纳米光学防伪技术

纳米光学防伪技术
纳米光学防伪技术

纳米光学防伪技术

1.新型纳米发光材料经几分钟的光照就能在黑暗中自行发光,用于印刷、工艺制品等诸多领域,如发光油墨、发光塑料、发光印花浆,发光化纤等。

发光颜料可作为一种添加剂,均匀分布在各种透明介质中,如油墨、涂料、塑料、橡胶、纸、胶片、印花浆、陶瓷轴料、玻璃、化纤、皮革等,实现介质的自发光功能,并可显示出本材料所具有的明亮色彩。其突出特点是对波长450纳米以下的短波可见光具有很强的吸收能力,吸收储存各种可见光(日光、荧光、紫外光、灯光等)后,在暗外发光12-24小时以上,其发光强度和维持时间是传统荧光材料的30倍以上,且材料本身元毒、无害、不含任何放射性元素,其稳定性和耐候性优良。并可无限次循环使用。

2.稀土光致显色剂,是由醇溶性树脂、氯化稀土、氨基羧酸钠、酒精络合而成,在日光及可见光下无色,在紫外光下放射出550纳米-580纳米光波,而不同的络合方法又将呈现不尽相同的色光,保密性高。本发明配方合理,工艺简单,可用于防伪产品包装的标志、标识上,防伪效果显著。

3.1997年,加拿大也制成发红光的Inp量子点激光器,科学家普遍认为;量子点阵列激光器进入市场已为时不远了,最有前途的制备方法是通过自组织设计纳米结构,形成规则阵列的量子点激光器,它不需要平版印刷,也不需要通过腐刻来获得,可以代替价格昂贵的外延生长技术,大大降低激光器的成本。可以预计它将发展成为制造下一代激光器的主导技术。并为激光全息防伪印刷的应用开拓了新领域。

4.光材料由于纳米复合材料可达到分子水平相容,且相尺寸小于光波长,因而纳米复合材料较纯,聚合物透明性好。用溶胶凝胶法制得的材料一般是高度透明的,选择Fe2O2、V2O5作无机组分或WO2、M0O3片层无机物,会得到超导、光致变色、电致变色材料。

5.德国一家公司最近研制出一种新型防伪标签系统,利用激光束把数据信息以微米大小的光点形式打入标签里,通过识别光点形成的全息图,鉴别产品的真伪。新系统结合了全息摄影和聚合材料薄膜的数据存储技术的优点,通过激光束将随机数量的光点烙在一片仅有二万分之一米厚的聚合材料薄膜上,每平方毫米薄膜可以烙一百万個光點,這些光點可形成一個三維全息圖,代表一个图像、数字代码或是企业标识。此外,光点中还可以储存一千倍以上。使用时,通过特殊的读识装置和激光束,再现全息图,并读出光点储存的产品信息。标签防伪系统采用随机产生的光点,使得每标签的全息图都各不相同,加之光点本身还储存有特定的信息,使得对伪劣产品的鉴别更加准确、便捷。

6.利用纳米硅灰石材料研制荧光陶瓷和荧光油漆,可制成夜光杯等工艺荧光陶瓷。由于硅灰石本身即为上佳陶瓷材料,纳米尺寸的陶瓷材料具有更好的机械加工性能,故可制成薄胎荧光陶瓷,其工艺性能同时得到本质性的提高。此外,纳米硅灰石也可以制成荧光油漆等防伪产品,兼具装饰、防伪两种功能,是一种新型的功能结构一体化材料。

7.纳米有机光致变色材料,光致变色有机化合物的合成方法和材料配方,分三种类型:⑴变色前后,两种状态都可长期稳定、光趋动双稳型;⑵光致变色后,在数分钟内可以热消色;⑶超快速变色体系,在纳秒至微秒变色。生产条件:一

