实验3弯曲实验

实验3弯曲实验
实验3弯曲实验

实验三 弯曲实验

一、实验目的和要求

1.学习使用试验机进行弯曲实验的基本原理和方法。

2.观察试样在弯曲过程中的各种现象,由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。测定试样材料的弹性模量E 。

3. 绘制力-挠度的曲线,观察平面假设的实用性,验证纯弯曲梁的挠度计算公式。

二.实验设备、仪器和试件

1.万能材料实验机,划线台,游标卡尺,钢直尺,划针。 2.矩形截面低碳钢试样

三、实验原理和方法

(1)理论公式:

本实验的测试对象为低碳钢制矩形截面简支梁,加载方式如图3-1所示。

由材料力学可知,AB 梁将产生弯曲变形,中点C 的挠度w 最大,计算式为

Z

EI Fl w 483

=

(1) 其中,跨距

a l 2=,截面惯性矩12

3

bh I Z =,这里,b 和h 分别是横截面的宽和高。

于是材料的弹性模量E 可计算得到

Z

wI Fl E 483

=

(2) 横截面上各点正应力沿截面高度按线性规律变化,沿截面宽度均匀分布,中性轴上各点的正应力为零。截面的上、下边缘上各点正应力为最大。危险截面C 的正应力最大值为

Z

W M =

max σ (3)

其中,M 是危险截面C 上的弯矩,Z W 是截面抗弯系数

6

2

bh W Z = (4)

(2)实测方法:

实验采用手动加载方法,荷载F 大小可在计算机软件界面下的"负荷"窗口读出;挠度可在软件界面下的"变形"窗口读出。

在弹性范围内,如果测得载荷与变形数据由上式可求出要求的实验值。将实验值进行处理后可以得到材料的弹性模量E ,与理论计算值进行比较,就可以验证弯曲变形公式。

实验采用增量法。每增加等量载荷ΔF ,测得变形一次。因每次ΔF 相同,故变形应是基本上按比例增加。

四.实验步骤

1.测量矩形截面梁试样的宽度b 和高度h , 测量荷载作用点到梁支点距离a 2.在试样的侧面沿中性层划一条纵向线, 再在中性层纵向线两侧等距离各划一条纵向线; 在试样中点划一条横向线,

在中点横向线两侧等距离各划一条横向线 (上述划线用于观察变形情况和平面假设) 在试样支点各划一条横向线(用于安放试样)

3.实验时的取变形量5.00=?l mm ,7.01=?l mm , 9.02=?l mm 1.13=?l mm 左右(最好稍大些),相当于分四次加载。实验时逐级加载,并记录下各级荷载读数和变形读数。

4.手动加载结束后,卸载。然后用连续加载方式(在软件界面中点“运行”)进行实验,以便得到实验曲线。

5.进行数据处理,填写实验报告。注意,计算变形用教材或手册的弹性模量E

五.注意事项

1.认真观察、调整实验装置,确保两侧横力弯曲段长度相等。

2.注意安全!在加载时注意正确运用“快下”(快速接近试样)、“慢下”(已经接近试样)和“微下”(加载装置与试样接触,加载时)按钮

3.观察“平面假设”时,禁止加载!

六、思考题

1.尺寸、加载方式完全相同的钢梁和木梁,如果与中性层等距离处纤维的应变相等,问两梁相应位置的应力是否相等,载荷是否相等?

2.采用等增量加载法的目的是什么?

3.沿梁截面高度,应变怎样分布?随载荷逐级增加,应变分布按什么规律变化?中性轴

在横截面的什么位置?

七、实验数据及处理

ANSYS三点弯曲计算报告书

三点弯曲计算报告书 2011.3.20

1.算例说明: 三点弯曲实验是材料性能测试中常采用的一种方法,通过该方法可以方便的获得材料的弯曲强度和弯曲模量。 算例试样尺寸参考了实际实验采用的尺寸,试样的支撑及加载方式如图1所示,图2给出了试样的尺寸信息。 图1 三点弯曲示意图 图2 试样尺寸信息

