发动机机体的温度场分析.

发动机机体的温度场分析.
发动机机体的温度场分析.

作者简介: 发动机机体的温度场分析

【摘要】利用CA TIA 建立发动机机体模型,将简化后的机体三维模型导入Hypermesh ,得到有限元模型。将机体的温度场作为稳定温度场处理,利用A VL-Boost 模拟出缸内气体的温度和换热系数,分段确定气缸壁的温度边界条件,根据已有经验公式求出缸体外壁、曲轴箱内壁以及机体与连接件间的温度边界条件,同时根据经验估算水套内的换热系数和温度,将这些温度边界条件施加到机体的表面上。最后,应用有限元软件MSC.MARC 对机体进行温度场分析,得到了机体的温度场分布。

【关键词】机体,换热系数,温度场,边界条件,有限元

Thermal Field Analysis of the Engine Cylinder Block

Abstract: In order to obtain the thermal field of the cylinder block, a 3D model created in CATIA was simplified before put into Hypermesh to get the FEA model. Then the thermal and heat exchange condition were calculated through operation process modeling based on A VL-Boost. Taking the thermal distribution as steady one and dividing the thermal condition of cylinder wall into parts, the overall thermal boundary conditions, including the outboard cylinder wall, crankcase inner wall and the one between cylinder and linker were presented, according to the experimental formulas. Meanwhile, the exchange coefficient and temperature distribution were given aiming at adding them to the surface of cylinder block. In the end, the total thermal distribution of cylinder block was finished by means of applying the MSC.MARC to analyze the thermal field.

Key words: Cylinder Block, Heat Exchange Coefficient, Thermal Field, Boundary Condition, FEA

1 引言

近年来,随着计算机技术的迅速发展,特别是有限元方法和分析软件的日益成熟,在发动机研制开发工作中对零件进行有限元分析己成为辅助设计的重要手段。发动机内,燃料的燃烧使发动机燃烧室周围的零部件都受到加热,使其工作温度升高。承受高温负荷的这些零件,有可能产生蠕变、热疲劳等热故障,妨碍发动机长期可靠的工作,或者成为进一步提高发动机性能指标的障碍。特别是对那些强化度高的发动机来说,热负荷、热强度问题,已经成为能否研制成功或能否正常可靠运行的关键问题之一。零部件的热强度,取决于它所承受的热负荷的高低及承受这种热负荷的能力。前者主要取决于该零部件的温度水平及温度分布;后者则主要与零部件所选用的材料特性有关。温度水平相对于温度分布可以认为是客观不可变因素,因此对受热零部件进行温度场研究具有实际意义。本文用有限元软件MSC.MARC 模拟机体的温度场分布,对改进机体设计、提高内燃机的性能与可靠性具有重要的意义。

2 有限元模型的建立

本文的分析对象机体源于某汽油机。该机为一款直列四缸四冲程汽油机,排量为0.997L ,气缸直径69mm ,活塞行程66.5mm ,压缩比10:1,发火顺序为1-3-4-2,发火间隔角为?=?1804720,最大功率52kW ,最大功率时的转速6000rpm 。本文在6000rpm 的工况下进行分析。

首先建立机体的三维实体模型。采用大型CAD 软件CA TIA 来建立完整的机体模型。建好的机体三维实体模型如图1所示。

图1 发动机机体三维几何模型

由图1可以看出,发动机机体的结构非常复杂,建立有限元模型时,必须根据有限元分析的需要对机体进行必要的简化。简化时,根据分析需要,考虑一些起主导作用的因素来建立机体的简化模型。实体模型的简化主要包括以下几个方面:

(1)忽略了一些局部结构。综合考虑机体结构的特点和计算机的计算能力,可以对安装机体附件用的凸台、小的螺栓孔、油道、油孔等对整体特性影响较小的局部结构予以忽略。

(2)简化局部结构的一些细节。如忽略缸体上的一些铸造圆角,但对机体内部横隔板上的局部加强筋、凹槽等以及结构结合处的圆角、倒角等细节不能简化,这些细小的结构对于应力的分布影响比较大,这些局部结构细节一定要考虑。

(3)螺栓孔的处理。在实际工作中由于装上螺栓后局部刚度得以加强,所以在机体变形、应力分析的时候可以忽略较小的孔型结构,保留的螺栓孔采用圆孔进行替代,如缸盖螺栓孔。

(4)对每个部分又根据其形状特点进行少量简化,以方便划分有限元网格。将简化后的机体三维模型以IGS 的格式导入Hypermesh ,手动划分网格。为了提高计算效率,采用三维四节点四面体进行划分网格,得到的有限元模型如图2所示。划分好的有限元模型的网格数为191492,节点数为58177。

图2 机体有限元模型

3 温度边界条件

进行温度场的计算,合理的给出传热边界条件是保证计算可靠的关键,机体模型内部的温度分布极为复杂,为了使传热边界条件的选取更接近于实际情况,通常通过实测的表面温度来反复修正边界

条件[1]

。本文机体的温度边界为第三类边界条件,换热系数和介质温度根据A VL-Boost 软件仿真分析和经验公式计算结果估计。确定换热边界条件,主要是确定各边界与燃气、冷却水、冷却油、曲轴箱内油雾以及自由环境之间的换热系数和相应温度。第三类边界条件下传热方程为:

222222

0T T T

x y z

???++=??? (1) ()

f

s

s

T T T n

α?-=-? (2)

对应的泛涵公式为:

()2222

2

j v s T T T J dxdydz T T T ds x y z λα???????????????=+++-???? ? ? ??????????????????

?? (3) 式中: λ为导热系数,W/( m 2·K);

α为对流换热系数W/( m 2·K);

f T 为环境温度;

S 为机体边界。

划分单元的泛函表达为:

()22222c

f vc sc

T T T J dxdydz T T T ds x y z λα???????????????=+++-???? ? ? ?????????????????

??? (4) 总泛函为:

()22222f vc sc c T T T J dxdydz T T T ds x y z λα???????????

????=+++-???? ? ? ?????????????????

?∑?? (5)

泛函取极值的条件为:

0c c i i

J J

T T ??==??∑ (6) 其中:I =1,2,3,…,N

J C 为单元与整体边界重合部分,N 为节点总数。 3.1 缸内气体的换热系数的确定

发动机在稳定工况下,燃气对燃烧室内壁的放热系数是随时间和空间变化的,但对于每一个工作循环,是周期性的变化。基于这个事实,可以用式(7)计算在一个循环内燃气向单位燃烧室壁面的换热量,即

2,0

1(),/g g w s q t t d W m ταττ=-? (7)

式中0τ—一个工作循环的周期,s ;

g α—燃气的瞬时放热系数,)(1ταf g =,W/( m 2·K)

g t —燃气的瞬时温度,),(2τf t g = K

s w t ,—燃气侧燃烧壁的瞬时温度,K

式(7)也可以写成

,0

00

1

1

g g g w s q t d t d ττατατττ=

-

?