般有机合成和有机化工设备。应用范围:变色油墨和颜料、变色涂料、防伪商标,光变色防伪纸等。

8.粒子全息镭射技術,镭射全息防僞技術是利用鐳射光学原理,制造传统的印刷术无法伪造的效果例如:二维/三维立体,微缩图元,暗藏标记,彩虹色反光,多层动感图像等。所以全息防伪是目前最受推祟及最有效的防伪方法。粒子全息镭射技术是由法国全息防伪工业公司独家发明和拥有。粒子全息镭射技术和其他全息镭射技术的最大区别,是它的解象度高达3600dpi,而一般的全息鐳射技术只有1200dpi,因而能够制作极其精细的图元,确保了防伪技术上的优势。粒子全息镭射技术的杰出性能除了具高度光度,二维/三维主体,解象度(3600dpi)外,还具有微缩图片及微缩暗藏标记。

9.纳米激光防伪在计算机技术、激光全息技术、数字图像处理技术、精密光学控制技术、衍射光学制造技术和工艺发展的基础上,激光无油墨印刷技术有了突破性的发展,产生了纳米激光防伪包装印刷这一新技术,在包装、印刷和防伪行业有巨大的发展空间。

10、三维真彩色模压全息。三维真彩色模压全息图是全息显示居于当前国际最高水平。该项目拍摄三维真彩色模压全息可以利用已有的拍摄一般3D模压全息图的通用设备,无需新的投资。它的特点是根据全息图的原理,除了横向编码外,特别具有纵向编码。发明再现位置重合的位置编码方法,创造性地拍摄以能够同时颜色编码和位置编码的主全息图,有创造性和新颖性,达到国际同类产品水平。该项目同时研究出三维模压全息图的光刻胶板过程如同拍摄二维彩色的光刻胶板一样方便,与一步彩虹相比较,相当于省去一个大孔径的相对孔径1:

1的消色差透镜。并且也具有其他方法制造全息图相同的视场角和观察范围。在有价证券、商品标识、信用卡、文化教育等方面的应用,会产生较大的经济效益。

11、珠光颜料是一种具有随角异色效应的颜料。它处于光线的反射角时呈现最强的干涉色,偏高反射角时呈现珍珠白或其他颜色。珠光颜料之所以具有珠光效应以及无毒、不导电、耐热、耐候、耐化学腐蚀等特性,是由于本身的层状结构所致。云母钛珠光颜料是微米级(10-

15um))片状的云母粉表面包覆纳米以及(30-

150)TIO2粒子而成,比表面积较大(BET=15um)其高折射率的透明状结构可多次反射入射光。从而产生珠光效应。通过控制云母晶片的粒径可以产生不同闪烁效果:40-60nm、60-80、80-100、100-140、120-160nm

经实验表明,云母比表面积较大,即粒度细,有利于云母表面镜珠光的表现,我们对珠光颜料表面纳米级的显微观察,可以发现分布有许多极微细的毛细管结构,并由此导致相对大的表面能。

12、北京大学防伪研究小组,

目前已成功开发出红外防伪发光材料,红外防伪油墨,特别是红外防伪激光鉴别器开发成功,有力地支持了红外防伪技术的高速发展。红外发光材料属于无机稀土发光材料,是在红外照射下,发出刺眼的鲜艳的绿、红二种颜色的可见光,该红外材料主要工作阶段在780nm~1200nm。该类发光材料优点为:正常日光下,具有极白的外观,极易细化颗粒,是制作防伪产品的特种原料。智能防伪鉴别仪是利用一种新的光谱分析技术与计算机技术相结合的高科技产品,其优良的防

伪性能和使用的便利,能满足最高层次防伪方面的需要,居国际领先水平。英联国泰上传

最新纳米材料的背景、意义资料

纳米知识介绍 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。 纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合), ?纳米微粒与常规块体复合(0-3复合), ?纳米复合薄膜(0-2复合)。 第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。 图1 纳米颗粒材料SEM图 一、纳米材料的基本特性

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。 4、磁学性质 当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