2. 问题分析: 材料特性为各向同性的简支梁,其弯曲应力存在理论解,根据材料力学相关理论[1]。对于三点弯曲,各截面的应力可以通过公式(*)算出,最大拉压应力出现在集中力作用截面处 。 z I My =σ (*) 式中M 表示弯矩,y 表示截面上点到杆件中性面的距离, z I 表示截面对中性轴的惯性矩。 根据公式(*)可以方便的计算出最大应力值: MPa I y M m m I m m h y m m N FL M z z 76.1188022/4.47504 max max max 4 max max =====?==σ 3. 问题求解 从图1中可以看出试样的支撑形式属于简支梁,载荷为单点集中力,据此得到计算用模型及约束和载荷方式。图4 给出了有限元网格划分。 关材料属性信息:

弹性模量 Elastic Modulus=3.3Gpa 泊松比Poisson ratio=0.3 图3 试样的有限元模型 4.结果分析: 应力分布见图4所示,从图中可以看出,计算结果与理论分析一致,最大应力发生在集中力作用的截面处,有限元计算结果与理论解完全相同。

图4 三点弯曲应力分布图(上图为等轴视图下图为前视图)

参考文献 [1]范钦珊,殷雅俊,虞建伟 . 材料力学(第2版), 清华大学出版社, 2008, P109

纯弯曲实验报告

《材料力学》课程实验报告纸 实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)内力图 分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的内力简图,如图2所示。 Page 1 of 10

《材料力学》课程实验报告纸 (3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

实验3弯曲实验

材料的弯曲实验 一、实验目的 1、采用三点弯曲对矩形横截面试件施加弯曲力,测定其弯曲力学性能; 2、学习、掌握微机控制电子万能试验机的使用方法及工作原理。 二、实验设备 3、微机控制电子万能试验机; 4、游标卡尺。 三、实验试件 实验所用试件如下图1所示,试件截面为矩形,其中,b 为试件宽度,h 为试件高度,L 为试件长度。 图1 矩形截面试件 四、实验原理 1、三点弯曲试验装置 图2所示为三点弯曲试验的示意图。其中,F 为所施加的弯曲力,Ls 为跨距,f 为挠度。 图2 三点弯曲试验示意图

2、弯曲弹性模量b E 的测定(图解法): 通过配套软件自动记录弯曲力-挠度曲线(见图3)。在曲线上读取弹性直线段的弯曲力增量和相应的挠度增量,按式(1)计算弯曲弹性模量,其中,I 为试件截面对中性轴的惯性矩,12 3bh I =。 ??? ? ????= f F I E L s b 483 (1) 图3 图解法测定弯曲弹性模量 3、最大弯曲应力bb σ的测定: W L F s bb bb 4= σ (2) 其中,bb σ为最大弯曲应力,bb F 为最大弯曲力,W 为试件的抗弯截面系数,6 2bh W = 。 五、实验步骤及注意事项 1、试件准备:矩形横截面试件应在跨距的两端和中间处分别测量其高度和 宽度。取用三处宽度测量值的算术平均值和三处高度测量值的算术平均值,作为试件的宽度和高度。 2、试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十 分钟才可使用。运行配套软件,根据计算机的提示,设定试验方案,试验参数。 3、安装夹具,放置试件:根据试样情况选择弯曲夹具,安装到试验机上,

实验五 直梁弯曲实验 实验报告

实验五 直梁弯曲实验 一、 实验目的: 1. 用电测法测定纯弯时梁横截面上的正应变分布规律,并与理论计算结果进行比较。 2. 用电测法测定三点弯梁某一横截面上的正应变分布与最大切应变,并与理论计算结 果进行比较。 3.学习电测法的多点测量。 二、实验设备: 1. 微机控制电子万能试验机; 2. 电阻应变仪; 三、实验试件: 本实验所用试件为两种梁:一种为实心中碳钢矩形截面梁,其横截面设计尺寸为h ×b=(50×28)mm 2 ;另一种为空心中碳钢矩形截面梁,其横截面设计尺寸为h ×b=(50×30)mm 2 ,壁厚t=2mm 。材料的屈服极限MPa s 360=σ,弹性模量E=210GPa ,泊松比=。 北京航空航天大学、材料力学、实验报告 实验名称: 学号 姓名 同组 实验时间:2010年12月1日 试件编号 试验机编号 计算机编号 应变仪编号 百分表编号 成绩 实验地点:主楼南翼116室 1 1 1 1 1 教师 年 月 日 图一 实验装置图(纯弯曲) 图二 实验装置图(三点弯)