?

(8)

很多试验结果表明,燃气侧燃烧室壁面的温度随时间变化的幅度很小,可以近似作为常数,则式(8)变为

00

000

,00000,0

00111g g w s

g

g g g w s g q t d t d t d d t d ττττταταττταταττατ=-??

??=-??????

????? (9)

把式(9)与牛顿-黎赫曼换热公式比较得到: 燃气的平均放热系数为

,0

1

g m g d τααττ=

?

(10)

燃气的平均结果温度为

()

*0

,,0

g g g g

m

g m g m

g

t d t t d ττ

αταα

ατ

=

=?? (11)

定义燃气的平均温度为

,0

1

g m g t t d τττ=

?

(12)

上面三式下脚标m 是指一个工作循环内的平均值。 式(9)则可以写成

*,,,,,,()()g g m g m w s g m g m w s g m t q t t t αααα??=-=-??????

(13) 式(13)即一个循环内燃气向单位燃烧室壁面换热量的计算公式。但应当指出,燃气的平均结果

温度*

,m g t 与燃气的平均温度m g t ,是不一样的,燃气的平均结果温度是在这样的条件下求出的,即在每一

个循环时间0τ内,在不定常的换热情况下,每单位表面积所传递的热量等于稳定换热情况下每单位表面积所传递的热量。不难看出,平均结果温度即相当于稳定换热时的气体温度。

至于燃气的瞬时放热系数g α的计算,目前计算公式很多,差异较大,本文利用A VL-Boost 软件模拟出瞬时对流换热系数和缸内燃气瞬时温度,如图3所示。

图3 缸内气体温度边界条件

3.2 气缸壁换热系数的分布

对于行程高度范围内任一位置的缸壁内表面总受热量包含如下 3个部分: ①燃气以对流、辐射的方式直接传入热量; ②燃气通过活塞侧面传入热量;

③活塞与气缸壁摩擦传入热量的部分。

发动机缸体内表面稳态传热边界条件下轴向高度上有如下的分布规律[1]

1()(0)(1)m m h k e ααε=+(14)

2()(0)(1)res res T h T k e =+(15)

式中/(01)h s εε=≤≤,0.2410.573()k S D =,211.45k k =

h —气缸内壁轴向距气缸顶部的距离,m ;

(0)m α—发动机工作循环中燃气的平均放热系数,W/( m 2·

K); (0)res T —发动机工作循环中燃气的平均温度,K 。

将气缸内壁在高度上划分为10段,每段内的燃气换热系数和平均温度见表1。 3.3 缸体外壁、曲轴箱内壁换热系数的的确定

发动机缸体外表面与外界空气的换热主要是对流换热,其换热系数为[2]

0.6750.40.32Re Pr (/)ae a

a a e l αλ= (16) 式中

ea R —缸体周围空气流动的雷诺数;

e l —缸体外表的特征尺寸,m ;

Pr a ——空气的普朗特数;

a λ——空气的导热系数,W/( m 2·

K)。 曲轴箱内表面与箱内空气的换热也主要是对流换热,其换热系数亦用上式进行计算。

机体外壁与外界空气直接接触部分的环境温度就是发动机运行时周边空气的温度,换热系数取为

空气的自然对流系数,环境温度设为320K ,对流换热系数设为60W/(m 2·K);曲轴箱内的空气温度要比机体周边的空气温度高,环境温度设为400K ,对流换热系数设为200W/(m 2·K)。

3.4 机体与连接件间的换热系数的确定[2]

机体上的连接件有缸盖、油底壳、变速器、支承等,机体与这些连接件之间都有垫片相隔,以起到密封作用,这些垫片的导热系数一般都很低,热阻较大。故本文中机体与这些连接件间的换热系数f α为 0.5~50W /(m 2·

K),定性温度 w f T T ?=)0.2~2.1(,w T 为连接处缸体壁面温度。 3.5 机体水套区域换热系数的确定

水有很强的对流换热能力,可以达到5000~6000 W/(m 2·K),综合考虑水套形状、内表面的状况、

水流的温度和速度等因素,将水套的上游部分初步定为2300W/(m 2·K),下游部分初定为2900

W/(m 2

·K),水套中环境温度上游设为360K ,下游设为370K 。

最后,机体设置好的温度边界条件如表1所示。

表1 机体主要部分边界条件

Tab.1 Boundary conditions of Cylinder Block

4 机体温度场分析

根据前面建立的有限元模型和确定的边界条件,利用大型有限元软件MSC.MARC 对机体进行温度场分析,得到了机体的温度场分布。如图4所示。

图4 机体温度场分布

从图4可以看出,机体大部分区域温度为348~415K ,还有大部分区域温度在430~466K 之间,缸体温度从第一缸到第四缸逐渐升高,最高温度为515.7K ,出现在第三缸与第四缸间的缸筒上,这是因为冷却水从第一缸侧的水套入口进入水套,刚进入水套的冷却水温度最低,流速最大,换热系数也最大,从缸体带走的热量最多,流到水套下游,冷却水温度由于与缸体的换热而逐渐升高,由于阻力流

速也有所下降,换热系数也降低,从气缸带走的热量有所降低,导致从第一缸到第四缸温度逐渐升高,而第四缸的外侧与温度较低的外界环境直接换热,导致第四缸外侧温度反而有所下降,如图5所示。

图5 气缸壁温度分布

图5更清楚的显示了位于第三缸与第四缸间的最高温度,该处受两缸内高温燃气的传热而又距水套入口较远,温度最高是合理的。可以看出,气缸壁的温度变化范围较大,在396~515.7K之间,其中第一缸温度分布在396~492.2K之间,第二缸温度分布在411~502.3K之间,第三缸温度分布在427.1~515.7K之间,第四缸温度分布在418.7~514.9K之间,如图6所示,气缸壁轴向温度顶部较高,而底部较低,归因于高温燃气总是在上止点被点燃,高温燃气对气缸的传热在顶部多底部少,故在气缸内表面施加的换热系数也是顶部大底部小。

第一缸第二缸

第三缸第四缸

图6 各缸温度场分布

5 结论

1)使用CATIA建立了发动机机体的三维几何模型,并对机体模型进行了一些简化,使用四节点四面体单元对简化后的机体划分网格,建立机体的有限元模型。

2)将机体的温度场作为稳定温度场处理,利用A VL-Boost模拟出缸内气体的温度和换热系数,详细的分段确定了气缸壁的温度边界条件,根据已有经验公式求出缸体外壁、曲轴箱内壁以及机体与连接件间的温度边界条件,同时根据经验估算水套内的换热系数和温度,将这些温度边界条件施加到机体的表面上。

3)机体温度场分布显示,机体温度从第四缸区域到第一缸区域逐渐降低,最高温度在第三缸和第四缸之间的缸筒上。缸壁温度场分布显示,其温度亦从第四缸区域到第一缸区域逐渐降低,最高温度在第四缸缸套顶部且紧挨第三缸的位置。

4)通过计算分析得到了机体的温度场分布情况,为机体的热应力分析和热机耦合分析提供了依据。

参考文献:

[1] 陈志金.基于CatiaV5的B类车车身内部布置工具的开发与应用[D].吉林:吉林大学,2007.