(全文)纳米测量仪器和纳米加工技术

2003年1月第5卷第1期 中国工程科学Engineering Science Jan.2003Vol 15No 11 院士论坛 [收稿日期] 2002-07-18;修回日期 2002-07-29 [作者简介] 姚骏恩(1932-),男,上海市人,中国工程院院士,中国科学院北京科学仪器研制中心研究员 纳米测量仪器和纳米加工技术 姚骏恩 (中国科学院北京科学仪器研制中心,北京 100080) [摘要] 纳米科技是当今国际上的一个热点。文章对纳米科技作了简要介绍,纳米测量和加工是纳米科技中 的一个不可缺少的重要组成部分。叙述了发展纳米测量和纳米加工技术的两个主要途径:一是发展传统技术,主要是电子显微术以及最近发展起来的聚焦离子束(FIB )-电子束数控加工中心;二是创造新的测量仪器,建立新原理和新方法,介绍了国内外电子显微镜和扫描探针显微镜这两类纳米测量分析仪器的发展、应用和生产现状。指出我国电子显微仪器和扫描探针显微镜的开发和生产面临困境,应尽快建立和加强自己的电子显微仪器和扫描探针显微镜等纳米测量和纳米加工设备制造产业,并列入国家科技发展规划。 [关键词]  纳米科技;纳米测量;电子显微镜;扫描探针显微镜;聚焦离子束-电子束装置;仪器生产[中图分类号]TN16;TN405;T B838 [文献标识码]A [文章编号]1009-1742(2003)01-0033-05 1 纳米科技是当今国际上的一个热点 纳米科技是20世纪80年代发展起来的一门新 兴科学技术。一个纳米是十亿分之一米,已接近原子尺度(012~013nm )。纳米科技涉及的尺度通常是100nm 以下,直到原子尺寸。在这种尺度上对物质和材料进行研究和处理的科学技术称为纳米科技。纳米科技实质上就是一种从原子、分子开始制造材料和产品的科学技术;也可以说是在1~100nm 范围内认识和改造自然的科学技术,是一个交叉综合学科,是一个前沿基础学科和高技术融为一体的完整体系。钱学森早在1991年就指出,纳米左右和纳米以下的结构将是下一阶段科技发展的一个重点,会是一次技术革命,从而将是21世纪又一次产业革命。目前所有的发达国家都对纳米科技的研究、开发投入大量人力物力,试图抢占这一21世纪战略制高点,它可给包括生物技术在内的几乎所有工业领域带来一场革命性变化。 2 当今高技术的核心乃是半导体芯片 技术 当今高技术的核心乃是半导体芯片技术,发展的关键是进一步微型化。元件的尺寸由毫米到微米仍可用传统的科学和技术;从微米到纳米功能元件,尺寸缩小到纳米级,即由有限个原子构成基本功能元件,再由这类新元件组成更复杂的器件,表征这种纳米功能元件的参量具有显著的量子效应和统计涨落特性,就必须发展新理论、新技术和新材料。于是纳米电子学就应运而生。芯片的集成度以每18个月硅片上功能元件数增加1倍的速度增加。元件的尺寸越小,芯片的功能越强。商用芯片的线宽在2001年达到0113~0110μm ,现已开始0110μm 的竞争,估计2004年大部分半导体制造企业都会采用0110μm 以下的制造工艺[1]。 3 21世纪将是生命科学的世纪 现今生命科学已经从描述性、实验性科学向定量科学过渡,研究的焦点是生物大分子,尤其是蛋

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容和所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易和其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们和旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错和晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