四.实验原理及方法: 在比例极限内,根据平面假设和单向受力假设,梁横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为: ()()Z Z M y y E I M y y E I εεμ ?= ??'=-? (1) 距中性层为 y 处的纵向正应力为: ()()z M y y E y I ?=?= σε (2) 对于三点弯梁,梁横截面上还存在弯曲切应力: () ()S z z F S y I ωτδ ?= ? (3) 并且,在梁的中性层上存在最大弯曲切应力,对于实心矩形截面梁: max 32S F A = τ (4) 对于空心矩形截面梁: 22max [((2)(2)]16S z F bh b t h t I t = ---τ (5) 由于在梁的中性层处,微体受纯剪切受力状态,因此有: max max G τγ= (6) 实验时,可根据中性层处0 45±方向的正应变测得最大切应变: 45454545max 22)(εεεεγ-==-=-- (7) 本实验采用重复加载法,多次测量在一级载荷增量M 作用下,产生的应变增量、’ F F F a a a a 2a 图三 纯弯梁受力简图(a=90mm ) 图四 三点弯梁受力简图(a=90mm )

金属弯曲试验

金属弯曲实验 计划学时:2学时 本实验按照国标《金属弯曲力学性能试验方法》(GB/T 14452--93),用INSTRON5582万能试验机测矩形试样三点弯曲的弹性模量和最大弯曲应力。 【实验目的】 (1)采用三点弯曲对矩形横截面试件施加弯曲力,测定其弯曲力学性能; (2)学习、掌握INSTRON5582万能试验机的使用方法及工作原理; (3)掌握弯曲弹性模量E b和最大弯曲应力σbb的测量方法。 【实验原理】 当一个矩形截面的金属承受弯曲载荷,其截面就出现应力。该应力可以分解为垂直于截面的正应力和平行于截面的切应力。如果梁上的载荷都处于同一平面内且垂直于梁的中轴,则截面各个点的正应力合成为一个力偶,其力矩即所谓的弯矩M,已知截面上任一点的正应力与该点至中截面的垂距以及截面上的弯矩成正比,与截面的惯矩成反比。若截面上的弯矩为正,则中截面以上各点受压应力,中截面以下各点受张应力;若截面上的弯矩为负,情况正好相反。 1. 三点弯曲试验装置 图1所示为三点弯曲试验的示意图。其中,F为所施加的弯曲力,Ls为跨距,f为挠度。 图1 三点弯曲试验示意图 2.弯曲弹性模量E b的测定(图解法):

通过配套软件自动记录弯曲力-挠度曲线(见图2)。在曲线上读取弹性直线段的弯曲力增量和相应的挠度增量,按式(1)计算弯曲弹性模量。 ??? ? ????= f F I E L s b 483 (1) 其中,I 为试件截面对中性轴的惯性矩, 123 bh I = 。 图2 图解法测定弯曲弹性模量 3.最大弯曲应力σbb 的测定: W L F s bb bb 4= σ (2) 其中,bb σ为最大弯曲应力,bb F 为最大弯曲力,W 为试件的抗弯截面系数, 62 bh W = 【实验仪器设备及材料】 INSTRON5582万能材料实验机、游标卡尺,矩形金属片(宽×厚=5mm×5mm )。 试样表面要经过磨平,棱角应作倒角,长度应保证试样伸出两个支座之外均不少于3mm 。 【实验步骤及方法】 1. 试样的制备:按照国标《金属弯曲力学性能试验方法》(GB/T 14452--93),制备试样。 2. 试样尺寸测量 矩形横截面试样应在跨距的两端和中间处分别测量其宽度和厚度。计算弯曲弹性模量时,取用三处高度测量值的算术平均值;计算弯曲应力时,取用中间处测量的厚度和宽度。

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

弯曲试验

弯曲实验 一.实验目的 测定纯弯曲梁的正应力,并与理论计算结果进行比较,以验证弯曲正应力公式。 二.实验仪器 组合实验台弯曲梁实验装置,电阻应变仪,预调平衡箱,数字测力仪。 三.实验原理 示意图请参见两端铰支的矩形截面钢梁,在距两端支座为处,分别作用相 同大小的力。梁的AB段为纯弯曲,其弯矩为。为了实测正应力,可在梁的AB段内沿横截面表面均匀粘贴7个电阻应变片(7个测点)。 当梁受到荷载作用时,可从电阻片的变形测得各点的应变值。在比例极限范围内,应力与应变之间存在着正比关系,即。因而通过测得应变值便可计算出该点正应力的数值。 关于电阻应变片和应变测量电路的原理参见电阻应变仪。 四.实验步骤 1.观察预调平衡箱后面板的接线,将测点与通道的对应关系记录下来。 2.数字测力仪的量程设为20KN,初始调零。 3.将电阻应变仪的“基零、测量”开关置在“基零”位置,调节“基零平衡”,使显示为零。 4.将电阻应变仪的“基零、测量”开关置在“测量”位置,旋转“换点开关”,调节相应的通道,使其电桥平衡(显示为零)。将所用的7个通道同时调零。