[2] 周皖青.CATIA在汽车模具逆向工程设计中的应用[J].企业科技与发展.2008.Vol.16.

[3]杨建华,龚金科,吴义虎.内燃机性能提高技术[M].北京:人民交通出版社,2000:143-163.

[4] Sitkei Gy.内燃机的传热和热负荷[M].马重芳,宋家林,等译. 北京:中国农业机械出版社,1981:77-82.

[5] 邵建旺,杜爱民,田永祥.汽油机活塞的热负荷和机械负荷分析[J]. 上海汽车,2008.5:20-23.

[6] 俞小莉,郑飞,严兆大.内燃机气缸体内表面稳态传热边界条件的研究[J]. 内燃机学报,1987 (4):329-332.

[7] 赵以贤,毕小平,王普凯,刘西侠.车用内燃机冷却系的流动与传热仿真[J]. 内燃机工程,2003.Vol.24 No.4.

[8] 叶秀汉. 动力机械热应力理论和应用[M].上海:上海交通大学出版社, 1987:32-63,117-134.

由于对高速电机要进行流体场和温度场的分析

由于对高速电机要进行流体场和温度场的分析,所以对样机主要参数和尺寸作一简要说明,这里包括6槽,12槽,和24槽的样机尺寸。 (1)样机额定数据 额定功率:P N = 75 kW 额定电压:U N = 500 V 相数:m = 3 极数:2p = 2 额定效率:ηN = 90% 功率因数:cosφ = 0.95 额定转速:n N = 60000 r/min 额定频率:f N = pn N /60 = 60000/60 = 1000 Hz 额定相电流:I N = P N / (3U N) = 75000/(3×500) = 86.6A 冷却方式:空气冷却 (2)定子尺寸 气隙长度:δ = 1 mm 定子内径:D i1= 66 mm 铁心长选取:l t = 135 mm (3)定子槽型尺寸 定子冲片设计,如图2.3所示 上面描述了三台样机共同的基本数据,下面分别确定6、12、24槽高速电机定子的基本尺寸,表2.1中分别列出6槽、12槽、24槽电机的定子基本尺寸。其中前面的符号所代表的具体部位可从图中找出。其中N为每相串联匝数。 表2.1 不同槽数电机定子的基本尺寸 Table 2.1 Stator Design of Different Slots 6槽12槽24槽 b01(mm) 4 3 2 b11(mm) 14 6.8 3.4 h01(mm) 1 1 1 h11(mm) 2 2 2

基于FLUENT 的高速永磁电机流体场分析与风摩耗计算 2.5.1 CFD 简介 计算流体动力学(Computational Fluid Dynamics ,简称CFD )是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD 的基本思想是把真实世界时间域和空间域上连续的物理量,用一系列离散的有限的点上的变量值得集合模拟,通过一定的原则和方式建立起关于 R 1(mm) 109 90 90 R 2(mm) 4 3 2 b t1(mm) 22.6 16.2 8.1 h j1(mm) 26 26 26 D i1(mm) 66 66 66 D i2(mm) 270 270 270 S i1(mm 2) - 198 99 S i2(mm 2) 2160 899 449 i2 S 图2.3定子槽尺寸图 Fig.2.3 Dimension of Stator Slot

发动机长时间低温工作的危害

发动机长时间低温工作的危害 部分驾驶操作人员认为:发动机的工作温度低一点没关系,比温度高要好。事实则不然。 发动机工作时,由于燃料的燃烧和运动件的摩擦产生大量的热量,特别是直接与燃烧气体接触的部件温度更高,约200至400摄氏度,因此不管负荷大小、转速高低和周围大气温度环境如何,既要采用某种冷却的方法,把发动机的热量消耗散去,又要确保发动机在一定热规范内进行工作,才能保证发动机有较大的功率和经济性。 一般情况下,发动机因某种原因产生温度过高,约100到120摄氏度,很容易被驾驶人员发现,并及时采取降温措施。发动机高温时的症状十分明显,我们叫它发动机高温急性症。而发动机长时间低温工作,约30到70摄氏度,常常被驾驶人员所忽视,因为发动机的症状变化不太明显,我们叫它发动机低温慢性症,如不及早预防和治疗,其危害程度更为严重。 发动机是有不同金属材料装配组成的,例如:钢件、合金钢件、铸件、铝件等。各种金属材料的属性不同,只有在热规范内,约80至90摄氏度,不同部件及运动件的机械性能才能正常的配合,燃料才能完全蒸发并充分燃烧,各种技术指标才能得到保障和满足设计要求。由此可见热规范的必要性和重要性,因此发动机长时间低温工作不容忽视。 发动机长时间地余热规范温度工作的危害有以下几个方面: 一、缩短发动机的使用寿命,磨损增加约50%~100%,主要是由于燃烧后生成物中的水蒸气易冷凝成水与酸性气体,形成酸类堆气缸壁的侵蚀,没有燃烧的燃料对摩擦表面(气缸壁、活塞、活塞环)上面油膜的冲刷。不同属性的金属材料在低温时的变化,破坏了正常的配合间隙,这些都会造成发动机磨损增加,影响发动机的使用寿命。 二、发动机的功率下降约25%,其原因是进入气缸的可燃混合气温度太低,增发雾化不好,点燃困难或燃烧迟缓,气缸压力下降和润滑条件变差、摩擦阻力增加,发动机功率耗于自身的摩擦。 三、油耗增加约10%~30%,其原因是燃料不能完全燃烧,造成油耗的浪费。 四、破坏了润滑油的质量,原因是没有燃烧的燃料渗透到曲轴箱里面,使润滑油变稀或变质,加重了运动件的摩擦和磨损。 驾驶员对发动机低温工作问题应予以高度重视,以尽量延长其使用寿命。