最新防伪技术介绍

在这个纷繁芜杂的世界,假冒伪劣产品盛行其道,这让很多著名品牌的公司深受其害,而各类防伪手段就是为了拒绝仿冒,保护品牌。 现在介绍几种比较高端的防伪技术手段: 1:高温消失防伪:温变油墨(也称热敏油墨)——此类油墨在达到或超过临界温度(-40℃-200℃)时,能发生变色效果。原有颜色会消失或变色,此变化为可逆或不可逆。 可逆热敏油墨有消色、显色、变色三种。消色可逆热敏油墨原有颜色受热后消失,降温后恢复原色;显色可逆热敏油墨外观无色,受热后呈现出颜色,降温后恢复成无色;变色可逆热敏油墨原有颜色受热后呈现为另一种颜色,降温后又恢复成原有颜色。 不可逆热敏变色油墨有显色和变色两种。显色不可逆热敏油墨外观无色,受热后呈现颜色,降温后颜色不再恢复成无色;变色不可逆热敏油墨原有颜色受热后变为另一种颜色,降温后不再恢复原色。适用于胶、丝、凹、柔等印刷方式。相对于胶印,丝印效果更好一些,胶印相对颜色较浅。以上热敏油墨温度、颜色可根据客户的具体要求设定、生产。较常见的有30℃、50℃等温度范围。 2:超微粒子防伪:超微粒子防伪就是将特定的编码组合通过无色印刷技术记录于印刷品或其它包装载体上,使用专用解码仪器,通过远红外光学摄像机即OCR技术提取,然后通过解码芯片上的专有信息,通过声音或是视频方式将专有信息表现在识读设备上。该技术可以为商品生成专用编码,通过加密编程技术写入芯片,并通过特殊的印刷方式将此编码应用于产品的终端包装,从而实现产品的防伪保真功能。 超微粒子防伪技术是以电子、光学、信息、材料技术为主的多学科防伪技术,该技术利用高频电子光学摄拍技术和集成电路芯片系统进行高速数字信息转换,实现信息自动查询与信息自动识别的高新技术,它由信息代码防伪设计、缩微隐形制版、特殊油墨印刷、图形数字转换、信息自动查询、多媒体信息输出等六项防伪技术所组成。这六项技术互为依存,缺一不可,构成了一个信息查询与自动识别的高科技防伪系统,使伪造者无法破解其中的奥秘,无法仿制相关的信息。只有使用该系统配套的语音识读笔,才能正确解读出加密的信息,从而达到防伪目的。因此,我们又把它称之为隐形编码识别系统,其核心技术“信息图形编码”为国内外首创,技术水平达到国际领先水平,是目前世界最先进的综合防伪标签技术。 超微粒子防伪特点 1、具有难以伪造、易于结合产品包装、识别简易等特征。 2、高保真的音质,超大容量的存储。 3、承印载体可为不胶版纸、铜版纸、可印刷PE及PVC等多种材料。 3:三维指纹防伪标签伪:该技术是倾松防伪科技有限公司最新研发的新型技术,目前正在申请国家专利,该技术是根据三维网状的随机性,系统为每个防伪标识分配一个随机经过加密的三维网状,该三维网状具有颜色随机无规律、形状随机无规律、位置随机无规律三大安全防伪技术组成,此技术难度高,无法仿制。

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

新型防伪技术简介

新型防伪技术简介 随着社会的发展,市场经济不断的膨胀,不法商家利用不法手段获得利益,造假就是其中之一,通过造假能购给不法商家带来巨大的利益。然而,很多企业在面对造假现象已经做出了防范措施,那就是给自己的产品防伪。在这个纷繁芜杂的世界,假冒伪劣产品盛行其道,这让很多著名品牌的公司深受其害,而各类防伪手段就是为了拒绝仿冒,保护品牌。 现在介绍几种比较高端的防伪技术手段: 三维指纹防伪标签伪: 该技术是最新研发的新型技术,目前正在申请国家专利,该技术是根据三维网状的随机性,系统为每个防伪标识分配一个随机经过加密的三维网状,该三维网状具有颜色随机无规律、形状随机无规律、位置随机无规律三大安全防伪技术组成,此技术难度高,无法仿制。此外,该技术还结合二维码技术 二维码技术简介: 采用特定的几图案,按一定规律在平面(二维方向)分布成黑白相间的图形,用来记录数据符号信息。通过图像输入设备或光电扫描设备自动识读以实现信息自动处理,它具有条形码技术的一些共性,每种码制有其特定的字符集,每个字符占有一定的宽度,具有一定的校验功能等。储存量大,保密性高,追踪性强,抗损性强,备援性大等特。 高温消失防伪: 温变油墨(也称热敏油墨)——此类油墨在达到或超过临界温度(-40℃-200℃)时,能发生变色效果。原有颜色会消失或变色,此变化为可逆或不可逆。 可逆热敏油墨有消色、显色、变色三种。消色可逆热敏油墨原有颜色受热后消失,降温后恢复原色;显色可逆热敏油墨外观无色,受热后呈现出颜色,降温后恢复成无色;变色可逆热敏油墨原有颜色受热后呈现为另一种颜色,降温后又恢复成原有颜色。

