线性基本概念

线性基本概念
线性基本概念

第一讲 基本概念

一.线性方程组的基本概念

线性方程组的一般形式为:

???????=+++=+++=+++,

,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 其中未知数的个数n 和方程式的个数m 不必相等.

线性方程组的解是一个n 个数1C ,2C , …, n C 构成,它满足:当每个方程中的

未知数1x 都用1C 替代时都成为等式.

对线性方程组讨论的主要问题两个:

(1)判断解的情况.

线性方程组的解的情况有三种:无解,唯一解,无穷多解.

???=+=+f ey dx c by ax

如果两条直线是相交的则有一个解;如果两条直线是重合的则有无穷

多个解;如果两条直线平行且不重合则无解。

(2)求解,特别是在有无穷多解时求通解.

齐次线性方程组: 021====n b b b 的线性方程组.0,0,…,0 总

是齐次线性方程组的解,称为零解.

因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷

多解(即有非零解).

二.矩阵和向量

1.基本概念

矩阵和向量都是描写事物形态的数量形式的发展.

矩阵由数排列成的矩形表格, 两边界以圆括号或方括号, m 行n 列的表格称为m ?n 矩阵. 这些数称为他的元素,位于第i 行j 列的元素称为

(i,j)位元素.

5401

23-是一个2?3矩阵.

对于上面的线性方程组,称矩阵

mn m m n n

a a a a a a a a a A 21222

2111211

=和m mn m m n n b b b a a a a a a a a a A 212

12222111211)(=β

为其系数矩阵和增广矩阵. 增广矩阵体现了方程组的全部信息,而齐

次方程组只用系数矩阵就体现其全部信息.

2009年的一个题中,一个方程组的系数矩阵为

210111

111

-----,常数列为2

11-,则方程组为

?????==++=2.2x -x --1,x x x -1,x -x -x n 2

321321 由n 个数构成的有序数组称为一个n 维向量,称这些数为它的分量.

零矩阵:元素都是0的矩阵.零向量:分量都是0的向量.

2. 矩阵和向量的关系

书写中可用矩阵的形式来表示向量:写成一行或写成一列.

问题:(3,-2,1)和1

23

-是不是一样?

作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1?3矩阵,右边是3?1矩阵).习惯上把它们分别称为行向量和列向量. 一个m ?n 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列

是一个m 维向量, 称为它的列向量.

3. n 阶矩阵与几个特殊矩阵

n ?n 的矩阵叫做n 阶矩阵.

把n 阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号

与列号相等.)

下面列出几类常用的n 阶矩阵:

对角矩阵: 对角线外的的元素都为0的n 阶矩阵.

数量矩阵: 对角线上的的元素都等于一个常数c 的对角矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).

上三角矩阵: 对角线下的的元素都为0的n 阶矩阵.

下三角矩阵: 对角线上的的元素都为0的n 阶矩阵.

对称矩阵:满足A A T =矩阵.也就是对任何i,j,(i,j)位的元素和(j,i) 位的

元素总是相等的n 阶矩阵.

问题:下列矩阵都是什么矩阵? ①2000000

01 ②c c c 000000 ③000

71

112- ④0010211

10 ⑤0

00000000

对角矩阵: ①、②、⑤

上三角矩阵: ①、②、③、⑤

下三角矩阵: ①、②、⑤

对称矩阵: ①、②、④、⑤

三. 线性运算和转置

1.线性运算

是矩阵和向量所共有的.

① 加(减)法:两个m ?n 的矩阵A 和B 可以相加(减),得到的和(差)仍是

m ?n 矩阵,记作A +B (A -B ),法则为对应元素相加(减).

113201602341711540-=--+-

两个同维数的向量可以相加(减),规则为对应分量相加(减).

② 数乘: 一个数c 与一个m ?n 的矩阵A 可以相乘,乘积仍为m ?n 的

矩阵,记作c A ,法则为A 的每个元素乘c.