5.逐级加载,每增加0.5KN记录7个通道的应变仪读数。 6.加载到4KN后,卸载。 7.根据应变仪读数求出各测点应变差值的算术平均值,然后计算应力值。五.实验记录 宽度 高度 加力点到支座的距离Array 弹性模量

注:先求出各测点应变差值的算术平均值,然后计算应力值。 六.预习思考题 1) 分析在纯弯曲状态下,梁截面的应力分布情况。 2) 如果将电阻应变片的灵敏系数由2.0改为2.1,则测出的应变值会有什么影响? 3) 电阻应变片由金属电阻丝制成,测量应变时电阻丝是有电流的;弯曲实验中的钢梁也是金属,由于电阻应变片是直接粘贴在钢梁表面的,所以实验时钢梁中也会有电流通过,这是正常现象,不会影响测量结果。你是否同意这种看法?为什么? 4) 一位同学在操作中有这样一个过程:将电阻应变仪的“基零、测量”开关置在“基零”位置,调节“基零平衡”,使显示为零,然后旋转“换点开关”,调节所有通道,使其电桥平衡,接着就开始加载测量应变。请问,这位同学的操作正确吗?为什么?

材料物理性能 实验一材料弯曲强度测试

实验一 复合材料弯曲强度测定 一、实验目的 了解复合材料弯曲强度的意义和测试方法,掌握用电子万能试验机测试聚合物材料弯曲性能的实验技术。 二、实验原理 弯曲是试样在弯曲应力作用下的形变行为。弯曲负载所产生的盈利是压缩应力和拉伸应力的组合,其作用情况见图1所示。表征弯曲形变行为的指标有弯曲应力、弯曲强度、弯曲模量及挠度等。 弯曲强度f σ,也称挠曲强度(单位MPa ),是试样在弯曲负荷下破裂或达到规定挠度时能承受的最大应力。挠度s 是指试样弯曲过程中,试样跨距中心的顶面或底面偏离原始位置的距离(㎜)。弯曲应变f ε是试样跨度中心外表面上单元长度的微量变化,用无量纲的比值或百分数表示。挠度和应变的关系为:h L s f 62ε=(L 为试样跨度,h 为试样厚度)。 当试样弯曲形变产生断裂时,材料的极限弯曲强度就是弯曲强度,但是,有些聚合物在发生很大的形变时也不发生破坏或断裂,这样就不能测定其极限弯曲强度,这时,通常是以试样外层纤维的最大应变达到5%时的应力作为弯曲屈服强度。 与拉伸试验相比,弯曲试验有以下优点。假如有一种用做梁的材料可能在弯曲时破坏,那么对于设计或确定技术特性来说,弯曲试验要比拉伸试验更适用。制备没有残余应变的弯曲试样是比较容易的,但在拉伸试样中试样的校直就比较困难。弯曲试验的另一优点是在小应变下,实际的形变测量大的足以精确进行。 弯曲性能测试有以下主要影响因素。 ① 试样尺寸和加工。试样的厚度和宽度都与弯曲强度和挠度有关。 ② 加载压头半径和支座表面半径。如果加载压头半径很小,对试样容易引起较大的剪切力而影响弯曲强度。支座表面半径会影响试样跨度的准确性。 ③ 应变速率。弯曲强度与应变速率有关,应变速率较低时,其弯曲强度也偏低。 ④ 试验跨度。当跨厚比增大时,各种材料均显示剪切力的降低,可见用增大跨厚比可减少剪切应力,使三点弯曲更接近纯弯曲。 ⑤ 温度。就同一种材料来说,屈服强度受温度的影响比脆性强度大。 三、实验仪器 WDW1020型电子万能试验机 图1 支梁受到力的作用而弯曲的情况