大体积混凝土温度场分析

大体积混凝土温度场分析 聂凤玲 (甘肃建筑职业技术学院) 摘要:本文以某大厦筏基为背景,利用大型通用有限元软件ANSYS对其分层浇筑施工过程温度变化进行模拟,得到温度变化曲线;针对该实际工程提出了一些降低大体积混凝土内部温度的措施,在实际工程中取得了较好的效果 关键词:大体积混凝土、温度裂缝、措施 随着现代社会的高速发展,各种大型建筑的频繁建设不断涌现,如大型桥梁、大型水坝等,给人们的日常生活带来了许多方便,因此,这些大型建筑建设质量的优劣就显得相当重要。由于大型建筑的结构特殊,施工技术难度大,却较易引发许多影响使用安全的质量隐患,如施工裂缝、受力变形等,特别是大体积混凝土结构物,施工裂缝问题尤为突出。因此,解决大型建筑存在的施工问题成了质量控制的当务之急。下面,让我们一起来探讨大体积混凝土施工裂缝的质量控制。 何谓大体积混凝土?有关规范、学著均作了明确的规定,基本一致认为:结构物最小断面尺寸达到80cm 以上、由水化热所引起的混凝土内最高温度与外界环境气温之差超过25℃时的混凝土,均称为大体积混凝土。大体积混凝土较其他一般钢筋砼相比,有着以下特征:结构较为笨重厚实、施工技术要求高、混凝土量大等特点。由于其独特的施工特性,使其在建设和使用的过程中,均会出现不同程度的施工裂缝,严重地影响着工程质量的使用。那么,究竟这些施工裂缝是如何产生的?结合一些工程经验,根据裂缝产生的原因对大体积混凝土裂缝的类型作了如下归类:温差裂缝、收缩裂缝以及安定性裂缝。其中,温度裂缝是大体积混凝土结构物中较为普遍的一种,也是最为常见的一种裂缝。笔者以某大厦基础筏板为背景,利用ANSYS对其浇筑过程混凝土内部温度进行模拟计算,找出大体积混凝土浇筑过程中混凝土内部温度变化规律。 1.工程背景 某建筑物为综合性建筑,地上35层,地下2层,建筑面积约21000平方米左右,建筑总高度152.30m(室外地坪至机房顶平面),主要使用功能为银行营业大厅及办公用房。本工程采用框剪-钢混结构,结构安全等级为二级,建筑设计基准期为100年。基础底板厚2600mm,混凝土强度为C50,抗渗等级为S10,筏基按照分层浇筑。 2.温度裂缝 温度裂缝其主要产生原因为混凝土在凝结初期即水化反应期间,水泥释放出大量的水化热,由于结构本身体积大,累积在内部的水化热不易散发,致使内部温度在一定的时间内不断上升,而结构表面的热量则散发较快,因而造成结构内外温差较大,在表面产生拉应力,当温差产生的拉应力大于混凝土的极限抗拉应力时,便会在结构表面出现

发动机基础知识

这次的培训主要是按照以下的流程来讲解:发动机的历史 发动机的分类 发动机的构造和原理 发动机的装配 发动机电气知识讲解 发动机的维修和保养

一、柴油机的历史 18 世纪后半期,欧洲各国在迎来巨大转折期的产业革命时,诞生了世界首辆汽车。第1辆汽车是蒸气汽车。但是,对于持续扩大的产业,蒸气机已无法适应,渐渐地在汽车和汽油发动车等的发动 机内部,在燃烧后产生动力,再转移到为内燃机。其中便诞生了具有良好热効率的柴油发动机。 说到柴油发动机,不得不提到『鲁道夫·迪赛尔』,这是个重 要的人物。他是柴油发动机的发明者,并确立了基本原理,被称为柴油机之父。柴油发动机就是用他的名字命名的 传统柴油发动机的特点:热效率和经济性较好 柴油机采用压缩空气的办法提高空气温度,使空气温度超过柴油的自燃燃点,这时再喷入柴油、柴油喷雾和空气混合的同时自己点火燃烧。因此,柴油发动机无需点火系。同时,柴油机的供油系统也相对简单,因此柴油发动机的可靠性要比汽油发动机的好。 由于不受爆燃的限制以及柴油自燃的需要,柴油机压缩比很高。热效率和经济性都要好于汽油机,同时在相同功率的情况下,柴油机的扭矩大,最大功率时的转速低,适合于载货汽车的使用。 但柴油机由于工作压力大,要求各有关零件具有较高的结构强

度和刚度,所以柴油机比较笨重,体积较大;柴油机的喷油泵与喷 嘴制造精度要求高,所以成本较高;另外,柴油机工作粗暴,振动噪声大;柴油不易蒸发,冬季冷车时起动困难。 由于上述特点,以前柴油发动机一般用于大、中型载重货车上。 高速柴油发动机的新发展:排放已经达到欧洲III号的标准 传统上,柴油发动机由于比较笨重,升功率指标不如汽油机(转 速较低),噪声、振动较高,炭烟与颗粒(PM)排放比较严重,所以一 直以来很少受到轿车的青睐。但随着近年来柴油机技术的进步,特 别是小型高速柴油发动机的新发展,一批先进的技术,例如电控直 喷、共轨、涡轮增压、中冷等技术得以在小型柴油发动机上应用, 使原来柴油发动机存在的缺点得到了较好的解决,而柴油机在节能 与CO2排放方面的优势,则是包括汽油机在内的所有热力发动机无 法取代的,因此,排放已经达到欧洲III号标准的柴油机,成为 “绿色发动机”,目前国三型号的柴油机已经开始在我国全面推广。

电动汽车驱动电机冷却结构设计及温度场分析

电动汽车驱动电机冷却结构设计及温度场分析 发表时间:2018-08-22T11:11:24.983Z 来源:《电力设备》2018年第14期作者:王健王云鹏李武[导读] 摘要:本文给出一种实际工程应用的电动汽车驱动电机并联型冷却水路结构,相对于传统螺旋形水套,降低流阻效果显著。然后利用热网络法,研究电机装配间隙及槽内浸漆程度对温度场的影响。接下来建立电机整机三维有限元模型,研究整个电机温度分布情况。最后通过实验对两种仿真方法进行验证。 (上海汽车集团股份有限公司技术中心上海 201804) 摘要:本文给出一种实际工程应用的电动汽车驱动电机并联型冷却水路结构,相对于传统螺旋形水套,降低流阻效果显著。然后利用热网络法,研究电机装配间隙及槽内浸漆程度对温度场的影响。接下来建立电机整机三维有限元模型,研究整个电机温度分布情况。最后通过实验对两种仿真方法进行验证。 关键词:永磁同步电机并联型水路 LPTN 有限元法 Cooling structure design and temperature field analysis of electric vehicle driving motor Wang Jian1 Wang Yunpeng1 Li Wu1 (1.SAIC Motor Technical Center,Shanghai,201804) Abstract: In this paper, a parallel cooling water circuit structure used in EV’s driving motor is presented. Compared with the traditional spiral water jacket, the effect of reducing flow resistance is remarkable. Then the thermal network method is used to study the influence of the motor assembly gap and the degree of paint dipping on the temperature field. Next, the three-dimensional finite element model is established to study the temperature distribution of the whole motor. Finally, two simulation methods are verified by experiments. Keywords: PMSM Parallel cooling water circuit LPTN Finite element method 0 引言 目前国际上新能源汽车发展如火如荼,电动汽车驱动电机研究越来越受到人们的普遍关注,永磁同步电机更是其中翘楚。越来越高的功率密度和转矩密度需求,使得永磁同步电机热场研究成为了电机设计和校验的重要一环[1]。本文结合实际工程,对一款电动汽车用永磁同步电机流体场和温度场进行耦合研究,并通过实验证明了工程研究方法的准确性,具体内容包括以下几个方面: 1)结合流体动力学理论,对比分析并联型水路相对于传统水路结构的优势; 2)研究热网络法计算电机温度场准确性的影响因素; 3)三维有限元法计算电机温度场准确性研究。 1 并联型水路 本节旨在研究并联型水路结构相对于传统水路结构(周向螺旋形)在车用电机上的优势,主要从水路流阻方面考虑。 1.1 流体动力学及热场数学模型 对于一般不可压缩粘性流体稳态问题,伯努利方程在解决实际工程问题中有及其重要的作用[2],并且应用广泛,其方程为: 式(2)中:T为物体边界面温度;qv求解域内各热源总和;λr、λφ、λz分别为材料沿r、φ以及z方向的导热系数;S为流体与固体材料交界面;Tf为流体温度;α为表面散热系数。 1.2 仿真模型 传统机壳水冷常用周向螺旋型和轴向“Z”字型水路,轴向“Z”字型水路由于弯折角多,局部压降大,通常在实际工程中多采用的周向螺旋型水路。周向螺旋型水路进出水口分布在电机两侧,位置不方便进行调节,在目前电机-控制器-减速器集成的系统中,有一定的劣势。基于螺旋型水路,本文给出一种并联型水路结构,进出水口位置便于调节,并且降低水路的流阻。水路结构图如图1-1所示,分别为螺旋型水路和并联型水路。