一个数c 与一个n 维向量α可以相乘,乘积仍为n 维向量,记作αc .

法则为α的每个元素乘c.

cE c

c c =00000

向量组的线性组合:设1α,2α…,s α是一组n 维向量, 1c , 2c ,…, s c 是一组数,则称s s a c a c a c +++ 2211为1α,2α…,s α的(以

1c , 2c ,…, s c 为系数的线性组合.

例:求矩阵680

7

541

3--=A 的列向量组的系数为1,1,1的线性组合.

解: 2

126

674801053=-+-+

2.转置

把一个m ?n 的矩阵A 行和列互换,得到的n ?m 的矩阵称为A 的转置,

记作T A .

7385017

803

51=T T T T T T cA cA B

A B A =±=±)()(

3

2

1

)3.2.1(-=-=αα即T

四. 矩阵的初等变换和阶梯形矩阵

1.初等变换

矩阵有初等行变换和初等列变换,它们各有3类.

初等行变换:

① 交换两行的位置.

② 用一个非0的常数乘某一行的各元素.

③ 把某一行的倍数加到另一行上. A →B .

2.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:

① 如果它有零行, 非零行,则都零行在下,非零行在上.

② 如果它有非零行,则每个非零行的第一个非0元素所在的列号自上

而下严格单调上升.

4

4

1

000093000640005623143100

00093000

642

0056

23043100

00093000

642

00562

31--------- 问题:对角矩阵,上三角矩阵,数量矩阵中,哪个一定是阶梯形矩

阵?

200010000 100010110 c

c c 00000

一个n 阶的阶梯形矩阵一定是上三角矩阵.

问题:如果A 是阶梯形矩阵.

(1) A 去掉一行还是阶梯形矩阵吗?

(2) A 去掉一列还是阶梯形矩阵吗?

3. 简单阶梯形矩阵

把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.

简单阶梯形矩阵:是特殊的阶梯形矩阵,满足:

③台角位置的元素为1.

④并且其正上方的元素都为0.

4.用初等行变换把矩阵化为阶梯形矩阵

每个阶梯形矩阵都可以用初等行变换化为简单阶梯形矩阵.

每个矩阵都可以用初等行变换化为阶梯形矩阵

1

00060

10090

01

0340001010006010090010700310100012020030210502310

100012

22003

12105

623112

12001222003

12105

62316322012220031210562311941111545213

13

6525623119411115452562311313652--→---→-→--→

---→-----→

---------→---------请注意:

① 从阶梯形矩阵化得简单阶梯形矩阵时,台角不改变.

②一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非

零行数和台角位置是确定的.

③一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.

4. 线性方程组的矩阵消元法

消元法原理:用同解变换化简方程组然后求解.

线性方程组的同解变换有三种:

① 交换两个方程的上下位置.

② 用一个非0的常数乘某个方程.

③ 把某个方程的倍数加到另一个方程上.

反映在增广矩阵上就是三种初等行变换.

矩阵消元法即用初等行变换化线性方程组的增广矩阵为阶梯形矩阵,

再讨论解的情况和求解.

例:

000004200

04130

021*******

1----→βA

???????=-=+-=+-=+++4

24

3223154434324321x x x x x x x x x x

矩阵消元法步骤如下:

(1)写出方程组的增广矩阵(βA ),用初等行变换把它化为阶梯形

矩阵(γB ).

(2)用(γB )判别解的情况:

如果最下面的非零行为(d 0,,0,0 ),则无解,否则有解.有解时看非

零行数r(r 不会大于未知数个数n),r=n 时唯一解;r

(3)有唯一解时求解的初等变换法:去掉(γB )的零行,得到一个n ×(n+1)矩阵(00γB ),并用初等行变换把它化为简单阶梯形矩阵(ηE ),则η就是解.

n nn

c c c b b b B 100000100001000**0*

**)(21

221100

→=γγ

),,,(21n c c c 就是解.