薄板弯曲实验报告

金属薄板的弯曲实验报告 1.实验目的 1)了解金属薄板弯曲变形过程及变形特点。 2)熟悉衡量金属薄板弯曲性能的指标——最小相对弯曲半径主要影响因素。 3)掌握测定最小相对弯曲半径的实验方法。 2.实验内容 1)认识弯曲过程,分析板料轧制纤维方向和板料成形性能对相对弯曲半径(R/t)的影 响。 2)了解如何通过调整行程完成指定弯曲角度的弯曲,如何进行定位完成指定边高的弯 曲,分析板厚和弯曲角度对相对弯曲半径的影响。 3)观察弯曲过程和弯曲回弹现象。 4)掌握万能角度尺、半径规等测量工具的使用,测量模具尺寸参数和板料基本尺寸。 5)熟悉板料折弯机的操作使用。 3.实验原理 弯曲是将板料、型材或管材在弯矩作用下弯成一定曲率和角度的制件的成形方法。在生产中由于所用的工具及设备不同,因而形成了各种不同的弯曲方法,但各种方法的变形过程及变形特点都存在着一些共同的规律。 弯曲开始时,如图1(a)所示,凸、凹模与金属板料在A、B处相接触,凸模在A点处所施的外力为2F,凹模在B点处产生的反力与此外力构成弯曲力矩M=2Fl0。随着凸模逐渐进入凹模,支承点B将逐渐向模中心移动,即力臂逐渐变小,由l0变为l1,…,l k,同时弯曲件的弯曲圆角半径逐渐减小,由r0变为r1,…,r k。当板料弯曲到一定程度时,如图1(c)所示,板料与凸模有三点相互接触,这之后凸模便将板料的直边朝与以前相反的方向压向凹模,形成五点甚至更多点接触。最后,当凸模在最低位置是,如图1(d)所示,板料的角部和直边均受到凸模的压力,弯曲件的圆角半径和夹角完全与凸模吻合,弯曲过程结束。 (a)(b)(c)(d) 图1 弯曲过程示意图 和所有的塑性加工一样,弯曲时,在毛坯的变形区里,除产生塑性变形外,也一定存在有弹性变形。当弯曲工作完成并从模具中取出弯曲件时,外加的载荷消失,原有的弹性变形也随着完全或部分地消失掉,其结果表现为在卸载过程中弯曲毛坯形状与尺寸的变

纯弯曲实验报告

实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度 变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)力图 分析主梁的受力特点,进行求解并画出其力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的力简图,如图2所示。 Page 1 of 10

(3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

三点抗弯强度

第18讲教学方案——弯曲切应力、弯曲强度条件

§7-3 弯曲切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有剪应力 τ。但一般情况下,剪应力对 梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的剪应力方向均平行于剪力 Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 * 1I 1** z z A z A S I M dA I My dA N == =??σ (a )

弯曲与扭转实验报告

《材料力学实验报告-弯曲扭转》

扭转实验 一、实验目的 1.学习扭转实验机的构造原理,并进行操作练习。 2.测定低碳钢的剪切屈服极限、剪切强度极限和铸铁的剪切强度极限。3.观察低碳钢和铸铁在扭转过程中的变形和破坏情况。 二、实验仪器 扭转实验机,游标卡尺。 三.实验原理 塑性材料和脆性材料在扭转时的力学性能。(参考材料力学课本及其它相关书籍) 四、实验步骤 1.低碳钢实验 (1)量取试件直径。在试件上选取3个位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均直径值中取最小值作为试件的直径。 (2)将扭转实验机刻度盘的从动针调至靠近主动针。主动针的调零方式为自动调整,如果主动针不在零位,应通知老师,由老师进行调整。绝对不能用调从动针的方法,将两针调至零位。 (3)把试件安装在扭转试验机的夹头内,并将螺丝拧紧(勿太用力)。安装时,一定要注意主动夹头的夹块要保持水平(固定夹头的夹块总是水平的),以避免引起初始扭矩。如果已经出现小量的初始扭矩,只要不超过5N*m,可以开始加载。另外,试件在水平面和垂直面上不能歪斜,否则加载后试件将发生扭曲。 (4)打开绘图记录器的开关;将调速旋钮置于低速位置。开始用档慢速加载,每增加 5N*m 的扭矩,记录下相应的扭转角度。实验过程中,注意观察试件的变形情况和图,当材料发生流动时,记录流动时的扭矩值和 相应的扭转角度。另外,注意记录扭矩刚开始下降时的扭矩值和相应的扭转角度。扭矩值估读到0.1N*m。

