电加热炉_MATLAB仿真

电加热炉_MATLAB仿真
电加热炉_MATLAB仿真

天津城建大学

课程设计任务书

2013 -2014学年第 2学期

控制与机械工程学院 电气工程及其自动化专业 班级 12 姓名 学号 课程设计名称: 过程控制 设计题目: 电加热炉炉温的模糊控制

完成期限:自 2014 年 6 月 22 日至 2014 年 6 月 27 日共 1 周 设计依据、要求及主要内容: 设计任务

电加热炉炉温的控制过程如下:测温元件将检测到的温度信号送到变送器的输入回路,经低电平自激调制放大后输出mA 级的电流信号,该信号经过电阻后变为0~5V 的电压信号,然后通过A/D 转换将模拟量信号转换成为数字量信号,经过计算机与设定值比较、运算后,再由D/A 转换输出0~5V 的模拟量电压信号,该电压直接控制晶闸管调功器的输出功率,从而对电加热炉的温度进行调节,调节范围:20~350℃。

电加热炉温度控制系统示意图如图1所示:

图1 电加热炉系统示意图

如图1,本文中将控制信号()u t 到炉膛温度()c t 这一整个过程看作一个控制系统。电加热炉装置是一个具有自平衡能力的对象,可用一阶惯性和滞后环节来近似描述。

被控对象参数K=70,T=100,τ=80。系统的传递函数为:

8070

()1001s

G s e s -=

+

试用模糊控制器实现温度控制。 二、设计要求

1)超调小、调节时间短,系统无静差;

2)给出控制策略和选定参数,并详细说明参数整定过程; 3)给出MATLAB 下的仿真曲线。

4)给出硬件实现方案,包括控制器和检测回路芯片的具体型号。 三、设计报告

课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料

[1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材

指导教师(签字): 教研室主任(签字): 批准日期: 年 月 日

摘要

电加热炉是典型的工业过程控制对象,在我国应用广泛。电加热炉的温度控制具有升温单向性,大惯性,大滞后,时变性等特点。其升温、保温是依靠电阻丝加热,降温则是依靠环境自然冷却。当其温度一旦超调就无法用控制手段使其降温,因而很难用数学方法建立精确的模型和确定参数,应用传统的控制理论和方法难以达到理想的控制效果。

本文以电加热炉为研究对象,针对电加热炉的特点,设计了双输入单输出结构的模糊控制器,将其应用于电加热炉温度控制系统,满足了温度控制稳定性的要求。

关键词:温度控制;MATLAB;模糊控制器

目录

第一章绪论 (1)

1.1课题的背景 (1)

1.2模糊控制的现状及原理 (1)

1.3本文设计思路 (2)

第二章模糊控制器的设计 (4)

2.1模糊控制介绍 (4)

2.2模糊控制器的设计 (4)

2.2.1 建立模糊控制器结构 (4)

2.2.2 定义输入、输出模糊集并确定个数类别 (5)

2.2.3 定义输入、输出的隶属函数 (5)

2.2.4 编辑模糊控制规则 (6)

2.2.5规则观测器 (8)

2.2.6 输出曲面观测器 (8)

第三章建立simulink仿真模型 (10)

3.1 原系统的simulink仿真模型 (10)

3.2 模糊控制simulink仿真 (10)

第四章硬件系统 (12)

4.1 系统总体设计 (12)

4.2 温度传感器的选择 (12)

4.3 A/D转换电路 (12)

4.4声光报警电路 (12)

4.5 人机界面 (13)

4.6 功率控制电路 (13)

第五章总结 (14)

第六章参考文献 (15)

第一章 绪论

1.1课题的背景

电阻炉是热处理工艺过程中应用最广、数量最多的电炉,其本身是一个较为复杂的被控对象。电阻炉温度控制器在冶金、化工、机械等各类工业控制过程中都得到了广泛应用。

电阻炉温控制系统是一个闭环反馈控制系统,他将温度传感器检测到的实际炉温经A/D 转换后,送入计算机中,与设定值进行比较得出偏差,并将此偏差送入控制器中,经过计算得出对应的控制量控制可控硅驱动器,调节电阻炉的加热功率,从而实现对炉温的控制。

目前在炉温控制系统中最常采用的是PID 控制,以PID 算法为核心的各种形式DDC 控制系统,是目前电加热炉温度控制系统普遍使用的方法。PID 调节是最成熟且应用最广泛的一种控制方法。在模拟控制系统中,其过程控制是将被测参数温度由传感器变换成统一的标准信号后输入调节器,在调节器中与给定值进行比较。再把比较器的差值经PID 运算后送到执行机构,改变进给量,以达到自动调节的目的。在数字控制系统中则是用数字调节器来代替模拟调节器,按偏差的比例、积分和微分进行控制和调节。PID 调节器具有结构简单、调整方便和参数整定与工程指标密切相连等特点,对于大部分对象控制精度也较高,这些优越性使得PID 结构调节器是连续系统中应用最广泛的一种调节器,一直经久不衰,并将继续在工程实践中发挥重要的作用。

电阻炉可以用以下模型定性的描述它

1

)(+=-TS Ke s G s τ

式中K-放大系数 ,T-时间系数 ,τ-纯滞后时间。

但在实际热力工程中,由于实际工况的复杂性(加工工件的性质、初温、升温、幅度规格、装炉量以及电气环境等因素),使得上述数学模型偏离实际情况相当严重 。

电阻炉由电阻丝加热,温度控制具有非线形、大滞后、大惯性、多变量、时变性等特点。在实际应用中,电阻炉温度控制遇到了以下困难:

第一:很难建立精确的数学模型;

第二:不能很好的解决非线形、大滞后等问题。以精确的数学模型为基础的经典控制理论和现代控制理论在解决这些问题是遇到了一定的困难。

上世纪50年代前后的经典控制理论主要研究单输入-单输出的线性定常系统;60年代末的现代控制理论主要研究多输入-多输出的被控对象,系统可以是线性或非线性的,定常或时变的。这两个阶段的控制理论的发展与应用,对于存在数学模型的自动控制系统发挥了非常大的作用,并取得了令人满意的控制效果,这些控制方法的优点明显,但存在难以克服的缺陷。对于那些很难或的数学模型的控制对象,往往显得无能为力。上述各种传统控制方法在炉温控制系统中的仿真、实验和实际应用结果看,效果并不是非常理想。一个显著的共同特点就是需要建立系统准确数学模型,当模型建立不准确时,不仅增加了调试的工作量,而且控制效果不好。从70年代末开始,随着计算机技术的快速发展,智能控制理论开始受到极大关注,模糊控制作为智能控制理论的一个分支,在理论研究和工业控制应用等方面也取得了可喜的进展。以语言规则模型为基础的模糊控制理论却是解决上述问题的有效途径和方法。

1.2模糊控制的现状及原理

模糊数学和模糊控制的概念由美国加利福尼亚大学著名教授L.A.Zadeh 首先提出。最早取得的应用成果是英国教授Mamdamni ,首先利用模糊控制语句组成模糊控制器,将它应用于锅炉和气轮机的运动控制,并在实验室中获得成功。此后的20多年中,模糊控制技术在华工、冶金、机械、工业炉窑、水处理、食品工业等多个领域中获得广泛的应用。

随着应用领域的不断拓宽,模糊控制器本身性能也得到了进一步发展,由原来规则固定的简单模糊控制器,发展为可以在控制过程中不断修改和调整控制规则的自组织模糊控制器。尽管模糊控制在稳定性理论分析及控制精度方面还存在一些问题,但它在大规模系统、多目标系统、非线性系统,特别是没有精确数学模型的系统中,显示了良好的效果,它所体现的强鲁棒性是经典控制理论和现代控制理论所难以到达的。