)()()()(00ηγγβE B B A →→→,η就是解.

2

100020

1000

00301

0001210006030040230301514200

04130

0212

3011151)(00-→---→----=γB 解为(1,0,2,-2).

对齐次线性方程组:

(1)写出方程组的系数矩阵A ,用初等行变换把它化为阶梯形矩阵B .

(2)用B 判别解的情况:非零行数r=n 时只有零解;r

解方法在第五章讲).

推论:当方程的个数m

线性规划的概念

3.6:线性规划 目录: (1)线性规划的基本概念 (2)线性规划在实际问题中的应用 【知识点1:线性规划的基本概念】 (1)如果对于变量x 、y 的约束条件,都是关于x 、y 的一次不等式,则称这些约束条件为__线性约束条件__(),z f x y =是欲求函数的最大值或最小值所涉及的变量x 、y 的解析式,叫做__目标函数_,当(),f x y 是x 、y 的一次解析式时,(),z f x y =叫做_线性目标函数__. (2)求线性目标函数在线性约束条件下的最大值或最小值问题,称为__线性规划问题__ ;满足线性约束条件的解(),x y 叫做__可行解_;由所有可行解组成的集合叫做__可行域_;使目标函数取得最大值或最小值的可行解叫做_最优解__ 例题:若变量x 、y 满足约束条件2 10x y x y +≤?? ≥??≥? ,则z x y =+的最大值和最小值分别为 ( B ) A. 4和3 B. 4和2 C. 3和2 D. 2和0 分析:本题考查了不等式组表示平面区域,目标函数最值求法. 解:画出可行域如图 作020l x y +=: 所以当直线2z x y =+过()20A , 时z 最大,过()1,0B 时z 最小max min 4, 2.z z == 变式1:已知2z x y =+,式子中变量x 、y 满足条件11y x x y y ≤?? +≤??≥-? ,则z 的最大值是__3___ 解:不等式组表示的平面区域如图所示.

作直线0:20l x y +=,平移直线0l ,当直线0l 经过 平面区域的点()21A -,时,z 取最大值2213?-=. 变式2:设2z x y =+,式中变量x 、y 满足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最小值 分析:由于所给约束条件及目标函数均为关于x 、y 的一次式,所以此问题是简单线性 规划问题,使用图解法求解 解:作出不等式组表示的平面区域(即可行域),如图所示. 把2z x y =+变形为2y x z =-+,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线. 由图可看出,当直线2z x y =+经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小. 解方程组430 35250x y x y -+=??+-=?,得A 点坐标为()5,2, 解方程组1 430x x y =??-+=? ,得B 点坐标为()1,1 所以max min 25212,211 3.z z =?+==?+= 变式3:若变量x 、y 满足约束条件6 321x y x y x +≤?? -≤-??≥? ,则23z x y =+的最小值为( C ) A. 17 B. 14 C. 5 D. 3

解线性方程组的基本思想

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

简单的线性规划问题附答案)

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变化时,方程表 示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

线性基本概念

第一讲 基本概念 一.线性方程组的基本概念 线性方程组的一般形式为: ???????=+++=+++=+++, ,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 个数1C ,2C , …, n C 构成,它满足:当每个方程中的 未知数1x 都用1C 替代时都成为等式. 对线性方程组讨论的主要问题两个: (1)判断解的情况. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. ???=+=+f ey dx c by ax 如果两条直线是相交的则有一个解;如果两条直线是重合的则有无穷 多个解;如果两条直线平行且不重合则无解。 (2)求解,特别是在有无穷多解时求通解. 齐次线性方程组: 021====n b b b 的线性方程组.0,0,…,0 总 是齐次线性方程组的解,称为零解.