(5)流动以后,继续加载,试件进入强化阶段,关闭记录器后,将电机速度选择在 档,加快加载速度。这时由于变形速度较快,可每增加180 度取一次扭转角度。直至试件扭断为止,记下断裂时的扭矩值 ,注意观察断 口的形状。注意,试件扭断后应立即停止加载,以便记录断裂时的扭转角度。 2.铸铁实验 操作步骤与低碳钢相同。因铸铁在变形很小时就破坏,所以只能用 档慢速加载。每增加5N*m 的扭矩,记录下相应的扭转角度。注意观 察铸铁试件在扭转过程中的变形及破坏情况,并记录试件扭断时的极限扭矩值 和相应的扭转角度。注意,试件扭断后应立即停止加载,以便记录断裂时的扭转角度。 五、实验记录 42.5m N ? 98m N ? 67.5m N ? 注:低碳钢的剪切流动极限及强度极限的计算公式中应该乘一系数3/4。原因是这样:圆轴扭转在弹性变形范围内剪应力分布如参考图(a)所示,对于塑性材料,当扭矩增大到一定数值后,试件表面应力首先达到流动极限 ,并逐渐向内 扩展,形成环形塑性区,如参考图(b)所示。若扭矩逐渐增大,塑性区也不断扩大。当扭矩达到 时,横截面上的剪应力大小近似为 ,如参考图(c)所示,在 这种剪应力分布形式下,剪应力公式为。

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

纯弯梁弯曲的应力分析实验报告

一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺 三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:i i E 实实εσ?=? 计算各点的理论应力增量公式:z i i I My ?= ?σ 2.测定泊松比 计算泊松比数值:ε εμ' = 四、实验步骤 1.测量梁的截面尺寸h 和b ,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:[]σa bh 3F 2 max ≤ ,然后确定量程,分级载荷和载荷重量; 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F 的初应变,以后每增加一级荷载就记录一次应变值,直至加到n F ;

5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 梁试件的弹性模量11101.2?=E Pa 梁试件的横截面尺寸h = 40.20 ㎜,b = 20.70 ㎜ 支座到集中力作用点的距离d = 90 ㎜ 各测点到中性层的位置:1y = 20.1 ㎜ 2y = 10.05 ㎜ 3y = 0 ㎜ 4y = 10.05 ㎜ 5y = 20.1 ㎜

六、应力分布图(理论和实验的应力分布图画在同一图上) 七、思考题 1.为什么要把温度补偿片贴在与构件相同的材料上? 答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。 2.影响实验结果的主要因素是什么? 答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03JW024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b=9mm ;梁高h=30mm ;跨度l =600mm ;AC 、BD :弯矩a=200mm 。测点距轴z 距离: 21h y ==15mm ;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm ;-=-=2 5h y 15mm ;E=210Gpa 。 抗弯曲截面模量W Z =bh 2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录: (3) 取各测点ε?值并计算各点应力:

1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10-6 ; 1σ?=E 1ε?=3.36MPa ;2σ?=E 2ε?=1.47MPa ;3σ?=0 ; 4σ?=E 4ε?=1.68MPa ;5σ?=E 5ε?=3.15MPa ; 根据ΔM W =ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W /W Z =3.70MPa ;2σ?=ΔM W h/4(J Z )=1.85MPa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa ;5σ?=ΔM W /W Z =3.70MPa ; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。 如有侵权请联系告知删除,感谢你们的配合!

3弯曲实验

三、材料弯曲实验 一、概述 弯曲实验测定材料承受弯曲载荷时的力学特性,是材料机械性能试验的基本方法之一。弯曲试验主要用于测定脆性和低塑性材料(如铸铁、高碳钢、工具钢等)的抗弯强度并能反映塑性指标的挠度。弯曲试验还可用来检查材料的表面质量。弯曲试验在万能材料机上进行,有三点弯曲和四点弯曲两种加载荷方式。试样的截面有圆形和矩形,试验时的跨距一般为直径的10倍。 二、实验目的 1. 学会测试脆性和塑性材料的抗弯强度和塑性的原理和方法; 2. 测定给定材料的抗弯强度和断裂扰度; 3. 学习实验机和相关仪器的操作使用。 三、实验仪器、材料 万能材料试验机、游标卡尺、钢直尺、矩形截面陶瓷试样等。 四、实验原理 本次试验使用电测法测定梁在纯弯曲时沿截面高度的正应力分布,验 证纯弯曲梁的正应力计算公式。弯曲实验时试样承受弯矩作用后,其内部应力主要是正应力。断面上的应力分布是不均匀的,表面应力最大,中心为零。可以较为灵敏地反映出材料的便面缺陷情况,以此检验材料的表面质量。弯曲试验时可以用试样弯曲的挠度显示材料的塑性,这样可以有效地测定脆性材料或低塑性材料的塑性。弯曲实验所用试样形状简单,操作方便。 弯曲试验的方法分为三点弯曲和四点弯曲,弯曲试件主要有矩形截面和圆形截面两种,通常用弯曲试件的最大挠度f max 表示材料的变形性能。试验时,在试件跨距的中心测定挠度,绘成弯曲力-挠度曲线,称为弯曲图(见图1)。 对于高塑性材料,弯曲试验不能使试件发生断裂,其曲线的最后部分可延伸很长,因此,弯曲试验难以测得塑性材料的强度,而且实验结果的分析也很复杂, 图1 弯曲力-挠度曲线及F pb 和F bb 的确定