模糊控制是以人的思维判断方法形成模糊控制规则,在模糊规则的基础上,以模糊量作为实际控制的依据,是一个表达某种控制思想的基本公式。模糊控制的定义可以描述为:模糊控制器的输出是通过观察过程状态和一些如何控制过程的规则的推理得到的。模糊逻辑控制器的设计主要包括:对输入信息的模糊化、模糊推理和输出信息的精确化三个步骤。输入信息的模糊化是将测物理量转化为在该语言变量相应论域内不同语言值的模糊子集。模糊推理使用数据库和规则库,它的作用是根据当前的系统状态信息来决定模糊控制的输出子集。输出信息的精确化计算是将推理机制得到的模糊控制量转化为一个清晰、确定的输出控制量的过程。

模糊控制器在温度控制中的应用包括有:刘兴池等人用日本生产的SR70只能模糊控制器对加热炉进行控制,稳态精度达到+0.5摄氏度左右,控制效果十分理想。易继锴等人应用模糊神经网络自学习控制器对电加热炉进行物理模拟实验,系统实验表明,通过神经网络的自学习,实现输入变量隶属度函数的在线自调整,对电加热炉这种具有非线形、大滞后的系统具有较好的模糊预测及控制功能。

1.3本文设计思路

随着二十世纪四十年代中期计算机的出现及其应用领域的不断扩展,计算机控制技术逐渐渗透到自动化、自动控制、电子技术、电气技术、仪器仪表等专业,并在这些专业中起到至关重要的作用。计算机具有存储大量信息的能力,强大的逻辑判断能力及快速计算的优点,计算机控制技术能够达到常规控制技术所不能到达的优异性能指标。此外,随着操作系统的不断升级,各种开发软件的不断出现,使研究人员不仅能方便的对对象进行控制,而且可以将控制结果用图象,声音等形式展示出来。这是传统技术所不能实现的。

应用微机控制电炉炉温不仅易于保证处理工艺过程的质量,节约能源,促进整个热处理工艺过程自动化,并且在造价上也能与常规仪表控制装置匹敌。国内已有很多单位对计算机控温系统进行了研究。

由于电阻炉具有较强的滞后性,传统的PID控制方式的控制效果不佳。模糊控制是一种基于规则的先进控制方法,由于控制复杂、非线性、大滞后对象,具有控制速度快,超调小等优点,因此,可以很好的解决一些问题,获得较好的控制效果。本题拟采用凌阳SPCE061A单片机,设计一种电阻炉温模糊控制系统,提高温度的控制效果。通过测量元件热电偶进行检测,经采样、A/D转换为数字量,再进行数字滤波,并根据给定的控制规则进行运算,然后发出控制信号去控制执行机构,使各个被控量达到预定的要求。

控制系统原理图如图1所示:

图1 控制系统原理图

本系统的设计主要是解决电阻炉温度的实时控制,希望控制系统给出的控制量控制电阻炉的温度,使得电阻炉的温度可以跟踪由键盘输入的给定值。

概括起来,本系统的功能有:

(1)数据的采集;

(2)过程监控:包括参数显示、上下限报警等;

(3)基于模糊规则的控制算法;

(4)通过D/A转换输出控制量;

(5)实现上位机和下位机的通信。

随着嵌入式系统开发技术的快速发展及其在各个领域的广泛应用,人们对电子产品的小型化和智能化要求越来越高,作为高新技术之一的单片机以其体积小、功能强、价格低、使用灵活等特点,显示出其明显的优势和广泛的应用前景。在航空航天、机械加工、智能仪器仪表、家用电器、通信系统、智能玩具等领域,单片机都发挥了很大的作用。

第二章模糊控制器的设计

2.1模糊控制介绍

1965年Zadeh教授发表了《模糊集合论》论文,提出用“隶属函数”这个概念描述现象差异的中间过渡,从而突破了古典集合论中属于或不属于的绝对关系。Zadeh教授的这一开创性工作,标志着数学的一个新分支------模糊数学的诞生。模糊数学从诞生至今,在刚诞生的几年里发展相当缓慢,在进入70年代后,模糊集合的概念被越来越多的人接受,这方面的研究工作也就相应地迅速发展起来,并应用到聚类分析、图象识别、自动控制、故障诊断、机器人以及人工智能等多方面领域。1974年英国学者E.H.Mamdani首次把模糊集合理论成功地应用在锅炉和蒸汽机的控制之中,在自动控制领域中首开模糊控制在实际过程上应用之先河。1985年世界上第一块模糊逻辑芯片在美国著名的贝尔实验室问世,这是模糊技术走向实用化的又一里程碑。模糊理论是从模糊数学发展而来,现在该理论的研究主要集中在模糊集合、隶属函数和模糊逻辑推理上。

模糊逻辑在控制领域中的应用称为模糊控制。模糊控制是以控制集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机控制。从控制器的智能性看,模糊控制属于智能控制的范畴。模糊控制的最大特征是能够将操作者或专家的控制经验和知识表示成语言变量描述的控制规则,然后用这些规则去控制系统。因此模糊控制特别适用于数学模型未知的、复杂的非线性系统的控制。从信息的观点看,模糊控制是一类规则型的专家系统,从控制技术的观点看,它是一类非线性控制器。

控制系统中要有被控对象(过程),被控对象按其模型可分为以下几种:1.能建立精确的数学模型

2.能建立精确的数学模型,但要附加一些条件3.只能建立近似的数学模型4.无法建立数学模型

专家们普遍认为:人高明于机器的重要一点就是人具有对FUZZY事物进行识别和近似推理的能力,即综合考虑各种情况,然后作出判断的能力。用表达式表示为:

IF 情况1 AND 情况2 ……AND 情况N THEN 结论

而FUZZY控制正是以自然语言为基础,利用经验总结的控制规则,经过模糊推理与判断,去控制被控对象。因此对于那些难以建模的对象,FUZZY控制利用看起来不确切的方法,常常可以达到精确控制的目的。

2.2模糊控制器的设计

2.2.1 建立模糊控制器结构

在MATLAB命令窗口中,输入fuzzy,打开FIS编辑器,构建两输入、一输出的模糊控制器,以文件名:xin.fis存盘,如图2所示:

图2 FIS编辑器界面

2.2.2 定义输入、输出模糊集并确定个数类别

依据模糊控制器的控制规律同时兼顾控制精度,论文论文将输入的误差(e)划分为17个等级,即E={-8,-7,-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6,+7,+8},模糊集E取9个语言值:上限(PC);正大(PB);正中(PM);正小(PS);0(IE);负小(NS);负中(NM);负大(NB);下限(NC)。将偏差变化率Ec划分为13个等级,即:Ec={-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6},模糊集Ec取7个语言值:正大(PB);正中(PM);正小(PS);0(IO);负小(NS);负中(NM);负大(NB)。控制量U划分为17个等级,即:U={-8,-7,-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6,+7,+8},模糊集U取9个语言值:最大(MAXC);正大(PB);正中(PM);正小(PS);0(IC);负小(NS);负中(NM);负大(NB);最小(MINC)。

2.2.3 定义输入、输出的隶属函数

误差e、误差微分及控制量的模糊集和论域确定后,需对模糊变量确定隶属函数。即对模糊变量赋值,确定论域内元素对模糊变量的隶属度。

对于输入量误差(e),误差微分(ec),输出量(u)都采用高斯型的隶属函数(trimf),同时

为体现定义的17,13,17个模糊子集,见图3,图4,图5。

图3 e的隶属函数图

图4 ec的隶属函数图

图5 u的隶属函数图

2.2.4 编辑模糊控制规则

单击FIS编辑器中规则编辑器,将表1中所示的模糊规则依次输入规则编辑器中,共63条,全部采用and的命令,如图6所示。

图6 规则编辑器界面

此时,基于GUI编辑的模糊控制器已经全部完成,将此FIS系统再次进行保存。为了在simulink 仿真环境中调用FIS系统,将xin.fis文件进行File→Export→To Disk……的同时,还需进行File →Export→To Workspace……,此时弹出如图7所示的对话框。