不可逆热敏变色油墨有显色和变色两种。显色不可逆热敏油墨外观无色,受热后呈现颜色,降温后颜色不再恢复成无色。变色不可逆热敏油墨原有颜色受热后变为另一种颜色,降温后不再恢复原色。适用于胶、丝、凹、柔等印刷方式。相对于胶印,丝印效果更好一些,胶印相对颜色较浅。以上热敏油墨温度、颜色可根据客户的具体要求设定、生产。较常见的有30℃、50℃等温度范围。 隐形荧光防伪技术: 隐形防伪技术,分隐形文字、隐形图案、隐形流水号,每种都有适用的地方。 该技术使用有双重隐形防伪性能油墨,将固定文字、图案、号码或者流流动性号码印制在防伪标签的内,该技术具有极高的隐藏性,肉眼和手感触摸都无法找到隐藏的技术所在处,在鉴别其真伪时,必须采用专用检测仪器,该技术的流动性号码可用在防窜货上,能做到不使用防窜货系统也能达到防窜货的效果,并且该技术为隐形技术,不易被发觉,不易被模仿,隐形密码和条形码可相对应(或不对应),追踪以破坏标签达到窜货的行为。 技术应用 1、防伪标签:借鉴邮票对隐形防伪技术的使用,尺寸相似的防伪标签也开始使用该技术了,早年的隐形技术还不够完善,印制出来的文字、图案、数字都是以断笔形式。 2、证书防伪:证书在各行业都适用,有授权证书、代理证书、荣誉证书、毕业证书、珠宝鉴定证书、技能证书等等,这是认可一个人或者一样事物的证明文件,也是证明权力拥有的证明文件,如一些企业需要经销商来开展业务,那就会用到授权证书、代理证书,通常我们都将证书看得较为庄重,所以在设计美观和防伪上要求也较高,说到设计美观那就是说表面不能有影响到证书外观的东西,目前为了能让证书看上去美观,又能有好的防伪效果,大多采用的是人民币金线,凹版技术,用的人多了也就缺少了新鲜感,技术也比较单一,似乎拿出去的证书都大同小异,但是隐形荧光防伪就能解决一切问题,不影响表面美观度,增

纳米材料的光学特性

纳米材料的光学特性 美国著名物理学家,1965年诺贝尔物理奖获得者R.P Feynman在1959年曾经说过:“如果有一天能按人的意志安排一个个原子分子将会产生什么样的奇迹”,纳米科学技术的诞生将使这个美好的设想成为现实。 纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。 1 纳米材料的分类和结构 根据不同的结构,纳米材料可分为四类,即:纳米结构晶体或三维纳米结构;二维纳米结构或纤维状纳米结构;一维纳米结构或层状纳米结构和零维原子簇或簇组装。纳米材料的分类如图表1所示。纳米材料包括晶体、赝晶体、无定性金属、陶瓷和化合物。 2 纳米材料的光学性质 纳米材料在结构上与常规晶态和非晶态材料有很大差别,突出地表现在小尺寸颗粒和庞大的体积百分数的界面,界面原子排列和键的组态的较大无规则性。这就使纳米材料的光学性质出现了一些不同于常规材料的新现象。

