在5000 ?左右,波长的范围是3800——7500?,1埃=0.1nm。 图2中硅光电池的开路电压与光照是一种非线性关系,当光照强度在200勒克斯时就趋向饱和。而短路电流在很大的范围内与光照成线型关系,因此使用光电池作为测量元件使用时,应该把它当成电流源的形式来研究,因为短路电流与光强是线性的,处理起来比较方便,而不要当成电压源使用。需要说明的是这里说的短路电流与开路电压与平时意义上不同,它是指外负载电阻相对与内阻非常小时候的电流值,以及外负载很大时的端电压。实验时外负载电阻<15Ω时,就认为是短路电流,而>5.0K时,就认为是开路电压。经实验证明外负载越小线性度越好。 不同颜色的光有不同的波长,因此光电池的光照频率也不同,光电池的频率特性是指输出电流随调制光的频率变化的关系,图3分别表示硅光电池与硒光电池的频率响应曲线,可见硅光电池有较好的频率特性,而硒光电池则较差。太阳能辐射能量主要集中在1.3-32um的波长范围,表面温度近6000K的太阳能辐射出的能量95%以上的部分分布在波长小于2um的光谱范围。而对于温度为几百K的物体其辐

光电元器件

图1-31发光二极管测量 光电元器件 1. 发光二极管的检测 ① 正、负极的判别 将发光二极管放在一个光源下,观察两个金属片的大小,通常金属片大的一端为负极,金属片小的一端为正极。 ② 发光二极管测量 发光二极管除测量正、反向电阻外,还应进一步检查其是否发光。发光二极管的工作电压一般在1.6V 左右,工作电流在1mA 以上时才发光。用R ×10K Ω挡测量正向电阻时,有些发光二极管能发光即可说明其正常。对于工作电流较大的发光二极管亦可用图1-31所示电路进行检测。 ① 性能好坏的判断 用万用表R×10K 档,测量发光二极管的正、反向电阻值。正常时,正向电阻值(黑表笔接正极时)约为10~20K Ω,反向电阻值为250KΩ~∞(无穷大)。较高灵敏度的发光二极管,在测量正向电阻值时,管内会发 微光。若用万用表R×1K 档测量发光二极管的正、反向电阻 值,则会发现其正、反向电阻值均接近∞(无穷大),这是因 为发光二极管的正向压降大于1.6V (高于万用表R×1K 档内 电池的电压值1.5V )的缘故。用万用表的R×10K 档对一只220μF/25V 将充电后的电容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,则说明该发光二极管完好。也可用3V 直流电源,在电源的正极串接1只33Ω电阻后接发光二极管的正极,将电源的负极接发光二极管的负极(见图1-31),正常的发光二极管应发光。或将1节1.5V 电池串接在万用表的黑表笔(将万用表置于R×10或R×100档,黑表笔接电池负极,等于与表内的1.5V 电池串联),将电池的正极接发光二极管的正极,红表笔接发光二极管的负极,正常的发光二极管应发光。 2. 红外发光二极管的检测 ① 正、负极性的判别 红外发光二极管多采用透明树脂封装,管心下部有一个浅盘,管内电极宽大

光电显示技术期末复习资料

光电显示技术期末复习资料 第一章绪论 (2) 1、光电显示器件有哪些分类? (3) 2、表征显示器件的主要性能指标有哪些? (3) 3、简述色彩再现原理。 (3) 4、人眼的视觉特性 (3) 5、简述人眼的视觉原理。 (4) 第二章液晶显示技术(LCD) (4) 1、简述液晶的种类与特点。 (4) 2、简述热致液晶分类和特点。 (5) 3、试述液晶显示器的特点。 (5) 4、什么是液晶的电光效应? (5) 5、LCD显示产生交叉效应的原因是什么? 用什么方法克服交叉效应? (5) 6、液晶有哪些主要的物理特性? (5) 7、简述TFT-LCD的工作原理。 (6) 8、简述TN-LCD的基本结构及工作原理。 (6) 9、液晶显示器驱动方法有哪几种方式? (7) 10、液晶显示控制器有哪些特性? (7) 11、自然光和偏振光的区别是什么?简述偏振光的分类及线偏振光的特点。 (7) 12、LCD结构和显示原理。 (7) 第四章发光二极管LED和有机发光二极管OLED显示技术 (10) 1、简述有机发光二极管显示器发光过程。 (10) 2、以ITO阳极-空穴传输层-发光层-电子传输层-金属阴极结构OLED为 例说明每一功能层的作用,并简述其工作原理。 (10) 3、简述影响OLED发光效率的主要因素和提高发光效率的措施。 (11) 4、OLED如何实现彩色显示? (11) 5、简述LED工作原理。 (11) 6、简述LED驱动方式。 (12) 7、OLED的结构与工作原理。 (12) 8、OLED的特点有哪些? (12) 第六章激光显示技术(LDT) (12) 1、激光具有哪些特性? (13) 2、激光用于显示具有哪些优势? (13) 第七章新型光电显示技术 (13) 1、场致发射显示(FED)结构及工作原理 (13) 2、真空荧光显示器(VFD)结构及工作原理 (14) 第八章大屏幕显示技术 (14) 1、DLP特点及工作原理 (14) 2、LCOS特点及工作原理 (15)