该操作将xin.fis文件保存工作空间中,可供simulink建立模糊控制系统时,对模糊控制器进行调用和连接。

2.2.5规则观测器

在GUI的任意界面中,选择View→Rules,液位规则观测器界面如图8所示。

图7 保存FIS文件到工作空间界面

图8规则观测器界面

2.2.6 输出曲面观测器

在DUI的任意界面中,选择View→Surface,液位输出曲面观测器界面如图9所示。

图9 输出曲面观测器界面

通过分析图形特点,可以看到它有明显的梯度分布,说明所设计的模糊系统与理论设计匹

配良好。

第三章 建立simulink 仿真模型

3.1 原系统的simulink 仿真模型

本文中将控制信号()u t 到炉膛温度()c t 这一整个过程看作一个控制系统。电加热炉装置是一个具

有自平衡能力的对象,可用一阶惯性和滞后环节来近似描述。

被控对象参数K=70,T=100,τ=80。系统的传递函数为: 8070

()1001s

G s e s -=

+

原系统的系统结构如图10所示

图10 原系统结构图

得出仿真结果如图11所示:

图11 原系统单位阶跃响应曲线

3.2 模糊控制simulink 仿真

系统输入为单位阶跃信号,选取量化因子1.0=c K ,05.0=ec K ,比例因子2.0=u K 。激活

simulink仿真环境,建立模糊控制系统,系统结构图如图12所示。

图12 模糊控制仿真结构图

在simulation下拉菜单中,选择Start,完成仿真。双击图12中所示simulink仿真结构图的Scope,系统仿真结果曲线如图13所示。

图13 模糊控制的仿真结果

比较两个结果,明显发现模糊控制调节缩短。

第四章硬件系统

本系统是为热处理用电加热炉设计的一套的控制系统,利用单片机、温度传感器、加热丝和A/D 转换芯片来实现的控制系统,其中主要的特点就是升温均匀、精确,升温曲线具有线性等。本系统与传统的控温方法相比更具有精度高、功能多、造价低、结构简单和使用方便等优点。其人机界面友好,操作简单,使用方便,具有较高的性能价格比。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。

4.1 系统总体设计

本系统由AT89C52单片机、温度检测电路、功率控制电路、键盘显示电路和声光报警电路等组成,系统原理框图如图14所示。

图14 系统原理框图

由图可知,温度控制系统的构成:温度控制系统检测时,被测炉温经热电偶测量后转换成电压信号,经变送器转换,将检测信号送到A/D转换器进行模拟/数字信号转换,转换后的数字量经I/O接口读入到CPU,在CPU中经数据处理后,一方面送到显示屏上显示,并判断是否报警;另一方面通过过零触发电路驱动双向可控硅进行控温。

4.2 温度传感器的选择

在本系统中采用的是镍铬-镍硅K型热电偶。采集温度信号只需要一路采集炉温,金属热处理炉的最高要求温度为1000℃。由于热电偶测温范围广(-100~1300℃),而且测量精度高,结构简单,热惰性小,输出为电信号便于事先远距离传送和集中检测、自动控制,因此在测量温度信号时选择它。

4.3 A/D转换电路

A/D转换芯片采用ADC0809,其转换精度是l/256。若电加热炉工作温度是256℃,则在(0~256)℃范围A/D的转换精度为256℃/256=l℃/bit,即一个数字量表示l℃,这显然不能满足控制精度为士O.5℃要求。为了提高控制精度,可以选用更高位的A/D转换器,如l0位、l2位、l6位A/D转换器,其控值精度均能满足要求。然而根据实际需要温度控制情况,也可以通过具有零点迁移和冷端补偿功能的温度变送桥路,缩小测温的范围,如炉温升到90℃后要求温度维持90℃基本不变,那就可以将测温范围缩小为(O~128)℃、(128~256)℃,从而使理论设计控温精度达到士0.5℃。

4.4声光报警电路

在单片机控制系统中,一般的工作状态可以通过指示灯或数码显示来指示,以供操作员参考。但对于某些紧急状态或反常状态,为了使操作人员不致忽视,以便及时采取措施,往往还需要有某种更能引人注意、提起警觉的报警信号。这本系统的报警电路包括闪光报警和鸣音报警两种方式。

发音组件采用压电蜂鸣器,只需在其两条引线上加3V~24V的直流电压,蜂鸣振荡音响。压电式蜂鸣器结构简单、耗电小,而且适合于单片机系统。本电路的设计中,要考虑与发光二极管串联的限流电阻大小的确定,阻值选择不当会影响二极管的寿命。

4.5 人机界面

键盘和显示电路实现了人机交互功能,通过键盘电路可以设置系统运行状态和系统参数,显示电路可以显示系统的运行状态、控制时间、设定温度、实际温度等。在本设计中采用的是3行*3列键盘,列线由P1.0~P1.2口控制,行线由P1.3~P1.5口控制。电路中共9个按键,包括设置键、3个温度参数和时间设置键、4个系统运行状态选择键、1个确定键。系统在程序初始化时控制键盘行线的P1.3~P1.5口输出高电位,控制键盘列线的P1.0~P1.2口输出低电位,在判断电路是否有按键按下时,读P1.0~P1.5端口值,若端口值不是000111,则说明电路中有按键按下。然后根据程序进行去抖动处理和计算键值。

本设计中的显示模块采用的是北京集粹电子设备制造有限公司的SG160128-01A液晶显示模块,可显示字符、汉字、图形,显示屏结构为160*128点阵,其引脚功能如表2所示。该显示模块内置液晶显示控制器T6963C,T6963C的最大特点是具有独特的硬件初始值设置功能,显示驱动所需的参数如占空比系数、驱动传输的字节数/行及字符的字体选择等均由引脚电平设置,这样T6963C的初始化在上电时就已经基本设置完成,软件操作的主要精力可以全部用于显示画面的设计。液晶显示模块和单片机的连接方式分为直接访问和间接访问连接方式二种。

4.6 功率控制电路

数据采集电路检测到的温度信号(经A/D转换为数字量),送给CPU后经过PID运算,得到相应的控制量用来调节电阻炉加热功率的大小,这是本系统的一个重要环节。功率控制电路采用双向可控硅过零检测电路来实现。采用双向可控硅的过零检测与过零触发方式调功非常方便,并可使硬件电路大为简化。

为了达到过零触发的目的,要有交流电过零检测电路,此电路输出对应于50Hz交流电压过零时刻的脉冲,作为触发双向可控硅的同步脉冲,使可控硅在交流电压过零时刻触发导通。当交流电压过零时,电路输出脉冲,作为触发双向可控硅的同步脉冲,使可控硅在交流电压过零时刻触发导通。

表2 SG160128-01A管脚

第五章总结

本控制系统设计综合运用了自动检测技术、自动控制理论以及过程控制理论。为了更好的完成设计,我将以前的一些教科书籍重新找出,认真阅读,从中不仅查找到了设计中需要的知识点,还发现了一些以前学习中忽略了的知识,在完成设计的同时得到了额外的收获。

在做这个项目设计之前,我一直以为自己的理论知识学的还是蛮可以的。但当我拿到设计任务书的时候,却不知道如何下手。开始了我又总是被一些小的,细的问题挡住前进的步伐,让我总是为了解决一个小问题而花费很长的时间。最后还要查阅其他的书籍才能找出解决的办法。并且我在做设计的过程中发现有很多东西,我都还不知道。其实在设计的时候,基础是一个不可缺少的知识,但是往往一些核心的高层次的东西更是不可缺少的。