纳米材料的光学性质研究之一为其线性光学性质。纳米材料的红外吸收研究是近年来比较活跃的领域,主要集中在纳米氧化物、氮化物和纳米半导体材料上,如纳米Al2O3、Fe2O3、SnO2中均观察到了异常红外振动吸收,纳米晶粒构成的Si膜的红外吸收中观察到了红外吸收带随沉积温度增加出现频移的现象,非晶纳米氮化硅中观察到了频移和吸收带的宽化且红外吸收强度强烈地依赖于退火温度等现象。对于以上现象的解释基于纳米材料的小尺寸效应、量子尺寸效应、晶场效应、尺寸分布效应和界面效应。目前,纳米材料拉曼光谱的研究也日益引起研究者的关注。 半导体硅是一种间接带隙半导体材料,在通常情况下,发光效率很弱,但当硅晶粒尺寸减小到5nm或更小时,其能带结构发生了变化,带边向高能态迁移,观察到了很强的可见光发射。研究纳米晶Ge的光致发光时,发现当Ge晶体的尺寸减小到4nm以下时,即可产生很强的可见光发射,并认为纳料晶的结构与金刚石结构的Ge 不同,这些Ge纳米晶可能具有直接光跃迁的性质。Y.Masumato发现掺CuCl纳米晶体的NaCl在高密度激光下能产生双激子发光,并导致激光的产生,其光学增益比CuCl 大晶体高得多。不断的研究发现另外一些材料,例如Cds、CuCl、ZnO、SnO2、Bi2O3、Al2O3、TiO2、SnO2、Fe2O3、CaS、CaSO4等,当它们的晶粒尺寸减小到纳米量级时,也同样观察到常规材料中根本没有的发光观象。纳米材料的特有发光现象的研究目前正处在开始阶段,综观研究情况,对纳米材料发光现象的解释主要基于电子跃迁的选择定则,量子限域效应,缺陷能级和杂质能级等方面。 纳米材料光学性质研究的另一个方面为非线性光学效应。纳米材料由于自身的特性,光激发引发的吸收变化一般可分为两大部分:由光激发引起的自由电子-空穴对所产生的快速非线性部分;受陷阱作用的载流子的慢非线性过程。其中研究最深入的为CdS纳米微粒。由于能带结构的变化,纳米晶体中载流子的迁移、跃迁和复合过程均呈现与常规材料不同的规律,因而其具有不同的非线性光学效应。 纳米材料非线性光学效应可分为共振光学非线性效应和非共振非线性光学效应。非共振非线性光学效应是指用高于纳米材料的光吸收边的光照射样品后导致的非线性效应。共振光学非线性效应是指用波长低于共振吸收区的光照射样品而导致的光学非线性效应,其来源于电子在不同电子能级的分布而引起电子结构的非线性,电子结构的非线性使纳米材料的非线性响应显著增大。目前,主要采用Z-扫找(Z-SCAN)和DFWM技术来测量纳米材料的光学非线性。