纯弯梁弯曲的应力分析实验报告

纯弯梁弯曲的应力分析实验报告 一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:,,,E,,实i实i ,Myi,,,计算各点的理论应力增量公式: iIz 2.测定泊松比 ',,计算泊松比数值: ,, 四、实验步骤 1.测量梁的截面尺寸h和b,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:

2bhF,,,,,然后确定量程,分级载荷和载荷重量; max3a 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F的初应变,以后每增加一级荷载就记录一次应变值,直至加到 ; Fn 5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 11E,2.1,10梁试件的弹性模量Pa 梁试件的横截面尺寸, 40.20 ?,, 20.70 ? hb 支座到集中力作用点的距离, 90 ? d 各测点到中性层的位置:, 20.1 ? , 10.05 ? , 0 ? yyy312 , 10.05 ? , 20.1 ? yy54 ,6静态电子应变仪读数 (,10)载荷(N) 1点 2点 3点 4点 5点 6点 读数增量读数增量读数增量读数增量读数增量增量读数 F,F ,,,,,,,,, ,,,,,,,,,335566112244 0 0 0 0 0 0 0 492 -27 -12 1 16 26 -10 492 -27 -12 1 16 26 -10 506 -31 -14 1 16 28 -8 998 -58 -26 2 32 54 -18 450 -10 -6 3 8 15 -4 1448 -68 -32 5 40 69 -22 262 -20 -6 1 8 12 -2 ,,,,,, ,,,,,,,F 3561241710 -88 -38 6 48 81 -24 427.5 -22 -9.5 1.5 12 20.25 -6 应变片位置 1点 2点 3点 4点 5点 6点 实验应力值/MPa -4.62 -2.00 0.32 2.52 4.25 -1.26

三点弯曲正应力测定(精)

三点弯曲正应力测定 一、实验目的 1、测量三点弯曲深梁正应力,分析深梁内力分布的特点。 2、掌握组桥(半桥、对臂)多点测量,实测内力的方法,提高多点测量的 实验能力 3、分析此材料力学弯曲理论公式的适用范围。 二、实验装置与仪器设备 1、机械式万能材料试验机WJ-10B 型。 2、YJR-5A 数字式静态电阻应变仪及预调平衡箱一套。 3、三点弯曲深梁试验装置(如图)。 三、实验背景与试验原理 三点弯曲梁在加载时,中性层以上纤维受压、以下纤维受拉,理论上横截面上正应力沿梁高呈线性分布,即 x z M y I σ= (1) 式中,I z 为横截面对形心轴z 轴的惯性矩,y 为截面计算点的y 轴坐标值,M x 为图中所示梁的弯矩图确定的作用于距加载点x 远横截面上的弯矩: 2 x P x M = (2) 随着两支点间距与梁厚度比值L/H 的减小,由于受到支座附近的局部应力分布的影响,圣维南原理将不再适用,因此三点弯曲梁内的应力分布变得比较复杂,很难得到理论解,因此采用实验进行测量可以得到准确的应力值。

四、实验内容和实验步骤 1、用游标卡尺测量试件的梁宽B和梁高H。 2、打开机械万能材料试验机,调整夹具的活动平台上的支点距离L=L1。 3、升降活动平台,使上压头对准横梁正中加载点,且上压头与梁刚好接触。 4、调节电阻应变仪上各组电桥平衡。 ,记录各点的应变值。 5、采用摇柄手动加载,采用等量加载法,每次增加P 6、卸载到零,重新调节支点距离L=L2,重复3、4、5步骤。 7、卸载到零,重新调节支点距离L=L3,再次重复3、4、5步骤。 8、实验完毕,实验机载荷卸载到零。 五、实验数据记录和处理 表二钢梁和支座距离单位:mm 表三测试点应变值记录(L=L1时)