因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷 多解(即有非零解). 二.矩阵和向量 1.基本概念 矩阵和向量都是描写事物形态的数量形式的发展. 矩阵由数排列成的矩形表格, 两边界以圆括号或方括号, m 行n 列的表格称为m ?n 矩阵. 这些数称为他的元素,位于第i 行j 列的元素称为 (i,j)位元素. 5401 23-是一个2?3矩阵. 对于上面的线性方程组,称矩阵 mn m m n n a a a a a a a a a A 21222 2111211 =和m mn m m n n b b b a a a a a a a a a A 212 12222111211)(=β 为其系数矩阵和增广矩阵. 增广矩阵体现了方程组的全部信息,而齐 次方程组只用系数矩阵就体现其全部信息. 2009年的一个题中,一个方程组的系数矩阵为

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

线性方程组和矩阵知识总结.doc

线性方程组和矩阵知识总结 吴荣魁 2013201363 线性方程组的基本概念 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量它满足:当每个方中的未知数xi 都用ki 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解 b1=b2=…=bm=0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. 线性方程组的解法 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 (1)、写出线性方程组的增广矩阵。 (2)、用初等行变换把增广矩阵化为阶梯形矩阵。 (3)、看阶梯形矩阵的最后一个非零行的首非零元是否在最后一列。如果是,则方程组无解;反之方程组有解。 (4)、在有解的情况下,找出阶梯形矩阵中非零行的个数r 。如果r=n ,则方程组有唯一解;如果r

线性代数的基本概念

《线性代数》根据“卓越工程师教育培养计划”的基本要求,突出基本概念、基本理论、基本技能,注重培养学生数学素质。教材在满足教学要求的前提下,适当降低理论推导的要求,但重视阐明基本理论的脉络。习题配置 中也突出基本题、概念题和与工程相关的实际应用题等。 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这 个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促 成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线 性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数 学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 矩阵和行列式行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常 有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。 1693 年4 月,莱布尼茨在写给洛比达的一封 信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解 伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆 (G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学 家贝祖 (E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具 使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相 分离的人,是法国数学家范德蒙 (A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开 行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。 1772 年,拉普拉斯在一篇论文中证明 了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。 1815 年, 柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。另外,他第一个把行列式的元素排成方阵,采用双足标记法;引进了行列式特征方程的术语;给出了相似行列 式概念;改进了拉普拉斯的行列式展开定理并给出了一个证明等。 19 世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士?西尔维斯特 (J.Sylvester,1814-1894) 。他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学 的不平等对待。西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个次和一个次的多项式中消去 x 的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要 条件这一结果,但没有给出证明。 继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可比 (J.Jacobi,1804-1851) ,他引进了函数 行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成。由于行列式在数学分析、几 何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。整个19 世纪都有行列式的新结果。除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。 矩阵矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重 要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个 述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为 了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列 式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。 英国数学家凯莱 (A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先 引进矩阵以简化记号。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了 关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念, 指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩

线性规划基本概念及模型构建

LP (Linear Programming)

Alex 有一个家庭农场。除了农场上的农作物以外,他还饲养了一些猪拿到市场上出售,猪可获得的饲料及其所含成分如下表:Alex如何喂养猪更好? 成分/每公斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150 问题1:科学养猪线性规划建模(猪饲料的配方)饲养成本最小

--- 每天玉米、槽料、苜蓿各喂多少公斤? --- 必须满足要求12--- 追求成本最低 Min. 84x 1+ 72x 2+ 60x 3 3x 1x 2x 3 知识点 建模三要素 决策变量约 束目标 90x 1+ 20x 2+ 40x 3 ≥ 20030x 1+ 80x 2+ 60x 3 ≥ 18010x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 成分/每公 斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150

s.t. 90x 1+ 20x 2+ 40x 3 ≥ 200 30x 1 + 80x 2+ 60x 3 ≥ 180 10x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 Min . 84x 1+ 72x 2+ 60x 3 目标函数约束函数符号中必含等号符号的右侧为常数线性--变量均为1次方 Max. 或 Min.线性--所有变量均为1次方常规约束:变量非负!知识点 模型表示