光电测试考试资料整理

光电测试考试资料整理 第一章: 1. 试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1] 电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2] 收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外, 用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线) 与y 射线(Gamma 射线) 波段。 这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2. 光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1] 应用:(1) 人眼的视觉特性(2) 各种辐射源及目标、背景特性(3) 大气光学特性对辐射传输的影响(4) 成像光学系 统(5) 光辐射探测器及致冷器(6) 信号的电子学处理(7) 图像的显示 [2] 突破了人眼的限制: (1) 可以拓展人眼对不可见辐射的接受能力(2) 可以拓展人眼对微弱光图像的探测能力(3) 可以 捕捉人眼无法分辨的细节(4) 可以将超快速现象存储下来 3. 光电成像器件可分为哪两大类?各有什么特点? 答:[1] 直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常 使用光电发射效应,也成像管.[2] 电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光 图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4. 什么是变像管?什么是像增强器?试比较二者的异同。 答:[1] 变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2] 像增强器:接 收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强 后通过荧光屏输出人眼能够正常观看的光学图像。[3] 异同、相同点:二者均属于直视型光电成像器件。不同点:主要 是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5. 反映光电成像系统光电转换能力的参数有哪些? 答:[1] 转换系数(增益)[2] 光电灵敏度(响应度)-峰值波长,截止波长 6. 光电成像过程通常包括哪几种噪声? 答:主要包括:(1) 散粒噪声(2) 产生一复合噪声(3) 温度噪声(4) 热噪声(5) 低频噪声(1/f 噪声)(6) 介质损耗噪声(7) 电 荷藕合器件(CCD) 的转移噪声

光电子材料与器件课后习题答案

3.在未加偏置电压的条件下,由于截流子的扩散运动,p 区和n 区之间的pn 结附近会形成没有电子和空穴分布的耗尽区。在pn 结附近,由于没有电子和空穴,无法通过电子-空穴对的复合产生光辐射。加上正向偏置电压,驱动电流通过器件时,p 区空穴向n 区扩散,在pn 结附近形成电子和空穴同时存在的区域。电子和空穴在该区通过辐射复合,并辐射能量约为Eg 的光子,复合掉的电子和空穴由外电路产生的电流补充。 5要满足以下条件a 满足粒子数反转条件,即半导体材料的导带与价带的准费米能级之差不小于禁带宽度即B.满足阈值条件,半导体由于粒子数产生的增益需要能够补偿工作物质的吸收、散射造成的损耗,以及谐振腔两个反射面上的透射、衍射等原因产生的损耗。即 第二章课后习题 1、工作物质、谐振腔、泵浦源 2、粒子数反转分布 5a.激光介质选择b.泵浦方式选择c 、冷却方式选择d 、腔结构的选择e 、模式的选择f 、整体结构的选择 第三章课后习题 10.要求:对正向入射光的插入损耗值越小越好,对反向反射光的隔离度值越大越好。原理:这种光隔离器是由起偏器与检偏器以及旋转在它们之间的法拉第旋转器组成。起偏器将输入光起偏在一定方向,当偏振光通过法拉第旋转器后其偏振方向将被旋转45度。检偏器偏振方向正好与起偏器成45度,因而由法拉第旋转器出射的光很容易通过它。当反射光回到隔离器时,首先经过起偏器的光是偏振方向与之一至的部分,随后这些这些光的偏振方向又被法拉第旋转器旋转45度,而且与入射光偏振方向的旋转在同一方向上,因而经过法拉第旋转器后的光其偏振方向与起偏器成90度,这样,反射光就被起偏器所隔离,而不能返回到入射光一端。 15.优点:A 、采用光纤耦合方向,其耦合效率高;纤芯走私小,使其易于达到高功率密度,这使得激光器具有低的阈值和高的转换效率。B 、可采用单模工作方式,输出光束质量高、线宽窄。C 、可具有高的比表面,因而散热好,只需简单风冷即可连续工作。D 、具有较多的可调参数,从而可获得宽的调谐范围和多种波长的选择。E 、光纤柔性好,从而使光辉器使用方便、灵巧。 由作为光增益介质的掺杂光纤、光学谐振腔、抽运光源及将抽运光耦合输入的光纤耦合器等组成。 原理:当泵浦激光束通过光纤中的稀土离子时,稀土离子吸收泵浦光,使稀土原子的电子激励到较高激发态能级,从而实现粒子数反转。反转后的粒子以辐射跃迁形式从高能级转移到基态。 g v c E F F 211ln 21R R L g g i th