设计中遇到了很多自己无法解决的问题,我于是向老师、同学求助,在指导老师的点拨以及同学们的建议下,我成功的解决了遇到的问题。由此我意识到,任何时候任何事情,闭门造车都是不可取的,要一直向周围的师长、同学求教,以取得新鲜的知识。

第六章参考文献

[1] 张德丰.MATLAB/SIMULINK建模与仿真实例精讲【M】.北京:机械工业出版社,2010,1

[2] 陈桂明,张明照.应用MATLAB建模与仿真[M].北京:科学出版社,2001

[3] 刘锡权.电加热炉温控制系统的设计.吉林大学,2008,3

无刷直流电机的建模与仿真

龙源期刊网 https://www.360docs.net/doc/471093482.html, 无刷直流电机的建模与仿真 作者:秦超龙 来源:《电脑知识与技术》2013年第05期 摘要:该文在分析无刷直流电机(BLDCM)数学模型和工作原理的基础上,利用Matlab 软件的Simulink和PSB模块,搭建无刷直流电机及整个控制系统的仿真模型。该BLDCM控制系统的构建采用双闭环控制方法,其中的电流环采用滞环电流跟踪PWM,速度环采用PI控制。仿真和试验分析结果证明了本文所采用方法的有效性,同时也证明了验证其他电机控制算法合理性的适用性,为实际电机控制系统的设计和调试提供了新的思路。 关键词:BLDCM控制系统;无刷直流电机;数学模型;MATLAB;电流滞环 中图分类号: TP391 文献标识码:A 文章编号:1009-3044(2013)05-1172-03 随着现代科技的不断发展,无刷直流电动机应用技术越发成熟,应用领域也越发广泛,用户对无刷直流电动机使用增多的同时,对其控制系统的设计要求也变得越来越高。包括低廉的设计和搭建成本、短的开发周期、合适的控制算法、优良的控制性能等。而科学合理的无刷直流电动机控制系统仿真模型的建立,对控制系统的直观分析、具体设计,快速检验控制算法,降低直流电机控制系统的设计成本,拥有十分重要的意义。 直流无刷电动机利用电子换向原理和高磁性材料,取代了传统的机械换相器和机械电刷,解决了有刷直流电动机换向器可维护性差和较差的可靠性的致命缺点,使得直流电动机的良好控制性能得到维持,直流电动机得到更好的应用。伴随着如今功率集成电路技术和微电子技术的发展,控制领域相继出现了大量无刷直流电动机专用驱动和控制芯片,解决高性能无刷电动机驱动控制问题所提出的解决方案也变得更加丰富和科学,无刷直流电机在控制领域显示出前所未有的广阔应用前景[1]。 通过无刷直流电动机控制系统的仿真模型来检验各种控制算法,优化整个控制系统的方法,可以在短时间内得到能够达到预期效果的控制系统。在对无刷直流电机电流滞环控制和数学模型等分析的基础之上,可以利用Simulink中所提供的各种模块,构建出BLDCM控制系统的仿真模型,从而实现只利用Simulink中的模块建立BLDCM控制系统仿真模型。通过对实例电机的仿真,可以得到各类仿真波形,从而验证了仿真模型的有效性和正确性,数学模型的有效性及控制系统的合理性也得到了验证。 1 无刷直流电机的数学模型 本文采用两相导通三相六状态的无刷直流电动机来分析无刷直流电动机的数学模型[2-3]。 无刷直流电动机的感应电动势为梯形波,电流为方波。考虑到分析的方便、无刷直流电动机的特点,该文直接利用电动机本身的相变量建立物理模型,假定:

春MATLAB仿真期末大作业

MATLAB仿真 期末大作业 姓名:班级:学号:指导教师:

2012春期末大作业 题目:设单位负反馈控制系统前向通道传递函数由)()(21s G s G 和串联,其中: ) 1(1)()(21++==s A s G s K s G A 表示自己学号最后一位数(可以是零),K 为开环增益。要求: (1)设K=1时,建立控制系统模型,并绘制阶跃响应曲线(用红色虚线,并标注坐标和标题);求取时域性能指标,包括上升时间、超调量、调节时间、峰值时间; (2)在第(1)问中,如果是在命令窗口绘制阶跃响应曲线,用in1或者from workspace 模块将命令窗口的阶跃响应数据导入Simulink 模型窗口,用示波器显示阶跃响应曲线;如果是在Simulink 模型窗口绘制阶跃响应曲线,用out1或者to workspace 模块将Simulink 模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线。 (3)用编程法或者rltool 法设计串联超前校正网络,要求系统在单位斜坡输入信号作用时,速度误差系数小于等于0.1rad ,开环系统截止频率s rad c /4.4''≥ω,相角裕度大于等于45度,幅值裕度大于等于10dB 。

仿真结果及分析: (1)、(2)、将Simulink模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线 通过在Matlab中输入命令: >> plot(tout,yout,'r*-') >> title('阶跃响应曲线') 即可得出系统阶跃响应曲线,如下: 求取该控制系统的常用性能指标:超调量、上升时间、调节时间、峰值时间的程序如下: G=zpk([],[0,-1],5)。 S=feedback(G,1)。

无刷直流电机仿真教程

基于MATLAB/SIMULINK的无刷直流电动机系统仿真 0引言 无刷直流电机(Brushless DC Motor,以下简称BLDCM),是随着电力电子技术和永磁材料的发展而逐渐成熟起来的一种新型电机。为了有效的减少控制系统的设计时间,验算各种控制算法,优化整个控制系统,有必要建立BLDCM 控制系统仿真模型。本文在BLDCM数学模型的基础上,利用MATLAB的SIMULINK和S-FUNCTION建立BLDCM的仿真模型,并通过仿真结果验证其有效性。 1无刷直流电机仿真模型 本文在MATLAB的SIMULINK的环境下,利用其丰富的模块库,在分析BLDCM数学模型的基础上,建立BLDCM控制系统仿真模型,系统结构框图如图1所示。

图1 无刷直流电机控制原理框图 以图1为基础,按照模块化建模的思想搭建的系统的仿真模型如图2所示。整个控制系统主要包括电动机本体模块、逆变器模块、电流滞环控制模块、速度控制模块等。 图2 无刷直流电机控制系统仿真模型框图 1.1电动机本体模块 在整个控制系统的仿真模型中,BLDCM本体模块是最重要的部分,该模块根据BLDCM电压方程求取BLDCM三相相电流,而要获得三相相电流信号i a,i b,

i c必须首先求得三相反电动势信号e a,e b,e c,整个电动机本体模块的结果如下图3所示。电机本体模块包括反动电势求取模块,中性点求取模块,转矩计算模块和位置检测模块。 图3 电机本体模块 1.反电势求取模块 本文直接采用了SIMULINK中的Lookup Table模块,运用分段线性化的思想,直观的实现了梯形波反电动势的模拟,具体实现如图4所示。