?线性规划模型能求解出来吗? 能!--- 万能的单纯形法 结合软件 QSB应用

矩阵与线性方程组

第1 章矩阵与线性方程组 矩阵是描述和求解线性方程组最基本和最有用的工具。本章涉及向量和矩阵的基本 概念,归纳了向量和矩阵的基本运算。 1.1 主要理论与方法 1.1.1 矩阵的基本运算 一、矩阵与向量 a11x1 + a12x2 + ¢ ¢ ¢+ a1n x n = b1 a21x1 + a22x2 + ¢ ¢ ¢+ a2n x n = b2 ... a m1x1 + a m2x2 + ¢ ¢ ¢+ a mn x n = b m 9> >>>=>>>>; (1.1) 它使用m个方程描述n个未知量之间的线性关系。这一线性方程组很容易用矩阵||向量 形式简记为 Ax = b (1.2) 式中 A =26664 a11 a12 ¢ ¢ ¢ a1n a21 a22 ¢ ¢ ¢ a2n ... ... ... a m1 a m2 ¢ ¢ ¢ a mn 37775 (1.3) 称为m £ n矩阵,是一个按照长方阵列排列的复数或实数集合;而 x =26664 x1 x2 ... x n 37775 ; b =26664 b1 b2 ... b m 37775 (1.4) 分别为n £1向量和m£1向量,是按照列方式排列的复数或实数集合,统称列向量。类似地,按照行方式排列的复数或实数集合称为行向量,例如 a = [a1; a2; ¢ ¢ ¢ ; a n] (1.5) 是1 £ n向量。 二、矩阵的基本运算 1. 共轭转置:若A = [a ij ]是一个m£ n矩阵,则A的转置记作A T,是一个n £m矩阵, 定义为[A T]ij = a ji;矩阵A的复数共轭A¤定义为[A¤]ij = a¤ji;复共轭转置记作A H,定义 为 A H =26664 a¤11 a¤21 ¢ ¢ ¢ a¤m1 a¤12 a¤22 ¢ ¢ ¢ a¤m2 ...

线性方程组的类型和解法

线性方程组的常见类型及对应Matlab 解法 张海伟 精仪学院 2011202048 摘要: 本作业首先介绍了线性方程组的分类方法,然后在分类的基础上,分析了求解不同线性方程组的方法。介绍了与方程组类型相对应的Matlab 解法,着重介绍了初等变换法、向量空间概念求解法及两者的结合求解线性方程组的方法。 线性方程组按照方程个数和未知数的数量关系,可以分为适定、欠定和超定方程组。方程个数等于未知数个数者为适定方程组;方程个数少于未知数个数者为欠定方程组,方程个数多于未知数个数者为超定方程组。按照等式右边的常数是否全部为零,可分为齐次和非齐次方程组。常用的方法有消元法、克拉默法则方法、逆矩阵乘积法、初等变换法和向量空间概念法。 一、消元法 消元法是求解低阶多元线性方程组的方法,此时线性方程组必须是适定方程组,一般用于二元一次或者三元一次方程组,当未知数的个数增多时,计算效率低甚至无法求解。 二、克拉默法则 当系数行列式不为零时,适定方程组有唯一解,其解如下所示: /1,2,,i i x D D i n ==??? 其中D 是系数行列式,D i 是在系数行列式基础上结合方程组右边常数形式形成的新行列式。在此法则中,行列式的计算显得非常重要。 克拉默法则克服了消元法计算效率低甚至无法计算多元一次方程组的缺点,但不能用于系数行列式为零,以及欠定或者超定方程组的情况的求解。 Matlab 举例: 解线性方程组12341234 123412345242235232110 x x x x x x x x x x x x x x x x +++=??+-+=-??---=-??+++=?

相关文档
最新文档