金属功能材料

粉末冶金: 将金属或非金属粉末混合后压制成形,并在低于金属熔点的温度下进行烧结,利用粉末间原子扩散来使其结合的过程被称做粉末冶金工艺。 一、粉料制备与压制成型粉末混料均匀并加入适当的助剂,再进行压制成型,粉粒间的原子通过固相扩散和机械咬合作用,使制件结合为具有一定强度的整体。 二、烧结将压制成型的制件放置在采用还原性气氛的闭式炉中进行烧结,烧结温度约为基体金属熔点的2/3~3/4倍。由于高温下不同种类原子的扩散,粉末表面氧化物的被还原以及变形粉末的再结晶,使粉末颗粒相互结合。 金属基复合材料的界面结合形式 (1)机械结合:第一类界面。主要依靠增强剂的粗糙表面的机械“锚固”力结合。 (2)浸润与溶解结合:第二类界面。如相互溶解严重,也可能发生溶解后析出现象,严重损伤增强剂,降低复合材料的性能。如采用熔浸法制备钨丝增强镍基高温合金复合材料以及碳纤维/镍基复合材料在600C下碳在镍中先溶解后析出的现象等。 (3)化学反应结合:第三类界面。大多数金属基复合材料的基体与增强相之间的界面处存在着化学势梯度。只要存在着有利的动力学条件,就可能发生相互扩散和化学反应。 2 金属基复合材料制备方法 固态法、液态法、喷射成型法、原位生长法 3、界面优化以及界面设计一般有以下几种途径: 1 增强剂的表面改性处理(选择增强体的考虑因素) (1)改善增强剂的力学性能(保护层); (2)改善增强剂与基体的润湿性和粘着性(润湿层); (3)防止增强剂与基体之间的扩散、渗透和反应(阻挡层); (4)减缓增强剂与基体之间因弹性模量、热膨胀系数等的不同以及热应力集中等因素所造成的物理相容性差的现象(过渡层、匹配层)。 2 金属基体改性(添加微量合金元素):控制界面反应、增加基体合金的流动性,降低复合材料的制备温度和时间、改善增强剂与基体的润湿性。 环境材料的内涵特点 (1)材料的先进性 (2)环境协调性(区别于传统材料) 生产环节中资源和能源的消耗少 工艺流程的环境负荷小 废弃后易于再生循环。(优先争取的目标) (3)舒适性 金属材料环境化 一、合金元素无害化、资源丰富和易于再生循环