电机学matlab仿真大作业报告

. 基于MATLAB的电机学计算机辅助分析与仿真 实验报告

一、实验内容及目的 1.1 单相变压器的效率和外特性曲线 1.1.1 实验内容 一台单相变压器,N S =2000kVA, kV kV U U N N 11/127/21=,50Hz ,变压器的参数 和损耗为008.0* ) 75(=C k o R ,0725.0*=k X ,kW P 470=,kW P C KN o 160)75(=。 (1)求此变压器带上额定负载、)(8.0cos 2滞后=?时的额定电压调整率和额定效率。 (2)分别求出当0.1,8.0,6.0,4.0,2.0cos 2=?时变压器的效率曲线,并确定最大效率和达到负载效率时的负载电流。 (3)分析不同性质的负载(),(8.0cos 0.1cos ),(8.0cos 222超前,滞后===???)对变压器输出特性的影响。 1.1.2 实验目的 (1)计算此变压器在已知负载下的额定电压调整率和额定效率 (2)了解变压器效率曲线的变化规律 (3)了解负载功率因数对效率曲线的影响 (4)了解变压器电压变化率的变化规律 (5)了解负载性质对电压变化率特性的影响 1.1.3 实验用到的基本知识和理论 (1)标幺值、效率区间、空载损耗、短路损耗等概念 (2)效率和效率特性的知识 (3)电压调整率的相关知识 1.2串励直流电动机的运行特性 1.2.1实验内容 一台16kw 、220V 的串励直流电动机,串励绕组电阻为0.12Ω,电枢总电阻为0.2Ω。电动势常数为.电机的磁化曲线近似的为直线。其中为比例常数。假设电枢电流85A 时,磁路饱和(为比较不同饱和电流对应的效果,饱和电流可以自己改变)。

matlab 大作业

上海电力学院 通信原理Matlab仿真 实验报告 实验名称: 8QAM误码率仿真 试验日期: 2014年 6月3日 专业:通信工程 姓名:罗侃鸣 班级: 2011112班 学号: 20112272

一、实验要求 写MATLAB程序,对图示的信号星座图完成M=8的QAM通信系统Monte Carlo仿真,在不同SNRindB=0:15时,对N=10000(3比特)个符号进行仿真。画出该QAM系统的符号误码率。 二、实验原理 1 QAM调制原理 QAM(Quadrature Amplitude Modulation)正交幅度调制技术,是用两路独立的基带信号对两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。该调制方式通常有8QAM,16QAM,64QAM。 QAM调制实际上就是幅度调制和相位调制的组合,相位+ 幅度状态定义了一个数字或数字的组合。QAM的优点是具有更大的符号率,从而可获得更高的系统效率。通常由符号率确定占用带宽。因此每个符号的比特(基本信息单位)越多,频带效率就越高。 调制时,将输入信息分成两部分:一部分进行幅度调制;另一部分进行相位调制。对于星型8QAM信号,每个码元由3个比特组成,可将它分成第一个比特和后两个个比特两部分。前者用于改变信号矢量的振幅,后者用于差分相位调制,通过格雷编码来改变当前码元信号矢量相位与前一码元信号矢量相位之间的相位差。 QAM是一种高效的线性调制方式,常用的是8QAM,16QAM,64QAM等。当随着M 的增大,相应的误码率增高,抗干扰性能下降。 2 QAM星座图 QAM调制技术对应的空间信号矢量端点分布图称为星座图。QAM的星座图呈现星状分

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

电机大作业(MATLAB仿真-电机特性曲线)

电机大作业 专业班级:电气XXXX 姓名:XXX 学号:XXX 指导老师:张威

一、研究课题(来源:教材习题 4-18 ) 1. 74 、R 2 0.416 、X 2 3.03 、R m 6. 2 X m 75 。电动机的机械损耗p 139W,额定负载时杂散损耗p 320W, 试求额定负载时的转差率、定子电流、定子功率因数、电磁转矩、输出转矩和效 率。 二、编程仿真 根据T 形等效电路: 3D - R Q 运用MATLAB 进行绘图。MATLAB 文本中,P N PN ,U N UN ,尺 R 1, X 1 X1 , R 2 R 2,X 2 X 2,R m Rm, X m Xm ,p pjixiesunh ao , p pzasansunhao 。定子电流I11,定子功率因数 Cosangle1,电磁转矩Te , 效率 Xiaolv 。 1.工作特性曲线绘制 MATLA 文本: R1=0.715;X 仁1.74;Rm=6.2;Xm=75;R2=0.416;X2=3.03;pjixiesu nhao=139; pzasa nsu nhao=320;p=2;m 仁 3; ns=1500;PN=17000;UN=380;fN=50; Z1=R1+j*X1; Zm=Rm+j*Xm; for i=1:2500 s=i/2500; nO=n s*(1-s); Z2=R2/s+j*X2; Z=Z1+Zm*Z2/(Zm+Z2); 有一台三相四极的笼形感应电动机, 参数为P N 17kW 、U N 380V (△联 Rm 结)、尺 0. 715 、X j lcr S

U1=UN; I1=U1/Z; l110=abs(l1); An gle 仁an gle(ll); Cosa ngle10=cos(A ngle1); P仁3*U1*l110*Cosa ngle10; l2=l1*Zm/(Zm+Z2); Pjixie=m1*(abs(I2))A2*(1-s)/s*R2; V=(1-s)*pi*fN; Te0=Pjixie/V; P20=Pjixie-pjixies un hao-pzasa nsun hao; Xiaolv0=P20/P1; P2(i)=P20; n (i)=n0; l11(i)=l110; Cosa ngle1(i)=Cosa ngle10; Te(i)=Te0; Xiaolv(i)=Xiaolv0; hold on; end figure(1) plot(P2, n); xlabel('P2[W]');ylabel(' n[rpm]'); figure(2) plot(P2,l11); xlabel('P2[W]');ylabel('l1[A]'); figure(3) plot(P2,Cosa nglel); xlabel('P2[W]');ylabel('go nglvyi nshu'); figure(4) plot(P2,Te); xlabel('P2[W]');ylabel('Te[Nm]'); figure(5) plot(P2,Xiaolv); xlabel('P2[W]');ylabel('xiaolv');

运动控制MATLAB仿真

大作业: 直流双闭环调速MATLAB仿真 运动控制技术课程名称: 名:姓电气学院院:学 自动化业:专 号:学 孟濬指导教师: 2012年6月2日

------------------------------------- -------------学浙大江 李超 一、Matlab仿真截图及模块功能描述 Matlab仿真截图如下,使用Matlab自带的直流电机模型: 模块功能描述: ⑴电机模块(Discrete DC_Machine):模拟直流电机 ⑵负载转矩给定(Load Torque):为直流电机添加负载转矩 ⑶Demux:将向量信号分离出输出信号 ⑷转速给定(Speed Reference):给定转速 ⑸转速PI调节(Speed Controller):转速PI调节器,对输入给定信号与实际信号

的差值进行比例和积分运算,得到的输出值作为电流给定信号。改变比例和积分运算系数可以得到不同的PI控制效果。 ⑹电流采样环节(1/z):对电流进行采样,并保持一个采样周期 ⑺电流滞环调节(Current Controller):规定一个滞环宽度,将电流采样值与给定值进行对比,若:采样值>给定值+0.5*滞环宽度,则输出0; 若:采样值<给定值—0.5*滞环宽度,则输出1; 若:给定值—0.5*滞环宽度<采样值<给定值+0.5*滞环宽度,则输出不变 输出值作为移相电压输入晶闸管斩波器控制晶闸管触发角 :根据输入电压改变晶闸管触发角,从而改变电机端电压。GTO⑻晶闸管斩波.⑼续流二极管D1:在晶闸管关断时为电机续流。 ⑽电压传感器Vd:测量电机端电压 ⑾示波器scope:观察电压、电流、转速波形 系统功能概括如下:直流电源通过带GTO的斩波器对直流电机进行供电,输出量电枢电流ia和转速wm通过电流环和转速环对GTO的通断进行控制,从而达到对整个电机较为精确的控制。 下面对各个部分的功能加以详细说明: (1)直流电机 双击电动机模块,察看其参数:

基于自抗扰控制(ADRC)的无刷直流电机控制与仿真

一、研究意义 1.研究意义 由于无刷直流电机在四旋翼飞行器控制中的关键作用以及在生产实践中日益广泛的应用,设计快速且平稳的控制系统成为首要任务。目前, 基于现代控制理论的高性能异步电机调速方法主要是依靠精确的数学模型加上传统的P ID控制。PID控制实际应用效果较好,但又无法避免对负载变化的适应能力差、抗干扰能力弱和受系统参数变化影响等弱点,而且交流调速系统具有非线性、强耦合、多变量及纯滞后等特性, 很难用精确的数学模型描述, 这就使得基于精确数学模型的传统控制方法面临严重的挑战。另外, 经典P ID控制需要根据运行工况的不同而调节控制器参数, 无刷直流电机又具有数学模型复杂,非线性等特点,这给现场调试增加了难度。 2.国内外研究状况及发展 (1)无刷直流电机基本控制方法 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。 直流无刷电动机的电机本身是机电能量转换部分,无刷电机的转子上装有永磁体,定子上是电枢,与有刷电机正好是相反的。它除了电机电枢、永磁励磁两部分外,还带有传感器。电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本。由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展。 直流无刷驱动器包括电源部及控制部,电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(V1~V6)分为上臂(V1、V3、V5)/下臂(V2、V4、V6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。电机驱动电路如图?所示。 图1 无刷直流电机的控制电路

华科matlab大作业

MATLAB语言、控制系统分析与设计 大作业 升降压斩波电路MATLAB仿真 专业:电气工程及其自动化 班级: 设计者: 学号: 评分: 华中科技大学电气与电子工程学院 2016 年1月

评分栏

目录 一、引言 (4) 二、电路设计与仿真 (4) 三、仿真结果及分析 (7) 四、深入讨论 (10) 五、总结 (10) 六、参考资料 (11)

升降压斩波电路MATLAB 仿真 一.引言 Buck/Boost 变换器是输出电压可低于或高于输入电压的一种单管直流变换器,其主电路与Buck 或Boost 变换器所用元器件相同,也有开关管、二极管、电感和电容构成。与Buck 和Boost 电路不同的是,电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压相反。开关管也采用PWM 控制方式。Buck/Boost 变换器也有电感电流连续喝断续两种工作方式,在此只讨论电感电流在连续状态下的工作模式。 二.电路设计与仿真 1、电路原理 当可控开关V 处于通态时,电源E 经V 向电感L 供电使其储存能量,此时电流为i1。同时,电容C 维持输出电压基本恒定并向负载R 供电。此后,使V 关断,电感L 中储存的能量向负载L 释放,电流为i2。负载电压极性为上正下负,与电源电压极性相反。 稳态时,一个周期T 内电感L 两端电压UL 对时间积分为零,即 当V 处于通态期间,UL=E ;而当V 处于断态期间,UL=-Uo 。于是 所以,输出电压为 =?dt T L U off o on t U Et =E E t T t E t t U on on off on o α α -=-== 1

MATLAB大作业

安阳工学院 专业课课程大作业 课程名称(中文) MATLAB编程应用成绩 姓名黄红伟 班级通信工程 学号 201002030060 日期 2012年12月23日

数字基带传输系统的仿真实现 [摘要]:MATLAB 语言是一种数据分析和处理功能十分强大的计算机应用软件 ,它可以将声音文件变换为离散的数据文件 , 然后利用其强大的矩阵运算能力处理数据 ,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等 , 信号处理是MATLAB 重要应用的领域之一。数字通信系统有两种主要的通信模式:数字频带传输通信系统,数字基带传输通信系统。数字基带传输系统指不经载波调制而直接传输数字基带信号的系统,常用于传输距离不太远的情况下。本次大作业通过分析数字基带信号传输的特性,运用数值仿真的方法,对数字基带传输系统作了模拟。 [关键词]:MATLAB;数字基带传输系统 1.背景介绍 20世纪60年代出现了数字传输技术,它采用了数字信号来传递信息,从此通信进入了数字化时代。目前,通信网已基本实现数字化,在我国公众通信网中传输的信号主要是数字信号。数字通信技术的应用越来越广泛,例如数字移动通信、数字卫星通信、数字电视广播、数字光纤通信、数字微波通信、数字视频通信、多媒体通信等等。数字通信系统主要的两种通信模式:数字频带传输通信系统,数字基带传输通信系统。数字基带信号指未经调制的数字信号,它所占据的频谱是从零频或很低频率开始的。数字基带传输系统指不经载波调制而直接传输数字基带信号的系统,常用于传输距离不太远的情况下。 研究数字基带传输系统的原因:实际中,基带传输不如频带传输应用广泛,但对基带传输的研究仍有非常重要的意义。这是因为:第一,数字基带系统在近程数据通信系统中广泛采用;第二,数字基带系统的许多问题也是频带传输系统必须考虑的问题;第三,随着数字通信技术的发展,基带传输这种方式也有迅速发展的趋势,它不仅用于低速数据传输,而且还用于高速数据传输;第四,在理论上,任何一个线性调制的频带传输系统,总是可以有一个等效的基带载波调制系统所替代。因此,很有必要对基带传输系统进行综合系统的分析。 2.仿真理论基础 MA TLAB工具有很强的仿真能力可以仿真NR码、NRZ码、AMI码、PAM码等各种编码及分析其功率谱。同时可以仿真通信系统的应用。这里先简单介绍下仿真的理论基础。 2.1.时域抽样和频域抽样 若信号函数s(t)为定义在时间区间(-∞,+∞)上的连续函数,按区间[-T/2,T/2]截短为ST(t),再对ST(t)按时间间隔?t均匀取样,取样点数:N(t)=T/?t;仿真时用这个样值函数来表示S(t)。如果信号的最高频率为fH,那么必须有fH 〈〈0.5/?t,设为Bs,Bs=0.5/?t 称为仿真系统的系统带宽。 若信号s(t)的频谱S(f)为定义在频率区间(-∞,+∞)上的连续函数,按区间[-Bs,Bs]截断S(f),然后?f均匀取样。N(t)=2 Bs /?f=N;?f=1/T如果仿真程序设定的频域采样间隔是?f,那么就不能仿真截断时间1/?f的信号。2.2.频域分析函数t2f的功能是作傅立叶变换格式:X=t2f(x)函数f2t的功能是作傅立叶反变换格式:x=t2f(X)其中x是时域信号x(t)的截短抽样取得的取样值矢量。X是傅立叶X(f)的取样值矢量。 2.2.取样判决和误码率的测量 对于基带系统的研究,误码率是一个非常重要的概念,也是评价系统好坏的重要参数。在用matlab仿真系统中,在模拟实际的条件下,达到理想的误码率是我们的目标。

matlab大作业(控制系统仿真)

河南工业大学 控制系统仿真 姓名:宋伯伦 班级:自动化1501 学号:201523020128 成绩: 2017年6月16 日

设 计 题 目 基于MATLAB的皮带配料控制系统的仿真 设计内容和要求 阐述皮带配料控制系统的工作原理、物料流量特点,建立系统模型,通过Matlab进行控制系统仿真,达到适应系统工作过程各参数变化的目的。

报告主要章节 第一章概述与引言 随着科学技术的不断发展,电子皮带秤配料系统已在煤炭、化工、烟草、冶金、建材等行业中广泛应用。目前大多数皮带秤配料系统仍然是采用传统的PID控制算法,灵敏度较高,可以说在理论上调节是能做到无误差的,或者说在误差较小的范围内的确很有优势,但是出现较大误差时,其动态特性并不是很理想,超调量一般较大。所以,本课题设计了一套更为合理高效的电子皮带秤配料系统,本设计主要针对皮带秤配料系统中配料这一环节,采用模糊PID和传统PID控制相结合的方法。 本课题主要内容包括皮带秤的原理与组成,系统的总体设计,模糊控制算法结合本系统的分析以及采用MATILAB进行模糊PID控制仿真。 第二章各部分设计方案及工作原理 皮带秤配料系统中配料皮带秤作为在线测量的动态称量衡器,有着重要的作用,目前已广泛用于冶金、煤炭、烟草、化工、建材等行业中,是集输送、称量、配料于一体的设备。皮带秤仪表除了显示瞬时流量和累积流量外,还能根据由接线盒传过来的数据与给定值的偏差来控制给料机的给料,从而保证瞬时流量的恒定。这样就构成了一个闭环控制系统。 2.1皮带秤配料系统组成及工作原理 2.1.1皮带秤配料系统组成 配料皮带秤系统结构如图2.1所示,由三大部分组成,分别是料斗、给料设备和皮带秤。