汽车进气温度传感器的检测方法

1、检测电阻: 如果进气温度传感器本身或其线路故障,将导致发动机启动困难、怠速不稳、废气污染物排放量增加,进气温度传感器的电阻检测方法及要求与冷却液温度传感器基本相同。 单件检查时,将点火开关置于OFF位置,拆下进气温度传感器导线连接器,并将传感器拆下。用电热吹风、或热水加热进气温度传感器,并用万用表电阻档,测量在不同温度下两端子间的电阻值。 将测得的电阻值与标准数值进行比较,如果与标准值不符,则应更换进气温度传感器。安装进气温度传感器,用10Nm左右的力矩拧紧传感器。检查结构与水温传感器相似的进气温度传感器时,可采用检查水温传感器的方法。 在正常情况下,温度为20°C时,阻值约为2-3千欧姆;80°C时,阻值约为O.4-0.7千欧姆。如果测量结果不符合规定要求,则应更换传感器,安装于空气流量传感器内的进气温度传感器损坏时,应更换空气流量传感器。 2、检测电压: (1)检测电源电压:拆下进气温度传感器线束插头,打开点火开关,测量进气温度传感器的电源电压,应为5V。 (2)测量输入:信号电压。将点火开关置于ON位置,用万用表的电压挡测量图中ECU的THA与E2间的电压,该电压值应在0.5~3.4V(20℃)范围内。若不在规定范围内,则应进一步检查进气温度传感器连接线路是否接触不良或存在断路、短路故障。 (3)检查进气温度传感器连接线束电阻。用数字式万用表的电阻挡测量传感器插头与ECU插接器端子间电阻,即传感器信号端、地线端分别与对应的ECU 的两端子电阻。如果不导通或电阻值大于1Ω,说明传感器连接线路或插头接触不良,应进一步捡查。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城。https://www.360docs.net/doc/4711106030.html,/

配电室温度场与湿度场的建模与仿真分析

大数据专题Big Data Special Reports 2019年1月第22卷第1期Jan. 2019,Vol. 22,No. 1电力大数据POWER SYSTEMS AND BIG DATA 配电室温度场与湿度场的建模与仿真分析 范强I,吕黔苏「,邱继艳2,王旭彳,戴宇",胡扌亚詰§ (1.贵州电网有限责任公司电力科学研究院,贵州贵阳550002; 2贵州电网有限责任公司都匀供电局,贵州都匀558000; 3.贵州创星电力科学研究院有限责任公司,贵州贵阳550002; 4贵州电网有限责任公司,贵州 贵阳550001 ; 5.广州穗华能源科技有限公司,广东广州510530) 摘 要:考虑到变电站配电室内配电设备对环境温度和湿度有较严苛要求,因此有必要研究配电室内温度和湿度分布 规律,有助于提高配电设备可靠性。按照与温度计算有关的能量传递方程和与湿度计算有关的气体扩散方程,由理论 计算公式分析可知直接计算涉及多变量的耦合,求解难度大,本文采用有限元分析软件ANSYS 对配电室的温度场和 湿度场进行仿真计算,首先根据实际的典型配电室建立仿真计算模型,并高精度划分有限元网格.其次根据现场运行 情况整定计算仿真需要的计算参数,利用仿真计算模型得到了室内温度场和湿度场的水平面分布情况。通过改变风 机流量,分析了风机流量变化对配电柜内部温度的影响效果,总结了配电室内温度场与湿度场的分布规律' 关键词:配电室;温度场;湿度场;有限元分析; 文章编号:2096 -4633(2019)01 -0049 -06 中图分类号:TM743 文献标志码:B 随着社会经济的快速发展,对电力需求日益增 长,变电站的运行是否正常直接关系到区域供电质 量的高低。同时,无人值守变电站及智能变电站建 设、投运数量的逐渐增多,对电气设备的运行可靠性 也提出了更高要求⑴。变电站内配电室、电容器室 等重要区域安装有众多电气设备,高压配电室内电 气设备的良好运行环境又直接为电力供电可靠性提 供保证。室内配电设备包括断路器、隔离开关、电流 互感器、电压互感器等,它们对温度与湿度这两个环 境参数的要求较高。最为重要的是温度,在运行中 这些设备自身会发出较大热量,而设备所在的开关 柜又是一个相对密封的空间,因此,开关柜内部的温 度较环境温度高许多,过高的温度会缩短电气设备 的使用寿命,严重时甚至会导致设备直接烧毁⑷。 其次是湿度,在室内相对湿度接近100%的情况下, 空气中的水分会析出,并在设备上形成凝露⑶。凝 露加上电气设备的积灰,改变了绝缘表面电场的分 布,常常导致绝缘表面发生放电,极大破坏了绝缘强 度⑷。综上所述,配电室内温度与湿度对于电气设 备影响巨大,因而其分布规律有待深入研究。随着以有限元为代表的数值仿真计算的发展, 国内外对于电气设备的温升计算越来越多地采用数 值计算方法⑸。ANSYS 是由美国著名软件公司开 发针对温度、电磁场等进行有限元分析的软件⑷。ANSYS 一般用于高压开关柜、变压 器"“°〕、电容电抗器"-13]等的温度场建模与分析 工作,以指导环境监测控制系统能进行有效的温度 监测与控制工作,但鲜见用于变电站配电室的研究 工作。文献[14]采用Solidworks 软件建立开关柜精 细3D 有限元模型,基于Icepak 软件进行温度场和 流体场的数值计算和分析。考虑空气对流散热和风 扇强迫风冷的因,实现了复杂模型温度分布的准确 求解。文献[15]先建立了 NXAIR 型开关柜电缆室 的温度场和空气流场模型,再利用Comsol 软件进行 了仿真求解,发现电缆接头处温度偏高,认为该处应 成为监测重点,最后根据仿真结果构建了一套专门 对开关柜电缆室进行监测的系统。本文将参考上述文献,以贵州某变电站的典型配 电室为研究对象,从仿真数学模型和仿真计算两个方 面对该配电室内温度场和湿度场作详细的研究。1配电室的温湿度数学模型1. 1配电室热源分析 配电室内温度除了受到环境温度、气流影响外, 还会受到室内发热体传热的影响。配电室内的热源一般是开关柜,室内电容电抗?48?