项目1 常见光电器件的应用教案

项目一 常见光电器件的应用 把从光信号转换到电信号的器件称之为“光电器件”的话,则电真空器件中主要有光电管、光电倍增管、摄像管、影像增强管等;半导体器件中主要有光电池、光敏电阻、光敏三极管、摄像头上使用的CCD 器件;光耦合器大约也可以算上,不过它是利用光敏器件与半导体发光元件的组合,不是单纯的光电器件。 现在有将 LED 器件也称为光电器件,那么“陶瓷场致发光屏”是否也应属光电器件,因为它也是通电后发光的器件,也就是将电信号转换为光信号的器件?实际上,场致发光屏应该属“电光源”之一。 任务一 光敏电阻器及其应用 1、光敏电阻器基本知识 光敏电阻器是一种特殊的光电导器件,该电阻具有光 电导效应,当它受到光辐射后其电导率会发生变化,即其 阻值会发生改变。入射光强,电阻减小,入射光弱,电阻 增大,光敏电阻器在电路中用字母“R ”或“RL ”、 “RG ”表示。一般用于光的测量、光的控制和光电 转换 (将光的变化转换为电的变化)。使用时无正负极之分。 图1 光敏电阻外观 2、光敏电阻器的组成 光敏电阻器通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成。 图2 光敏电阻器的组成部分 教学目的 1. 了解常见光电器件的识别与检测方法。 2. 能够根据常用光电电路进行电子制件并调试。 3. 有足够的动手能力完成项目中实操任务。 4. 培养课后反思的习惯,理解并掌握课后习题。

图3 光敏电阻器的相对灵敏度曲线 优点: ①光谱响应范围宽,尤其对红光和红外辐射有较高的灵敏度; ②所测的光强范围宽; ③灵敏度较高; ④工作电流大,可达数毫安; ⑤偏置电压低,无极性之分,使用方便。 缺点: ①强光照射下的线性较差; ②弛豫过程较长,响应速度慢; ③频率响应较差。 3、光敏电阻器的分类 按半导体材料分:本征型光敏电阻、掺杂型光敏电阻。后者性能稳定,特性较好,故目前大都采用它。 根据光敏电阻的光谱特性,可分为三种光敏电阻器: 紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、硒化镉光敏电阻器等,用于探测紫外线。 红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅、锑化铟等光敏电阻器,广泛用于导弹制导、天文探测、非接触测量、人体病变探测、红外光谱,红外通信等国防、科学研究和工农业生产中。 可见光光敏电阻器:包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌光敏电阻器等。主要用于各种光电控制系统,如光电自动开关门户,航标灯、路灯和其他照明系统的自动亮灭,自动给水和自动停水装置,机械上的自动保护装置和“位置检测器”,极薄零件的厚度检测器,照相机自动曝光装置,光电计数器,烟雾报警器,光电跟踪系统等方面。 4、光敏电阻器的应用 光敏电阻属半导体光敏器件,除具灵敏度高,反应速度快,光谱特性及r值一致性好等特点外,在高温,多湿的恶劣环境下,还能保持高度的稳定性和可靠性,可广泛应用于照相机,太阳能庭院灯,草坪灯,验钞机,石英钟,音乐杯,礼品盒,迷你小夜灯,光声控开关,路灯自动开关以及各种光控玩具,光控灯饰,灯具等光自动开关控制领域。

光电子材料与器件题库

《光电子材料与器件》题库 选择题: 1. 如下图所示的两个原子轨道沿z轴方向接近时,形成的分子轨道类型为( A ) (A) *σ(B) σ(C) π(D) *π 2. 基于分子的对称性考虑,属于下列点群的分子中不可能具有偶极矩的为(C)(A)C n(B)C n v(C)C2h(D)C s 3. 随着温度的升高,光敏电阻的光谱特性曲线的变化规律为(B)。 (A)光谱响应的峰值将向长波方向移动 (B)光谱响应的峰值将向短波方向移动 (C)光生电流减弱 (D)光生电流增强 4. 利用某一CCD来读取图像信息时,图像积分后每个CCD像元积聚的信号在同一时刻先转移到遮光的并行读出CCD中,而后再转移输出。则该CCD的类型为(B ) (A)帧转移型CCD (B)线阵CCD (C)全帧转移型CCD (D)行间转移CCD 5. 对于白光LED器件,当LED基片发射蓝光时,其对应的荧光粉的发光颜色应该为(D) (A)绿光(B)紫光(C)红光(D)黄光 6. 在制造高效率太阳能电池所采取的技术和工艺中,下列不属于光学设计的为(C) (A)在电池表面铺上减反射膜; (B)表面制绒; (C)把金属电极镀到激光形成槽内; (D)增加电池的厚度以提高吸收 7. 电子在原子能级之间跃迁需满足光谱选择定则,下列有关跃迁允许的表述中,不正确的是(B ): (A)总角量子数之差为1 (B)主量子数必须相同 (C)总自旋量子数不变