大作业-----双闭环直流调速系统的MATLAB仿真

大作业 双闭环直流调速系统的MATLAB 仿真 (设计性实验) 一、实验目的 1、了解Simulink 下数学模型的仿真方法。 2、掌握数学模型的仿真建模方法和仿真参数设置要求 3、进一步掌握双闭环反馈控制系统的基本特性。 二、实验原理 双闭环控制系统的结构原理框图如下所示: 要求:在实验前需下根据双闭环控制原理计算出各环的PI 参数,写出正确的系统控制数学模型。 三、实验内容 1、直流电机双闭环控制系统SIMULINK 仿真模块建立。 2、仿真参数的设置。 3、各控制点的波形分析。 4、改变给定, 观察输出响应的变化。 5、用传递函数方程仿真。 四、实验步骤 1、按上述结构和参数建立仿真模型。 2、设定输入为单位阶跃信号,用scope 观察系统输出响应。 3、将改变给定,其余参数不变,观察系统输出响应。 4、突加负载,观察系统的抗扰性能。改变开环放大系数,观察系统的稳定性能。 5.用建立的传递函数方程仿真。 五、实验报告 按规定的实验报告要求写出实验报告,报告的内容有实验目的、建模名称,参数设置,实验电路,仿真模型结构图、仿真结果波形,结果分析。 名称 路径 参数设置 AC V oltage Source Simpowersystem/electrical/ Ground(output) Simpowersystem/ connectors Thyristor Simpowersystem/Power electronics Series RLC branch Simpowersystem/Elenemts C=inf L=0纯电阻 Vlotage Measurement Simpowersystem/ Measurements Current Measurement Simpowersystem/ Measurements Multimeter Simpowersystem/ Measurements T Connector Simpowersystem/ connectors Scope Simulink/sinks α 1/C e U *n n U d0 U n + - ASR 1/R T l s+1 R T m s K s T s s+1 ACR β U * i U i - - E I d ±?I dL 负载扰

(完整版)无刷直流电机数学模型完整版

电机数学模型 以二相导通星形三相六状态为例,分析BLDC 的数学模型及电磁转矩等特性。为了便于分析,假定: a)三相绕组完全对称,气隙磁场为方波,定子电流、转子磁场分布皆对称; b)忽略齿槽、换相过程和电枢反应等的影响; c)电枢绕组在定子内表面均匀连续分布; d)磁路不饱和,不计涡流和磁滞损耗。 则三相绕组的电压平衡方程可表示为: (1) 式中:为定子相绕组电压(V);为定子相绕组电流(A); 为定子相绕组电动势(V);L 为每相绕组的自感(H);M 为每相绕组间的 互感(H);p 为微分算子p=d/dt 。 三相绕组为星形连接,且没有中线,则有 (2) (3) 得到最终电压方程: (4) L-M L-M L-M r r r i a i b i c e a e c e b 图.无刷直流电机的等效电路 无刷直流电机的电磁转矩方程与普通直流电动机相似,其电磁转矩大小与磁通和电流幅值成正比

(5) 所以控制逆变器输出方波电流的幅值即可以控制BLDC电机的转矩。为产生恒定的电磁转矩,要求定子电流为方波,反电动势为梯形波,且在每半个周期内,方波电流的持续时间为120°电角度,梯形波反电动势的平顶部分也为120°电角度,两者应严格同步。由于在任何时刻,定子只有两相导通,则:电磁功率可表示为: (6) 电磁转矩又可表示为: (7) 无刷直流电机的运动方程为: (8) 其中为电磁转矩;为负载转矩;B为阻尼系数;为电机机械转速;J 为电机的转动惯量。 传递函数: 无刷直流电机的运行特性和传统直流电机基本相同,其动态结构图可以采用直流电机通用的动态结构图,如图所示: Ct 365/(GD^2s) Ce 1/R U(s)+ - + - T L(s) T C(s) I(s) N(s)图2.无刷直流电机动态结构图 由无刷直流电机动态结构图可求得其传递函数为:

MATLAB大作业

课程报告 题目:神经网络仿真与应用 姓名:吴彬斌 专业:建筑与土木工程 教师:王德玲副教授 时间:2012-2013学年第一学期

RBF神经网络即径向基函数神经网络(Radical Basis Function)。径向基函数神经网络是一种高效的前馈式神经网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。同时,它也是一种可以广泛应用于模式识别、非线性函数逼近等领域的神经网络模型。 RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。RBF 网络和模糊逻辑能够实现很好的互补,提高神经网络的学习泛化能力。 RBF网络的局部接受特性使得其决策时隐含了距离的概念,即只有当输入接近RBF网络的接受域时,网络才会对之作出响应。这就避免了BP网络超平面分割所带来的任意划分特性。在RBF 网络中,输入层至输出层之间的所有权重固定为1,隐层RBF单元的中心及半径通常也预先确定,仅隐层至输出层之间的权重可调。RBF网络的隐层执行一种固定不变的非线性变换,将输入空间Rn 映射到一个新的隐层空间Rh,输出层在该新的空间中实现线性组合。显然由于输出单元的线性特性,其参数调节极为简单,且不存在局部极小问题。 RBF神经网络除了具有一般神经网络的优点,如多维非线性映射能力,泛化能力,并行信息处理能力等,还具有很强的聚类分析能力,学习算法简单方便等优点;径向基函数(RBF) 神经网络是一种性能良好的前向网络,利用在多维空间中插值的传统技术, 可以对几乎所有的系统进行辩识和建模,它不仅在理论上有着任意逼近性能和最佳逼近性能, 而且在应用中具有很多优势,如和Sigmo id 函数作为激活函数的神经网络相比, 算法速度大大高于一般的BP 算法。 已经证明:一个RBF网络,在隐层节点足够多的情况下,经过充分学习,可以用任意精度逼近任意非线性函数,而且具有最优泛函数逼近能力,另外,它具有较快的收敛速度和强大的抗噪和修复能力。在理论上,RBF网络和BP网络一样能以任意精度逼近任何非线性函数。但由于它们使用的激励函数不同,其逼近性能也不相同。已经被证明,RBF网络是连续函数的最佳逼近,而BP网络不是。BP网络使用的Sigmoid函数具有全局特性,它在输入值的很大范围内每个节点都对输出值产生影响,并且激励函数在输入值的很大范围内相互重叠,因而相互影响,因此BP网络训练过程很长。此外,由于BP算法的固有特性,BP网络容易陷入局部极小的问题不可能从根本上避免,并且BP网络隐层节点数目的确定依赖于经验和试凑,很难得到最优网络。采用局部激励函数的RBF网络在很大程度上克服了上述缺点,RBF不仅有良好的泛化能力,而且对于每个输入值,只有很少几个节点具有非零激励值,因此只需很少部分节点及权值改变。学习速度可以比通常的BP算法提高上千倍,容易适应新数据,其隐层节点的数目也在训练过程中确定,并且其收敛性也较BP网络易于保证,因此可以得到最优解。