01-进气温度传感器P0110故障诊断流程

01-进气温度传感器P0110故障诊断流程-截图 (传感器损坏故障) 一、前期准备 1.清洁工作场地,将被修车辆就位停放。 2.工具、量具、检测仪器及相关辅助材料准备。 3.目视车辆停放位置,确定工位安全。 4.打开右前车门,填写车辆整车型号、车辆识别VIN代码及发动机型号。

5.安装底盘垫块。 6.安装车轮档块。 7.安装尾气抽气管。 8.打开左前车门,安装车内三件套,(并拉紧手制动,将变速杆放置在P档位置,降下前车窗玻璃)

9.拉开引擎盖锁,下车后打开引擎盖,安装车外三件套。 二、安全检查 10.检查记录机油液位,记录:机油液位正常。(若发现不足应及时加注) 11.检查记录冷却液液位,记录:冷却液液位偏低,应加注。 12.检查记录制动液液位,记录:制动液液位偏低,应加注。

13.拆卸气缸罩盖、蓄电池罩板及散热器上的空气道流板,并放置于零件箱内。 14.取出万用表和表笔,连接后进行两表笔的阻值校对。 记录:两表笔的阻值为:0.021Ω,正常。(若发现阻值不正常,则应及时检查或更换)。 15.测量记录蓄电池电压, 记录:蓄电池电压为:12.62V,正常。(若发现蓄电池电压低于规定值11V则应及时进行补充充电)。

16.检查蓄电池电极桩柱的连接状况, 记录:电极桩柱连接正常,没有硫化物。(若发现松动和有硫化物时应及时紧固和处理)。 三、仪器连接及故障现象确认 17.打开故障诊断仪盒,取出故障诊断仪,选择OBD—Ⅱ专用插头及专用传输线后连接故障诊断仪。 18.打开左前车门,进入车内,踩紧制动踏板后启动发动机,观察仪表显示状态及发动机各工况的运 行状态。 (即:发动机启动时是否困难,怠速时转速是否稳定,加速时是否流畅,故障指示灯是否常亮等)。

航空发动机流体力学和温度场的计算需求及ANSYS实现

航空发动机流体力学和温度场的计算需求及ANSYS实现 (2011-10-28 10:40:18) 转载▼ 标签: 杂谈 第三章航空发动机仿真方案航空发动机行业概况航空发动机研制中的典型CAE问题航空发动机结构力学计算需求及ANSYS实现航空发动机流体力学和温度场的计算需求及ANSYS实现航空发动机电磁场计算需求及ANSYS实现航空发动机耦合场计算需求及ANSYS实现航空发动机关键零部件的设计分析流程简要说明 4航空发动机流体力学和温度场的计算需求及ANSYS实现 航空燃气涡轮发动机内的流场很复杂,不仅动静流场同时存在,同时还伴有多相流、传热、燃烧等现象,即使从物理上进行很大的简化,模型最后仍然是三维、有粘、非定常的可压流动。航空发动机流场数值计算的发展经历了S2流面法、基于一元管道的流线曲率法、有限差分方法求解非正交曲线坐标系中的S1、S2流面基本方程、有限差分、有限体积和有限差分与流线曲率混合的方法对S1流面跨音速流场的计算,而现在由S1与S2流面相互迭代形成的准三元和全三元计算也发展起来了。现在的采用有限体积法求解NS方程全三维流场计算已经广泛采用,航空发动机的流场数值计算已趋于成熟,可以充分考虑旋转流动、转静干涉问题、多相流、燃烧、亚超跨音速等复杂现象。而且现在求解的规模也不断扩大,利用并行等成熟的CFD技术可以计算达几千万甚至上亿的计算网格。因此结果也更为真实有效。 ANSYSCFX凭借TASCFLOW在叶轮机旋转流动的传统优势,结合更为先进的网格处理技术和高效的求解器,更适合航空发动机流动的复杂性,求解问题的规模和计算精度大大提高,一直处于航空发动机流动模拟的最前沿。

汽车温度传感器的功用及典型故障分析

汽车温度传感器的功用及典型故障分析 汽车上的温度传感器多为负温度系数热敏电阻,如发动机的进气温度传感器、冷却液温度传感器、机油温度传感器,自动变速器和无级变速器的油温传感器,双离合器变速器负责监控变速器油底壳油温的G93变速器油温度传感器、负责监控变速器离合器工作油温的G509温度传感器,空调的室内温度传感器、环境温度传感器、蒸发器温度传感器,悬架空气泵温度传感器等均为负温度系数热敏电阻。其特点是测量点的温度越高,传感器的电阻值越低,输出电压信号越低。以马自达进气温度传感器为例,环境温度分别为-20℃、20℃、60℃时,电阻值分别为13.6~18.4k&Omega、 2.21~2.69 k&Omega、 0.493~0.6967kΩ。 负温度系数热敏电阻传感器常见故障为信号不正常,传感器或线束短路,数据流会出现虚假的高温信号;传感器或线束断路、端子进水或搭铁线接触不良,数据流会出现虚假的低温信号。另外,控制单元A/D转换器转换错误,数据流也可能出现虚假的高温信号。 一、进气温度传感器 1.进气温度传感器作用 除卡门涡旋式空气流量传感器以外,其余发动机均装有进气温度传感器,。进气温度传感器可以装在空气流量传感器或进气压力传感器内,也可以装在进气道上某个部位。发动机进气温度高时控制单元会减少喷油脉宽,反之增加喷油脉宽。 图1进气温度传感器 2.进气温度传感器故障分析 进气温度传感器搭铁线接触不良,数据流会显示异常低温,低温空气密度高,会加大喷油脉宽,造成混合汽过浓。传感器短路,数据流会显示异常高温,高温空气密度低,会减少喷油脉宽,造成混合汽过稀。进气温度传感器温

ANSYS温度场例题分析

短圆柱体的热传导过程 问题:一短圆柱体,直径和高度均为1m,现在其上端面施加大小为100℃的均匀温度载荷,圆柱体下端面及侧面的温度均为0℃,试求圆柱体内部的温度场分布(假设圆柱体不与外界发生热交换)。圆柱体材料的热传导系数为30W/(m·℃)。 求解: 第一步:建立工作文件名和工作标题 在ANSYS软件中建立相应的文件夹,并选择Thermal复选框。 第二部:定义单元类型 在单元类型(element type)中选择thermal solid和quad 4node 55,在单元类型选择数字(element type reference number)输入框中输入1,在单元类型选择框里选择Axisymmetric,其余默认即可。 第三步:定义材料性能参数 在材料性能参数对话框中输入圆柱体的导热系数30. 第四步:创建几何模型、划分网格 创建数据点,输入点坐标。在第一个输入框中输入关键点编号1,并输入第一个关键点坐标0、0、0,重复输入第二个、第三个、第四个关键点,相应的坐标分别为2(0.5,0,0);3(0.5,1,0);4(0,1,0)。结果如下图1所示:

在模型中创建直线,选择编号为1、2的关键点生成一条直线,在选取2、3生成一条直线,同样选择编号为3、4和编号为4、1的关键点生成另外两条直线。 结果如下图2所示: 之后在plot numbering controls对话框,分别打开KP Keypoint numbers、LINE line numbers、AREA Area numbers,建立直线L1、L2、L3、L4线段。生成几 何模型,如下图所示:

异步电动机温度场仿真分析

异步电动机温度场仿真分析

摘要 随着电气化和自动化程度的不断提高,异步电动机将占有越来越重要的地位。而随着电力电子技术的不断发展,由异步电动机构成的电力拖动系统也将得到越来越广泛的应用。异步电动机与其它类型电机相比,之所以能得到广泛的应用是因为它具有结构简单、制造容易、运行可靠、效率较高、成本较低和坚固耐用等优点。电机是各个行业生产过程及日常生活中普遍使用的基础设备,它是进行电能量和机械能量转换的主要器件。它在现代工业、现代农业、现代国防、交通运输、科学技术、信息传输和日常生活中都得到最广泛的应用。本文以异步电动机为研究对象,对电机内温度场进行耦合分析。根据传热学理论,首先建立了电机二维温度场的模型,其次建立了电机转子部分三维温度场的模型,给出了电机损耗及散热系数的计算方法。应用有限元软件ANSYS进行计算分析。最后分析了转差率变化对电机温度场分布的影响,以及有效的散热方法,得出了一些有益的结论。 关键词:温度场;异步电动机;有限元法;ANSYS

ABSTRACT With the electrification and automation of continuous improvement, asynchronous motor will occupy an increasingly important position.With the continuous development of power electronics technology, the electric drive system constituted by the induction motor will also be more widely used. Compared with other types of asynchronous motor motor, is able to be widely used because it has a simple structure, easy to manufacture, reliable operation, high efficiency, low cost and durability advantages.Motor is the basis of the production process and equipment industries commonly used in daily life, it is carried out major components of electric energy and mechanical energy conversion.It is in the modern industry,modern agriculture,modern defense,transportation,science and technology,information transmission and daily life have been the most widely used.In this paper, asynchronous motor for the study of the temperature field in the motor coupling analysis.Based on heat transfer theory,first established the two-dimensional temperature field model of the motor,followed by the establishment of a three-dimensional model of the rotor section temperature field, the calculation method of the motor and the heat loss coefficient.Finite element analysis software ANSYS calculation.Finally,analysis of the impact of changes in the slip of the motor temperature distribution,as well as effective cooling method, draw some useful conclusions. Keywords:temperature field;asynchronous motor;finite element method; ANSYS

车用温度传感器价格

在我们的日常生活中,传感器这个元件可谓是无处不在,普遍存在于手机、电视、汽车上等,就拿汽车上的温度传感器来说,种类繁多,比如热电偶型、金属测温型、等,用来测定车中发动机、冷却水、燃油等的温度,不同类型价格也有所不同。接下来,我就为大家简单介绍下它的几种类型。 1.冷却液温度传感器 这款传感器还可以称之为水温传感器,主要作用是检测发动机冷却液温度,向ECU输入温度信号,作为然后喷射和点火正时的修正信号,传感器一般安装在缸体水道上,缸盖水道上,上出水管等处,和冷却液接触。它的内部是一个半导体的热敏电阻,具有负温度系数NTC。 2.进气温度传感器 主要检测透入透入气管道中的空气温度,向EUC输入进气温度信号,作为燃油喷射和点火正时修正信号。主要安装在空气滤清器的

进气软管上和空气流量传感器上。 3.变速器油温传感器 变速器油温传感器安装在自动变速器油底壳内的隔板上,主要是用于检测变速器液压油的温度,以作为电控单位作为换挡控制,油压控制和锁止离合器空气的依据。它的内部主要是一个负温度系数半导体热敏电阻,温度越高,电阻越低。其电阻随温度变化而变化。电脑根据其电阻的变化测出自动变速器液压油的温度。 汽车上的温度传感器多为负温度系数热敏电阻,如发动机的进气温度传感器、冷却液温度传感器、机油温度传感器,自动变速器和无级变速器的油温传感器,双离合器变速器负责监控变速器油底壳油温的G93变速器油温度传感器、负责监控变速器离合器工作油温的G509温度传感器,空调的室内温度传感器、环境温度传感器、蒸发器温度传感器,悬架空气泵温度传感器等均为负温度系数热敏电阻。 安徽皖控自动化仪表有限公司成立于2012年,是专业从事工业自动化仪表研究开发、制造的专业厂家之一,注册资金5510万元。

1发动机的正常工作温度应在水温表(

单元九冷却系 一、填空题 1·按冷却介质不同,发动机冷却方式有______和______。 2·强制冷却水在发动机内进行循环的装置是______。 3·水冷式发动机冷却强度调节装置主要有_______、______ 、和________等。 4·发动机冷却通常是由________来驱动的。 5·闭式水冷系广泛采用具_______的散热器盖。 6·百叶窗是通过改变_______来调节发动机的冷却强度。 7·冷却水应使用______,即含_____少的水。 二、选择题 1·发动机的正常工作温度应在水温表( ) A·30~40°B·60~70° C·80~90° D·低于100° 2·硅油式风扇离合器的感温元件是( ) A·硅油B·电子开关C·离合器壳体D·盘状双金属片 3·当发动机机体的温度超过90°时,冷却水( ) A·全部进行小循环B·全部进行大循环 C·大、小循环同时进行D·不一定 4·节温器通过改变流经散热器的( ) A·冷却水的流量B·冷却水的流速C·冷却水的流向D·冷却水的温度5·下列( )是软水。 A·自来水B·河水C·江水D·海水 6.水冷却系中,冷却水的大小循环路线由()控制。 A.风扇 B.百叶窗 C.节温器 D.分水管 7.若散热器盖上的蒸汽阀弹簧过软,会使()。 A.散热器内气压过低 B.散热器芯管容易被压坏 C.散热器内气压过高 D.冷却水不易沸腾 8.多缸发动机为使各缸工作温度均匀,分水管上的孔()。 A.前大后小 B.前小后大