(D)内量子数之差不大于2 8. 物质吸收一定波长的光达到激发态之后,又跃迁回基态或低能态,发射出的荧光波长小于激发光波长,称为(B)。 (A)斯托克斯荧光(B)反斯托克斯荧光(C)共振荧光(D)热助线荧光9. 根据H2+分子轨道理论,决定H原子能否形成分子的主要因素为H原子轨道的(A ) (A)交换积分(B)库仑积分(C)重叠积分(D)置换积分 10. 下列轨道中,属于分子轨道的是(C) (A)非键轨道(B)s轨道(C)反键轨道(D)p 轨道 11. N2的化学性质非常稳定,其原因是由于分子中存在(D ) (A)强σ 键(B)两个π键(C)离域的π键(D)N N≡三键12. 测试得到某分子的光谱处于远红外范围,则该光谱反映的是分子的(B )能级特性。 (A)振动(B)转动(C)电子运动(D)电声子耦合 13.下列的对称元素中,所对应的对称操作属于虚动作的是(C ) (A)C3 (B)E(C)σh(D)C6 14. 某晶体的特征对称元素为两个相互垂直的镜面,则其所处的晶系为(C)(A)四方晶系(B)立方晶系(C)正交晶系(D)单斜晶系 15. 砷化镓是III-V族化合物半导体,它的晶体结构是(D)。 (A)NaCl 结构(B)纤锌矿结构(C)钙钛矿结构(D)闪锌矿结构16. 原子轨道经杂化形成分子轨道时,会发生等性杂化或非等性杂化。下列物质中化学键属于不等性杂化的是(B)。 (A)CH4(B)H2O (C)石墨烯(D)金刚石 17. 关于金属的特性,特鲁德模型不能成功解释的是(A ) (A)比热(B)欧姆定律(C)电子的弛豫时间(D)电子的平均自由程18. 下列有关半导体与绝缘体在能带上的说法中,正确的是(B )。 (A)在绝缘体中,电子填满了所有的能带 (B)在0 K下,半导体中能带的填充情况与绝缘体是相同的 (C)半导体中禁带宽度比较大 (D)绝缘体的禁带宽度比较小 19. 在非本征半导体中,载流子(电子和空穴)的激发方式为(B)? (A)电(B)热(C)磁(D)掺杂 20.在P型半导体材料中,杂质能级被称之为(C)。 (A)施主能级(B)深陷阱能级(C)受主能级(D)浅陷阱能级

光电开关与各种光电器件之间的区别

本文采摘于:https://www.360docs.net/doc/4710226168.html,/Article/212_1.html 光电开关与其他光电器件之间的区别 各种光电器件之间的区别,你清楚了吗?超毅电子为大家解开一直以来的困惑,那就是光电开关与各种器件的区别到底是在哪里: 一、光电开关和光电继电器的区别 光电开关是由振荡回路产生的调制脉冲经反射电路后,由发光管GL辐射出光脉冲。当被测物体进入受光器作用范围时,被反射回来的光脉冲进入光敏三极管DU。并在接收电路中将光脉冲解调为电脉冲信号,再经放大器放大和同步选通整形,然后用数字积分或RC积分方式排除干扰,最后经延时(或不延时)触发驱动器输出光电开关控制信号。 光电开关一般都具有良好的回差特性,因而即使被检测物在小范围内晃动也不会影响驱动器的输出状态,从而可使其保持在稳定工作区。同时,自诊断系统还可以显示受光状态和稳定工作区,以随时监视光电开关的工作。 光电继电器的工作原理和特性。继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 二、光电开关与光控开关的区别 1、首先可以确定光控开关不属于光电开关。 2、光电开关是通过把光强度的变化转换成电信号的变化来实现控制的。 它是利用被检测物体对红外光束(区分点)的遮光或反射,由同步回路选通而检测物体的有无,其物体不限于金属,对所有能反射光线的物体均可检测。光电开关在一般情况下,有三部分构成,它们分为:发送器、接收器和检测电路。 根据检测方式的不同,红外线光电开关可分为: (1).漫反射式光电开关 (2).镜反射式光电开关 (3).对射式光电开关