纯弯曲梁正应力实验报告

纯弯曲梁正应力实验报告 材料力学课程实验报告纯弯曲梁正应力实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理梁试件的弹性模量11101.2EPa 梁试件的横截面尺寸h ㎜b ㎜支座到集中力作用点的距离d ㎜各测点到中性层的位置1y ㎜2y ㎜3y ㎜4y ㎜5y ㎜6y ㎜材料力学课程实验报告载荷N 静态电子应变仪读数106 1点2点3点4点5点6点F F 读数1 增量1 读数2 增量2 读数3 增量3 读数4 增量4 读数5 增量5 读数6 增量6 F 1 2 3 4 5 6 应变片位置1点2点3点4点5点6点实验应力值/MPa 理论应力值/MPa 相对误差/ 泊松比值注表中读数1、2、3、4、5、6为两次实验所得读数的平均值。F为荷载增量的平均值。1、2、3、4、5、6为各点应变增量的平均值材料力学课程实验报告四、应力分布图理论和实验的应力分布图画在同一图上五、思考题1.为什么要把温度补偿片贴在与构件相同的材料上2.影响实验结果的主要因素是什么材料力学课程实验报告测定材料E、实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理板试件尺寸试件截面宽b ㎜高h ㎜截面积oA mm2 NF oAFMPa 纵向应变106 横向应变106 1r 2r 3r 1r 2r 3r 材料力学课程实验报告数据处理方法1平均法均均oAFE 均均计算过程2最小二乘法niiniiiE121 niiniii121 计算过程材料力学课程实验报告四、画出关系图理论和实验的关系

玻璃材料弯曲强度的试验方法

1范围 本标准规定了玻璃材料弯曲强度测定的试验方法。适用于玻璃和微晶玻璃材料弯曲强度的测定。 2试验原理 在规定的试验条件下,一定尺寸和形状的试样,受三点静态弯曲负荷折断,通过计算其承受负荷的横截面处最大弯曲应力,可以得出试样的弯曲强度。 3仪器设备 3.1试验机 3.1.1 加荷速率。负荷示值相对误差不应超过±1%。 3.1.2验负荷应在试验机使用量程的20%~90%之间。 3.1.3压头刀口尺寸应符合图1规定,用来支撑试样的支座和施加负荷的压头均用经过淬硬的钢材,其材料的弹性模具量应不低于200GP,以防止负荷过量时发生塑性变形,同时与试样接触部分的表面粗糙度应不大于1.6μm。 3.2测量工具 游标卡尺或千分尺,精度为0.02mm。 4试样 4.1 试样为长120mm±1mm。宽20mm±1mm,以原板厚为试样厚度的长方体,其横截面的四角均为900±0.50,试样外观应无爆边、缺角、划伤等明显缺陷且切割刀口在同一表面。 4.2 每组试样不少于15个。 5 试验程序 5.1 用游标卡尺或千分尺测量试样中部的宽度和厚度,精确至0.05mm。 5.2 调整两支点间距至100 mm。 5.3 将试样有切割刀口的一面朝上放在支座上,伸出支座两端的距离应相等。 5.4 在试样的负荷点上,以5mm/min的位移速度加荷,记录试样断裂时的最大负荷。 5.5 断裂应产生在试样三等分中间部分,否则应以新试样替补上重新试验,以保证每组试样原来的数量。 5.6 每一试样断裂后,应用毛刷或软布仔细清扫压头和支座。以清除碎玻璃渣。 6 结果计算 6.1 试样弯曲强度的单值按式(1)计算: (1) 式中:--试样的弯曲强度,Mpa P--试样断裂时的最大负荷,N; L--试样支座间的距离,mm; b--试样宽度,mm; d--试样厚度,mm。 6.2 标准差按式(2)计算: S= (2) 式中:S--标准差,Mpa; n--被测有效试样的数量; --各试样的弯曲强度,Mpa。 6.3 按附录A(标准的附录)进行数据处理,以有效数据的算术平均值和标准差表示。取3位有效数字。

相关文档
最新文档