C.两边大中间小D一样大 9.硅油风扇离合器转速的变化是依据()。 A.冷却水温度 B.发动机机油温度 C.散热器后面的气流温度 D.继电器控制 10.在发动机上拆除原有节温器,则发动机工作时冷却水()。 A.只有大循环 B.只有小循环 C.大、小循环同时存在 D.冷却水将不循环 三、判断题 1·硅油风扇离合器中的硅油主要用来润滑离合器。( ) 2·发动机的风扇与水泵同轴,是由曲轴通过凸轮轴来驱动的( ) 3.为防止发动机过热,要求其工作温度越低越好。() 4.风扇在工作时,风是向散热器方向吹的,以利散热。() 5.冷却系中的风扇离合器是调节发动机正常工作温度的一个控制元件。() 6.防冻液可降低冷却水的冰点和沸点。() 7.为了保证风扇、水泵的转速,要求风扇带越紧越好。() 四、名词解释 1·风冷系 2·水冷系 3·强制循环式水冷系 4·自然循环式水冷系 五、问答题 1.冷却系有何功用? 2.冷却系有几种类型? 3.节温度器有何功用? 4.散热器有何功用? 5.膨胀水箱有何功用? 6.如何检查散热器密封性? 7.散热器常见故障有哪些?如何修理? 8.水泵有何功用?

发动机机体的温度场分析.

作者简介: 发动机机体的温度场分析 【摘要】利用CA TIA 建立发动机机体模型,将简化后的机体三维模型导入Hypermesh ,得到有限元模型。将机体的温度场作为稳定温度场处理,利用A VL-Boost 模拟出缸内气体的温度和换热系数,分段确定气缸壁的温度边界条件,根据已有经验公式求出缸体外壁、曲轴箱内壁以及机体与连接件间的温度边界条件,同时根据经验估算水套内的换热系数和温度,将这些温度边界条件施加到机体的表面上。最后,应用有限元软件MSC.MARC 对机体进行温度场分析,得到了机体的温度场分布。 【关键词】机体,换热系数,温度场,边界条件,有限元 Thermal Field Analysis of the Engine Cylinder Block Abstract: In order to obtain the thermal field of the cylinder block, a 3D model created in CATIA was simplified before put into Hypermesh to get the FEA model. Then the thermal and heat exchange condition were calculated through operation process modeling based on A VL-Boost. Taking the thermal distribution as steady one and dividing the thermal condition of cylinder wall into parts, the overall thermal boundary conditions, including the outboard cylinder wall, crankcase inner wall and the one between cylinder and linker were presented, according to the experimental formulas. Meanwhile, the exchange coefficient and temperature distribution were given aiming at adding them to the surface of cylinder block. In the end, the total thermal distribution of cylinder block was finished by means of applying the MSC.MARC to analyze the thermal field. Key words: Cylinder Block, Heat Exchange Coefficient, Thermal Field, Boundary Condition, FEA 1 引言 近年来,随着计算机技术的迅速发展,特别是有限元方法和分析软件的日益成熟,在发动机研制开发工作中对零件进行有限元分析己成为辅助设计的重要手段。发动机内,燃料的燃烧使发动机燃烧室周围的零部件都受到加热,使其工作温度升高。承受高温负荷的这些零件,有可能产生蠕变、热疲劳等热故障,妨碍发动机长期可靠的工作,或者成为进一步提高发动机性能指标的障碍。特别是对那些强化度高的发动机来说,热负荷、热强度问题,已经成为能否研制成功或能否正常可靠运行的关键问题之一。零部件的热强度,取决于它所承受的热负荷的高低及承受这种热负荷的能力。前者主要取决于该零部件的温度水平及温度分布;后者则主要与零部件所选用的材料特性有关。温度水平相对于温度分布可以认为是客观不可变因素,因此对受热零部件进行温度场研究具有实际意义。本文用有限元软件MSC.MARC 模拟机体的温度场分布,对改进机体设计、提高内燃机的性能与可靠性具有重要的意义。 2 有限元模型的建立 本文的分析对象机体源于某汽油机。该机为一款直列四缸四冲程汽油机,排量为0.997L ,气缸直径69mm ,活塞行程66.5mm ,压缩比10:1,发火顺序为1-3-4-2,发火间隔角为?=?1804720,最大功率52kW ,最大功率时的转速6000rpm 。本文在6000rpm 的工况下进行分析。 首先建立机体的三维实体模型。采用大型CAD 软件CA TIA 来建立完整的机体模型。建好的机体三维实体模型如图1所示。

温度场和流场的模拟

天津职业技术师范大学Tianjin University of Technology and Education 毕业论文 专业:材料成型及控制工程 班级学号:材料0912 - 09 学生姓名:蔡言锋 指导教师:高莹讲师 二〇一四年六月

天津职业技术师范大学本科生毕业设计 TIG焊电弧温度场和流场的模拟Analog TIG welding arc temperature field and flow field 专业班级:材料成型及控制工程--材料0912 学生姓名:蔡言锋 指导教师:高莹讲师 学院:机械工程学院 2014 年6 月

摘要 钨极氩弧焊(TIG焊)是近代工业生产中应用比较广泛的一种焊接方法,这种焊接方法具有热影响区小、焊缝美观、易于控制等众多优点。所以对TIG焊焊接技术进行数值模拟,能够更好的了解和控制整个焊接的过程,所模拟TIG焊电弧的温度场和流场具有重要的意义。 数值模拟技术应用广泛,本文就是采用有限元分析软件FLUENT,创建了符合实际的TIG焊自然燃烧电弧的有限元模型。根据流体力学质量守恒、动量守恒和能量守恒方程,选取合理的边界条件,得到了TIG焊电弧的温度场流场分布的变化规律图。通过FLUENT的后处理结果能够对TIG焊电弧内部的一些温度场、流场等情况进行形象的表述。 基于自然燃烧的TIG焊接电弧的数值分析,有助于进一步理解焊接过程的物理实质,合理地选择焊接工艺和工艺参数,并为冶金分析提供进一步的理论依据。为今后的理论研究和工业生产奠定基础。 关键词:TIG 焊;FLUENT 软件;数值模拟;电弧

Abstract GTAW (TIG welding ) is a modern industrial production, used widely as a welding method, this method has a small weld heat-affected zone , weld appearance, easy to control , and many other advantages. So for TIG welding techniques to simulate , to better understand and control the entire welding process , the simulated temperature and flow field TIG welding arc is of great significance . Numerical simulation of a wide range of technical applications, this paper is the use of finite element analysis software FLUENT, TIG welding creates realistic finite element model of the natural burning arc . According to hydrodynamic mass, momentum and energy conservation equations , selecting appropriate boundary conditions and the variations of temperature field in Figure TIG welding arc flow field distribution . Able for some temperature and flow fields, etc. TIG welding arc carried the image of the interior of expression through post-processing of results of FLUENT . Numerical TIG welding arc burning natural -based analysis helps to further understand the physical substance of the welding process , a reasonable choice of welding processes and process parameters, and provides a theoretical basis for further metallurgical analysis. Lay the foundation for future theoretical research and industrial production. Key Words:TIG welding; FLUENT software; numerical simulation; arc

相关文档
最新文档