光电检测考试复习题

1、光源选择的基本要求有哪些? 答:①源发光的光谱特性必须满足检测系统的要求。按检测的任务不同,要求的光谱范围也有所不同,如可见光区、紫外光区、红外光区等等。有时要求连续光谱,有时又要求特定的光谱段。系统对光谱范围的要求都应在选择光源时加以满足。②光对光源发光强度的要求。为确保光电测试系统的正常工作,对系统采用的光源的发光强度应有一定的要求。光源强度过低,系统获得信号过小,以至无法正常测试,光源强度过高,又会导致系统工作的非线性,有时还可能损坏系统、待测物或光电探测器,同时还会导致不必要的能源消耗而造成浪费。因此在设计时,必须对探测器所需获得的最大、最小光适量进行正确估计,并按估计来选择光源。③对光源稳定性的要求。不同的光电测试系统对光源的稳定性有着不同的要求。通常依不同的测试量来确定。稳定光源发光的方法很多,一般要求时,可采用稳压电源供电。当要求较高时,可采用稳流电源供电。所用的光源应该预先进行月化处理。当有更高要求时,可对发出光进行采样,然后再反馈控制光源的输出。④对光源其他方面的要求。光电测试中光源除以上几条基本要求外;还有一些具体的要求。如灯丝的结构和形状;发光面积的大小和构成;灯泡玻壳的形状和均匀性;光源发光效率和空间分布等等,这些方面都应该根据测试系统的要求给以满足 2、光电倍增管的供电电路分为负高压供电与正高压供电,试说明这两种供电电路的特点,举例说明它们分别适用于哪种情况? 答:采用阳极接地,负高压供电。这样阳极输出不需要隔直电容,可以直流输出,一般阳极分布参数也较小。可是在这种情况下,必须保证作为光屏蔽和电磁屏蔽的金属筒距离管壳至少要有10~20mm,否则由于屏蔽筒的影响,可能相当大地增加阳极暗电流和噪声。如果靠近管壳处再加一个屏蔽罩,并将它连接到阴极电位上,则要注意安全。采用正高压电源就失去了采用负高压电源的优点,这时在阳极上需接上耐高压、噪声小的隔直电容,因此只能得到交变信号输出。可是,它可获得比较低和稳定的暗电流和噪声 3、在微弱辐射作用下,光电导材料的光电灵敏度有什么特点,?为什么要把光敏电阻制造成蛇形? 答:在微弱辐射下,光电导材料的光电灵敏度是定值,光电流与入射光通量成正比,即保持线性关系。 因为产生高增益系数的光敏电阻电极间距需很小(即t dr小),同时光敏电阻集光面积如果太小而不实用,因此把光敏电阻制造成蛇形,既增大了受光面积,又减小了极间距。 4、为什么结型光电器件在正向偏置时,没有明显的光电效应?它必须在那种偏置状态?为什么? 答:因为p-n结在外加正向偏压时,即使没有光照,电流也随着电压指数级在增加,所以有光照时,光电效应不明显。p-n结必须在反向偏压的状态下,有明显的光电效应产生,这是因为p-n结在反偏电压下产生的电流要饱和,所以光照增加时,得到的光生电流就会明显增加。 二~论述光电检测系统的基本构成,并说明各部分的功能。 1、下面是一个光电检测系统的基本构成框图: (1)光源和照明光学系统:是光电检测系统中必不可少的一部分。在许多系统中按需要选择一定辐射功率、一定光谱范围和一定发光空间、分布的光源,以此发出的光束作为载体携带被测信息。 (2)被测对象及光学变换:这里所指的是上述光源所发出的光束在通过这一环节时,利用各种光学效应,如反射、吸收、折射、干涉、衍射、偏振等,使光束携带上被检测对象的特征信息,形成待检测的光信号。光学变换通常是用各种光学元件和光学系统来实现的,实现将被测量转换为光参量(振幅、频率、相位、偏振态、传播方向变化等)。3)光信号的匹配处理:这一工作环节的位置可以设置在被检测对象前面,也可设在光学变换后面,应按实际要求来决定。光信号匹配处理的主要目的是为了更好地获得待测量的信息,以满足光电转换的需要。 (4)光电转换:该环节是实现光电检测的核心部分。其主要作用是以光信号为媒质,以光电探测器为手段,将各种经待测量调制的光信号转换成电信号(电流、电压或频率),以利于采用目前最为成熟的电子技术进行信号的放大、处理、测量和控制等。 (5)电信号的放大与处理:这一部分主要是由各种电子线路所组成。光电检测系统中处理电路的任务主要是解决两个问题:①实现对微弱信号的检测;②实现光源的稳定化。 (6)存储、显示与控制系统:许多光电检测系统只要求给出待测量的具体值,即将处理好的待测量电信号直接经显示系统显示。 2、在“反向偏置”电路中,有两种取得输出电压U 0的方法:一种是从负载电阻R L 上取得电压U ,另一 种是从二极管两端取得电压U 。叙述两种方法的特点及它们之间的联系。(10分) (1)对于图a)所示的电路,光电信号是直接取出的,即U0=I L R L,而对于b)图,光电信号是间接取出的,U0=U C-I L R L;

