居余马线性代数第三章课后习题

居余马线性代数第三章课后习题
居余马线性代数第三章课后习题

第三章 课后习题及解答

将1,2题中的向量α表示成4321,,,αααα的线性组合:

1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T

4T

3T

21T

--=--=--===αααααT

2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα

解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得

14321=+++k k k k

24321=--+k k k k

14321=-+-k k k k

14321=+--k k k k

解得.41

,41,41,454321-=-===

k k k k 所以43214

1

414145ααααα--+=

. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得

02321=++k k k ,04321=+++k k k k ,

0342=-k k ,1421=-+k k k .

解得 .0,1,0,14321=-===k k k k 所以31ααα-=.

判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T

3T

2T

1===ααα

4. ()().3,0,7,142,1,3,0,)4,2,1,1(T

3T

2T 1==-=βββ,

解:

3.设存在 321,,k k k 使得0332211=++αααk k k ,即

???

??=++=++=+0650320321

32131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.

4.设存在 321,,k k k 使得0332211=++βββk k k ,即

??????

?=++=++=+-=+0

142407203033213212

131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.

解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性

无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是

0=α.

6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,

假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,

则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.

7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.

证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,

整理得,0)()(221121=-++ααk k k k ,

因为21,αα线性无关,所以??

?=-=+0

2121k k k k ,可解得021==k k ,

故2121,αααα-+线性无关.

方法二,因为=-+)(2121,αααα???

?

??-1111,21)(αα, 又因为

021

11

1≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,

故2121,αααα-+线性无关.

8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中

,13121111?

?

?

????

?

??=k a a a a α,3222122???????? ??=ks a a a a α ,,321???????? ??=ks s s s s a a a a α

s βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21

),,2,1(s j =所组成的m k +维向量,证明:

(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.

证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.

证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.

(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.

9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.

证:方法1,(133221,,αααααα+++)=(321,,ααα)???

?

? ??110011101

因为321,,ααα线性无关,且021

100111

01≠=,可得133221,,αααααα+++的秩为3

所以133221,,αααααα+++线性无关.线性无关;反之也成立.

方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.

设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,

0)()()(332221131=+++++αααk k k k k k

因为321,,ααα线性无关,所以

???

??=+=+=+0

0032

2131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,

假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且

23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛

盾,故321,,ααα线性无关.

方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得

0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得

()()(3213321232112

1,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,

0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k

因为321,,βββ线性无关,所以???

??=+-=++-=-+0003

21321321k k k k k k k k k

可解得0321===k k k ,所以321,,ααα线性无关.

10.下列说法是否正确?如正确,证明之;如不正确,举反例:

(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。设???

?

??=???? ??=???? ??=111001321ααα,,,

321,,ααα两两线性无关,而321,,ααα线性相关.

(2)m ααα,,,21 )

(2>m 线性相关的充分必要条件是有1-m 个向量线性相关; 解:不正确,充分条件成立,但必要条件不成立,例:设???

?

??=???? ??=???? ??=111001321ααα,,,

321,,ααα线性相关,而 俩321,,ααα两两线性无关.

(3) 若21,αα线性相关,21,ββ线性相关,则有不全为零的数21,k k ,使得

02211=+ααk k 且02211=+ββk k ,从而使得0222111=+++)

()(βαβαk k , 故2211βαβα++,线性相关.

解:不正确,因为21αα,线性相关和21ββ,线性相关,不一定存在同一组不全为零的数

21,k k ,使得02211=+ααk k 和02211=+ββk k 成立;或者说存在两组不全为零的数

相关主题
相关文档
最新文档