激光全息防伪技术简介讲解

激光全息防伪技术简介 激光防伪技术包括激光全息图像防伪标识、加密激光全息图像防伪标识和激光光刻防伪技术三方面。 一、第一代激光防伪技术 第一代激光防伪技术是激光模压全息图像防伪标识。 全息照像是由美国科学家伯格(M? J? Buerger)在利用X射线拍摄晶体的原子结构照片时发现的,并与伽柏(D? Gaber)一起建立了全息照像理论:利用双光束干涉原理,令物光和另一个与物光相干的光束(参考光束)产生干涉图样即可把位相“合并”上去,从而用感光底片能同时记录下位相和振幅,就可以获得全息图像。但是,全息照像是根据干涉法原理拍摄的,须用高密度(分辨率)感光底片记录。由于普通光源单色性不好,相干性差,因而全息技术发展缓慢,很难拍出像样的全息图。直到60年代初激光出现之后,其高亮度、高单色性和高相干度的特性,迅速推动了全息技术的发展,许多种类的全息图被制作出来,全息理论得到很好的验证,但由于拍摄和再现时的特殊要求,从诞生之日起,就几乎一直被局限在实验室里。 70年代末期,人们发现全息图片具有包括三维信息的表面结构(即纵横交错的干涉条纹),这种结构是可以转移到高密度感光底片等材料上去的。1980年,美国科学家利用压印全息技术,将全息 表面结构转移到聚酯薄膜上,从而成功地印制出世界上第一张模压全息图片,这种激光全息图片又称彩虹全息图片,它是通过激光制版,将影象制作在塑料薄膜上,产生五光十色的衍射效果,并使图片具有二维、三维空间感,在普通光线下,隐藏的图像、信息会重现。当光线从某一特定角度照射时,又会出现新的图像。这种模压全息图片可以像印刷一样大批量快速复制,成本较低,且可以与各类印刷品相结合使用。至此,全息摄影向社会应用迈出了决定性的一步。 由于当时这种模压全息图片的制作技术是非常先进的技术,只有少数人掌握,于是就被用作防伪标识。其防伪的原理是: 1. 在激光全息图片拍摄的整个过程中,如果有一项条件不同(如拍摄彩虹全息的条件),则全息标识的效果就会有差异。 2. 这种全息图像的全息信息用普通照相无法拍摄,因而全息图案难以被复制。 激光模压全息防伪技术传入我国是在80年代末90年代初,特别是1990年至1994年期间,全国各地引进生产线上百条,占当时世界生产厂家的一半多。二、改进的激光全息图像防伪标识 由于第一代激光全息防伪标识已经基本失去了防伪功能,人们不得不开始对其进行改进。改进的方法主要有三种:第一种是采用计算机技术改进全息图像,第二

精密测量技术 (2)

精密测量技术 一、背景研究 随着社会的发展,普通机械加工的加工误差从过去的mm级向“m级发展,精密加工则从10 p,m级向炉级发展,超精密加工正在向nm级工艺发展。由此,制造业对精密测量仪器的需求越来越广泛,同时误差要求也越来越高。精密测量是精密加工中的重要组成部分,精密加工的误差要依靠测量准确度来保证。目前,对于测量误差已经由“m级向nm级提升,而且这种趋势一年比一年迅猛[1]。 二、概述 现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,它和精密超精密加工技术相辅相成,为精密超精密加工提供了评价和检测手段;精密超精密加工水平的提高又为精密测量提供了有力的仪器保障。现代测量技术涉及广泛的学科领域,它的发展需要众多相关学科的支持,在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势,作为下世纪的重点发展目标,各国在微/ 纳米测量技术领域开展了广泛的应用研究[1]。 三、测量技术及应用特点 3.1扫描探针显微镜 1981年美国IBM公司研制成功的扫描隧道显微镜(STM),将人们带到了微观世界。STM具有极高的空间分辨率(平行和垂直于表面的分辨率分别达到0.1nm 和0.01nm,即可分辨出单个原子),广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似

原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或界 面纳米尺度上表现出来性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面 介绍几种具有代表性的扫描探针显微镜。 (1)原子力显微镜(AFM):AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的 位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏元件产生的影响,在探 针与表面10~100nm距离范围,可探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜、静电力显微镜、摩擦力显微镜等,统称为扫描力显微镜。 (2)光子扫描隧道显微镜(PSTM): PSTM的原理和工作方式与STM相似,后者 利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激 起的瞬衰场,其强度随距界面的距离成函数关系,获得表面结构信息。 (3)其它显微镜:如扫描隧道电位仪(STP)可用来探测纳米尺度的电位变化;扫 描离子电导显微镜(SICM)适用于进行生物学和电生理学研究;扫描热显微镜(STM)已经获得血红细胞的表面结构;弹道电子发射显微镜(BEEM)则是目前唯一 能够在纳米尺度上无损检测表面和界面结构的先进分析仪器,国内也已研制成功。 3.2纳米测量的扫描X射线干涉技术 以SPM为基础的观测技术只能给出纳米级分辨率,不能给出表面结构准确的 纳米尺寸,是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量 的定标手段。美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为 192015.560±0.012fm和192015.902±0.019fm(飞米fm也叫费米,是长度单位,1fm相 当于10~15m)。日本NRLM在恒温下对220晶间距进行稳定性测试,发现其18 天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距有较好的稳定性。扫描 X射线干涉测量技术是微/纳米测量中一项新技术,它正是利用单晶硅的晶面间