光电材料与器件 考试卷 A

皖西学院2016 –2017学年度第 1 学期考试试卷(A 卷) 电气 学院 光电信息 专业 2014 级 光电子材料与器件 课程 一.填空题:本大题共10小题,每空1.5分,共15分。 1. pn 结附近载流子被耗尽的区域,称为空间电荷区,又称__耗尽层__。 2. 往硅中掺入硼元素的半导体是_ p _型半导体。 3. 半导体发光二极管设计成圆顶(半球顶)是为了减少__全反射__的影响,以便形成有 效光辐射。 4. 固体激光材料由激活离子和_基质材料_所组成。 5. 固体激光材料按照基质材料划分,可分为激光晶体、_激光玻璃_和激光陶瓷三类。 6. 固体激光器由泵浦源、固体激光工作物质与_光学谐振腔__所组成。 7. 光纤的损耗包括__吸收损耗__、散射损耗与弯曲损耗。 8. 多模光纤的色散包括模间色散、_材料色散_和波导色散。 9. 光开关可分为机械式光开关、_固体式光开关___和半导体光波导光开关三类。 10. 纳米光电材料在光学上和电学性质上表现出异于宏观光电材料的特性,这主要来源于 _小尺寸效应_、表面效应和量子尺寸效应。 1. 间接带隙半导体的发光效率比直接带隙半导体高。× 2. 高效率的发光器件需要辐射寿命远大于非辐射寿命。× 3. GaN 是直接带隙半导体发光材料。√ 4. 半导体激光器只要一通电,不论电流多小,都能产生激光。× 5. 在固体激光材料中,激光晶体的主要优点是热导率高、荧光谱线窄、硬度较大。 √ 6. 只要形成光放大就可以产生激光。× 7. 光纤的基本结构包括纤芯、包层与缓冲涂覆层三个部分。√ 8. 多模光纤的色散特性优于单模光纤。× 9. 光波导的波长越长越容易形成单模。√ 10. 光纤连接器的插入损耗越小越好,回波损耗越大越好。√ 11. 光纤放大器结构中,也包含有光学谐振腔。× 12. 磁光调制属于光的内调制。× 13. 光子器件不存在截止波长,对一切波长的光均能响应。× 14. 光敏电阻是光电导型器件,其工作原理为光电导效应。√ 15. 扭曲向列相液晶显示有光透过与关闭都不彻底,对比度不理想的缺点。√ 三.选择题:本大题共15小题,每小题2分,共30分。 1.电子浓度高于空穴浓度的半导体是_A 。 A .n 型半导体 B .p 型半导体 C .本征半导体 D .不能确定 2.导带底与价带顶对应相同的k (电子波矢量)的半导体是A 。 A .直接带隙半导体 B .间接带隙半导体 C .p 型半导体 D .n 型半导体 3.发光二极管的核心是pn 结,对于发光二极管的发光原理,以下论述中正确的是_B 。 A .对pn 结施加正向偏压,耗尽层被加强,p 区电子向n 区漂移,n 区空穴向p 区漂移,在pn 结附近相遇,发生辐射复合,辐射出光子 B .对pn 结施加正向偏压,耗尽层被削弱乃至消失,p 区空穴向n 区扩散,n 区电子向p 区扩散,在pn 结附近相遇,发生辐射复合,辐射出光子 C .对pn 结施加反向偏压,耗尽层被加强,p 区电子向n 区漂移,n 区空穴向p 区漂移,在pn 结附近相遇,发生非辐射复合,辐射出光子 D .对pn 结施加反向偏压,耗尽层被加强,p 区空穴向n 区扩散,n 区电子向p 区扩散,在pn 结附近相遇,发生非辐射复合,辐射出光子 4.___C_不是半导体激光器出射激光所必须要具备的条件。 A .粒子数反转 B .光学谐振腔提供的驻波条件 C .较高的温度 D .光增益超过光损耗 5.以下是光纤特性参数的是_B_。 A .插入损耗 B .归一化频率 C .分光比 D .隔离度 6.将某一光纤浸入水中,与该光纤在空气中相比,其受光角_B_。 A .变大 B .变小 C .不变 D .不能确定 7.某一无源树形光纤耦合器(1X3耦合器)输入功率是10.2mW ,输出总功率为10mW ,其中3个输出端口分别输出光功率为4mW 、4mW 、2 mW 。则该光纤耦合器各端口分光比分别为_D_。 A .35%,30%,35% B .20%,50%,30% C .15%,45%,40% D .40%,40%,20% 8.以下光纤器件中,是光纤有源器件的是B_。 A .光纤连接器 B .光纤激光器 C .光隔离器 D .光纤耦合器 9.以下不是光纤通讯窗口的波长是___A 。 A .500nm B .850nm C .1300nm D .1550nm 10.以下属于二阶非线性光学效应的是_D_。 A .光束自聚焦 B .三次谐波产生 C .受激布里渊散射 D .和频. 11.下列材料中,不属于非线性光学晶体的是_C_。 A .KDP B .KTP C .NaCl D .LiNbO 3