无刷直流电动机无传感器控制方法

* 无刷直流电动机无传感器低成本控制方法 关键词:无刷直流电动机无位置传感器控制可编程逻辑器件 1 引言 无刷直流电机的无传感器控制是近年来电机驱动领域关注的一项技术。无位置传感器控制的关键在于获得可靠的转子位置信号,即从软、硬件两个方面间接获得可靠的转子位置信号来代替传统的位置传感器[1~3]。采用无传感器控制技术的无刷电机具有结构简单、体积小、可靠性高和可维护性强等优点,使其在多个领域内得到了充分的利用[4]。目前对于无传感器无刷电机的控制多采用单纯依靠DSP 软件控制的方法[5],但是由于控制算法计算量大,执行速度较慢,且DSP成本较高,不利于以后向市场推广。同时也出现了应用于无传感器BLDCM控制的一些专用的集成电路[6],但由于这些芯片可扩展性和通用性较低,而且价格昂贵,只适用于低压、小功率领域。为了扩展无传感器BLDCM应用领域,降低其控制系统的成本,扩充控制系统的功能,增加控制系统的灵活性,本文以MCU+PLD方式组成控制系统的核心,利用PLD数字逻辑功能,分担MCU的逻辑运算压力,使MCU和PLD的功能都得到了最大程度的发挥。对于无位置传感器BLDCM控制系统,本文着重分析了换相控制策略和闭环调速,最后通过仿真和实验,验证了控制系统的合理性和可行性。 2 系统的总体硬件设计

本文中所设计系统是以8位PIC单片机和PLD构成的硬件平台,硬件结构框图如图1所示。 图1 系统总体结构硬件框图 功率逆变电路采用三相全桥逆变结构,电机定子绕组为Y接法,电机工作模式为三相6状态方式。在本文无传感器控制方式中采用反电动势过零位置检测方法,位置检测电路根据电机端电压获取3路位置信号,将信号送入PIC单片机进行软件移相后得到3路换相信号,由可编程逻辑器件进行逻辑解码后输出6路驱动开关管的前极信号,通过驱动芯片IR2233产生驱动信号以控制各开关管的导通与关断。该系统采用速度单闭环方式,通过改变PWM的占空比以达到调速的目的。 本文中选用Microchip公司的单片机PIC16F874作为控制核心,它内部有8K 的FLASH程序存储器,368字节的数据存储器(RAM),256字节的EEPROM数据存储器,14个中断源,8级深度的硬件堆栈,3个定时/计数器,两个捕捉/比较/PWM (CCP)模块,10位多通道A/D转换器等外围电路和硬件资源[6]。这些使得运用PIC16F874在设计硬件电路时,控制电路大大简化,可靠性提高,调试更加方便。 PIC16F874单片机的B端口的4~7口具有电平变化中断的功能,利用RB5~RB7作为反电动势的过零点检测信号的输入,如已开RB口中断,一旦有过零点出现

塔里木大学MATLAB及仿真应用实验报告5

塔里木大学MATLAB 及仿真应用实验报告 实验步骤与内容: 1. 在【0,2π】之间绘制曲线: 22)2cos(x e x y π= >> x=0:pi/100:2*pi; >>y=cos(2*pi*x).*exp(2*x.*x); >>plot(x,y) 33 2. 已知π20≤≤t ,t t t y t t x cos sin ),3sin(??=?=,画出t 与x,t 与y,以及x 与y 的 曲线(分三幅画); >> t=0:pi/100:2*pi; >> x=t.*sin(3*t); >> plot(t,x)

>> t=0:pi/100:2*pi; >> y=t.*sin(t).*cos(t); >> plot(t,y) >> t=0:pi/100:2*pi; >> x=t.*sin(3*t); >> y=t.*sin(t).*cos(t); >> plot(x,y) 3.对第二题题目要求在同一幅图中绘出;t=linspace(0,2*pi,100); x=t.*sin(3*t); plot(t,x,'g'); hold on y=t.*sin(t).*cos(t); plot(t,y,'r'); hold on

plot(x,y,'b'); hold off 4.使用同一标度在同一副图中绘出曲线: x e y x e y x x 2 sin 2 2 2 cos 2.0 1 22 = = x=0:pi/100:2*pi; y1=0.2*exp(2*x).*cos(2*x); y2=2*exp(2*x).*sin(2*x); plot(x,y1,x,y2) 5 5.使用图形保持命令做第四题;x=0:pi/100:2*pi; y1=0.2*exp(2*x).*cos(2*x); plot(x,y1) hold on y2=2*exp(2*x).*sin(2*x); plot(x,y2) hold off

12春MATLAB仿真期末大作业

12春MATLAB仿真期末大作业

MATLAB仿真 期末大作业 姓名:班级:学号:指导教师:

2012春期末大作业 题目:设单位负反馈控制系统前向通道传递函数由)()(21s G s G 和串联,其中: ) 1(1)()(21++==s A s G s K s G A 表示自己学号最后一位数(可以是零),K 为开环增益。要求: (1)设K=1时,建立控制系统模型,并绘制阶跃响应曲线(用红色虚线,并标注坐标和标题);求取时域性能指标,包括上升时间、超调量、调节时间、峰值时间; (2)在第(1)问中,如果是在命令窗口绘制阶跃响应曲线,用in1或者from workspace 模块将命令窗口的阶跃响应数据导入Simulink 模型窗口,用示波器显示阶跃响应曲线;如果是在Simulink 模型窗口绘制阶跃响应曲线,用out1或者to workspace 模块将Simulink 模型窗口的阶跃响应数据导入命令窗口并绘制阶跃响应曲线。 (3)用编程法或者rltool 法设计串联超前校正网络,要求系统在单位斜坡输入信号作用时,速度误差系数小于等于0.1rad ,开环系统截止频率s rad c /4.4''≥ω,相角裕度大于等于45度,幅值裕度大于等于10dB 。

C=dcgain(S); [y,t]=step(S); plot(t,y); [Y,k]=max(y); timetopeak=t(k); percentovershoot=100*(Y-C)/C; n=1; while y(n)0.98*C)&(y(i)<1.02*C) i=i-1; end setllingtime=t(i); 运行程序得到如下结果: Zero/pole/gain: 5 ------- s (s+1) C=1(系统终值) timetopeak=1.4365(峰值时间) percentovershoot=8.0778(超调量)ristime=0.8978(上升时间)setllingtime=7.5415(调节时间) (3)建立超前校正子函数如下:function Gc=cqjz_frequency(G,kc,yPm) G=tf(G); [mag,pha,w]=bode(G*kc); Mag=20*log10(mag); [Gm,Pm.Wcg,Wcp]=margin(G*kc);

MATLAB仿真实验报告

MATLAB仿真 实验报告 学院:计算机与信息学院 课程:随机信号分析 姓名: 学号: 班级: 指导老师: 实验一 题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序,

求最大值,最小值,均值和方差,并于理论值比较。解:具体的文件如下,相应的绘图结果如下图所示。G1=random('Normal',0,4,1,1024); y=max(G1) x=min(G1) m=mean(G1) d=var(G1) plot(G1); 实验二

题目:编写一个产生协方差函数为ττ24)(-=e C 的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma^2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,Rxx0,'b.',m*Ts,Rxx,'r');

periodogram(y,[],N,1/Ts);

实验三 题目:仿真一个平均功率为1的白噪声通带系统,白噪声为高斯分布,带通系统的两个截止频率分别为3KHZ和4KHZ,求自相关函数和功率谱密度。 解:具体的文件如下,相应的绘图结果如下图所示。 N=500; xt=random('norm',0,1,1,N); ht=fir1(101,[0.3,0.4]); HW=fft(ht,2*N); Rxx=xcorr(xt,'biased'); Sxx=abs(fft(xt,2*N).^2)/(2*N); HW2=abs(HW).^2; Syy=Sxx.*HW2; Ryy=fftshift(ifft(Syy)); w=(1:N)/N; t=(-N:N-1)/N*(N/20000); subplot(4,1,1);plot(w,abs(Sxx(1:N))); subplot(4,1,2);plot(w,abs(HW2(1:N))); subplot(4,1,3);plot(w,abs(Syy(1:N))); subplot(4,1,4);plot(t,Ryy);

相关文档
最新文档