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

纳米材料在光学方面的应用要点

浅谈纳米材料的应用 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地概述了纳米材料在力学、磁学、电学、热学、光学和生命等方面的主要,并简单展望了纳米材料的应用前景。 【关键词】纳米材料;纳米技术;应用 有人曾经预测在21世纪纳米技术将成为超过技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。 一、纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 (一)力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 (二)磁学性质 当代机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 (三)电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电

各种防伪技术全面比较

各种防伪技术全面比较 防伪的分类 防伪根据应用对象分为“证照防伪”、“票据防伪”、“商品防伪”等不同应用,从作用方式可以分为“包装防伪”、“结构防伪”,按照技术手段可以分为“视觉防伪”、“条码(二维)码防伪”、“电码防伪”、“纹理防伪”等多种方式 现在社会上有激光防伪、光变油墨防伪、核径迹防伪、数码防伪、纹理防伪。其中纹理防伪是较为先进的防伪! 以下是各种防伪的详细介绍: (一)激光防伪 激光防伪标签又叫做镭射防伪标签,或被称为激光全息防伪标签, 是利用光的干涉原理,将物体发射的特定光波以干涉条纹的方式记载下来而成的图画,此图画记载了物体的悉数信息,故称全息图。当光照到全息图上时,因为光的衍射可观察到一维、二维或三维图像。 我国是在上世纪80年代末90年代初,特别是1990年至1994年期间,全国各地从国外引进激光标识生产线上百条,占当时世界生产厂家的一半多。在技术和设备引进初期,这种防伪技术确实起到了一定的防伪作用,但是随着激光全息图像制作技术和设备的迅速扩散,仿冒技术也在不断进步,如今早已被造假者从各个方面攻破,难以起到真正的防伪作用。(二)光变油墨防伪 在油墨中加入光致变色或光激活化合物,即颜料粒子,配制成光敏变色油墨,由于粒子的微型结构中包含有高精度干涉滤色片,所以不同的角度可显示不同颜色。利用在不同的观察角度下显示不同颜色变化来实现防伪目的。 造假者技术水平不断提高,运用先进仪器分析防伪油墨中的颜料粒子组成,购买原料配制油墨,印刷出来的图案可以以假乱真,普通消费者用裸眼很难识别真假,除非用专用仪器设备检定。另外,印刷厂工作人员流动性大,油墨配方外泄也是该使用该防伪存在的一大风险因素。 光变油墨防伪因实施简单方便,成本低廉,一些企业采用该技术作为辅助防伪措施应用在产品包装物上。 (三)核径迹防伪 用具有一定能量的重离子能够穿透塑料膜,在塑料膜上造成损伤,留下痕迹,大小为纳米量级。若将这些痕迹进行化学腐蚀,则可扩大形成直径为微米量级的一致性很好的微孔。由于图案是由微孔组成的,微孔可以透气透水,若用有颜色的液体(如水笔)去涂抹,图案区将被着色,显现出彩色图案。若用无色液体(如水)去涂抹,图案区将变得透明,达到图案消失的效果。利用微孔的光学和渗透性能,结合防伪标识“微观设密、宏观显示”的特性,使标识图案表现出揭膜“着色透印”的特性,从而达到区分真伪、识别假冒的目的。 造假者利用微孔处理技术能制作出相仿的微孔图案,消费者购买商品时很难有真品作为参照物,仅凭裸眼不易识别真假。 (四)数码防伪 防伪原理:为每一件入网的产品设置一组唯一的编码,并把编码储存在中心数据库中,消费者购买到贴有电码防伪标签的商品,只需拨打电话或上因特网,输入标签上的编码,即

相关文档
最新文档