《光电子材料与器件》考试重点复习

1、能带形成的原理孤立原子的电子占据一定的原子轨道,形成一系列分立的能级。如果一定数量的原子相互结合形成分子,则原子轨道发生分裂,形成的分子轨道数正比于组成分子的原子数。在包括半导体在内的固体中,大量原子紧密结合在一起,轨道数变得非常巨大,轨道能量之差变得非常小,与孤立原子中的分立能级相比,这些原子轨道可视为能量是近似连续分布的。这种能级近似连续分布的能量范围,即为能带。 2、半导体发光机理 半导体材料中的电子由高能态向低能态跃迁的同时,会以光子的形式释放多余的能量,这称为辐射跃迁,辐射跃迁的过程也就是半导体材料的发光过程。 电子由高能态向低能态跃迁的同时,产生相应能量间隔的光子。电子的跃迁,要求价带有价带电子,同时导带有相应的空穴,即在导带、价带中存在电子空穴对,通过电子空穴的复合,半导体可以发射光子。 3、光电探测原理将光辐射的作用,视为所含光子与物质内部电子的直接作用,也就是物质内部电子在光子的作用下,产生激发而使物质的电学特性发生变化。 4、pn 结形成空间耗电区的原理 形成PN结后,由于n区和p区载流子浓度的差异,n区的多数载流子电子、p 区的多数载流子空穴分别向对方区域扩散并与其多数载流子复合。这就造成PN 结n 区一侧附近电子浓度降低,留下不能移动的施主离子,产生局部的正电荷区域。PN结p区一侧的附近空穴浓度降低,留下不能移动的受主离子,产生局部的负电荷区域。由于局部正负电荷的存在,PN 结附近会产生一个由n 区指向p 区的内建电场。电场阻碍n区的电子继续向p区扩散,同时使n区的少数载流子空穴向p 区漂移,同样,电场阻碍p 区的空穴继续向n 区扩散,同时使p 区的少数载流子电子向n区漂移。随着扩散的减弱,飘移的增强,最终实现载流子的动态平衡。PN 结附近载流子被耗尽的区域称为空间电荷区,或者耗尽区。 5、直接带隙半导体和间接带隙半导体的区别 直接带隙:导带的最低位置位于价带最高位置的正上方;电子空隙复合伴随光子的发射。III-V 族元素的合金,典型的如GaAs 等。 间接带隙:导带的最低位置不位于价带最高位置的正上方;电子空隙复合需要声子的参与,声子振动导致热能,降低了发光量子效率。 6、半导体发光材料特性 砷化傢(GaAs):直接跃迁型闪锌矿结构发射的光子能量1.42eV左右,相应 波长873nm 附近,红外波段 磷化傢(GaP):间接跃迁型闪锌矿结构间接带隙宽度2.26eV,离子性为0.374, 氮化傢(GaN):直接跃迁型纤锌矿结构带隙宽度3.39eV 7、什么是发光二极管发光二极管是由数层很薄的搀杂半导体材料制成,一层带过量的电子,另一层因缺乏电子而形成带正电的“空穴” ,当有电流通过时,电子和空穴相互结合并释放出能量,从而辐射出光芒。

相关文档
最新文档