交通标志结构设计计算书

交通标志结构设计计算书
交通标志结构设计计算书

悬臂式标志的结构设计计书

1.计算简图如下图所示

2.荷载计算 (1) 永久荷载

各计算式中系数1.1系考虑有关连接件及加劲肋等的重力而添加的。 标志板单位面积质量为8.037kg/m 2,其重力为: G 1=4.4?2.4?8.037?9.8?1.1=0.9149(kN)

横梁拟采用0.62032?Φ钢管,单位面积质量为29.15kg/m 2,其总重力为: G 2=2?29.15?5.076?9.8?1.1=3.1901(kN)

立柱拟采用0.9377?Φ钢管,单位面积质量为81.68kg/m 2,其总重为: G 3=81.68?7.9?9.8?1.1=6.956(kN) 标志上部结构的总重力为:

G=G 1+G 2+G 3=0.9149+3.1901+6.956=11.061(kN)

有关系数将视永久荷载效应对结构构件或连接的承重能力是否有利而选取。 (2)风荷载 标志板:

211101

()()/1000

2

1.0 1.4[(0.5 1.2258 1.240^2)(4.4

2.4)]/100017.397()

wb Q b h F CV W W KN γγρ=?=???????= 横梁:

2101

()()/1000

211.0 1.4( 1.22580.840^2)(0.6760.2032)/100020.301()

Q WH B hni F CV W H KN γγρ=???

=????????????

=∑

立柱:

21101

[()()/1000

2

1.0 1.4[(0.5 1.22580.840^2)(7.90.377)]/10003.271()

WP Q p P F CV W H KN γγρ=?=???????=

3.横梁的设计计算

由于两根横梁材料,规格相同,根据基本假设,可认为每根横梁所受的荷载为总荷载之半,其受力如图6.2。

图6.2 横梁受力图(尺寸单位:mm )

单根横梁所承受荷载为:

()()

1402100.9151.0 1.20.54922

3.190

/ 1.0 1.2/5.0760.377/22

G

G h G G kN G w H kN m γγγγ==??===??=

水平荷载:

()()()()121117.39738.69922/20.301/20.6760.223/wb wb wh hn F F kN w F H kN m =

===?=?=

(1)强度验算:

横梁根部由重力引起的剪力为:

()1410.5490.377 5.076 2.463y h Q G w H kN =+=+?=

由重力引起的弯矩为:

()()()221114230.377

0.5490.676 2.2 5.076 6.43622

y w l M G l l kN m =++=?++?=?

横梁根部由风引起的剪力为:

()1228.6990.2230.6768.850x wb Q F w l kN =+=+?=

由风荷载引起的弯矩为:

()()()2

2

221230.2230.6768.6990.676 2.225.06922

x wb w l M F l l kN m ?=++=?++=?

横梁规格为203 6.0φ?,截面积为A=323.71310m -?,截面惯性矩为541.80310I m -=?,抗弯截面模量为431.77610W m -=?

横梁根部所受的合成剪力为:

()2222118.85 2.4639.186x y Q Q Q kN =+=+=

合成弯矩为:

()22221125.069 6.43625.882x y M M M kN m =+=+=?

a.最大正应力验算

横梁根部的最大正应力为:

()()

3

22max 4

25.88210145.7/ 1.15215247/1.77610

M N mm f N mm W σγ-?===

()()

3

22max 3

9.1861022 4.948/125/3.71310

v Q N mm f N mm A τ-?=?=?=<=? c.危险点应力验算 略。

(2)变形验算

()()

()()()()()

()()

2

4

40231011232

395

34

95

//3680.549/1.0 1.2100.676 2.23 5.0760.676 2.2620610 1.803100.377/1.0 1.210 5.0760.0091820610 1.80310G G y G l l w l f l l l EI

EI

m γγγγ--+=--+

???+??--=

+???????=????

水平挠度为:

()()

()()()

()()()

()()

()

2

2

0232022121232

395

3395

//33668.699/1.0 1.4100.676 2.23 5.0760.676 2.2620610 1.803100.223/1.0 1.4100.6763 5.0760.676620610 1.803100.0285wb Q Q x F l l w l l l l f l l l EI

EI

m γγγγ--+-=--+

???+??--=

+????????-????=

合成挠度为:

()

222210.02850.00910.02990.02991

0.005895.07675

x y f f f m f l =

+=+===<=0.01333,满足要求. 4.立柱的设计计算

立柱所受荷载为:

垂直荷载 ()0 1.0

1.211.06113.2

73k N

G N G γγ==??= 水平荷载 ()1111

7.3970.301 3.27120.969

w b w h w p H F F F k N =++=++= 立柱根部由永久荷载引起的弯矩为:

()122 6.43612.872y y M M kN m ==?=?

由风荷载引起的弯矩为:

()()()

1111/2

17.3970.301 6.65 3.2717.9/2130.612x wb wh wp M F F h F h kN m =++?=+?+?=?

合成弯矩 ()222

2

130.61

212.872

131.245x y M M M kN

m =+=+=? 由风荷载引起的扭矩为:

()2225.06950.138t xl M M kN m ==?=?

立柱规格为3779.0φ?,截面积为A=105002mm ,截面惯性矩为841.76210I mm =?,

抗弯截面模量为539.35010W mm =?,截面回旋半径130I

i mm A

=

=,极惯性矩为:

843.52510p I mm =? (1)强度验算 a.最大正应力验算

()()

36

522

13.27310131.2451010500 1.159.3510123.32/215/N M A W N mm f N mm γ??+=+???=<= b.最大剪应力验算

由剪力(水平荷载)引起的剪应力为:

()

3

2max 20.9691022 3.994/10500

H H N mm A τ?=?=?=

由扭矩引起的剪应力为:

()

()

62max 8

2max max max 377

50.138102226.811/3.52510

3.99426.81130.805/t t p

H t M N mm I N mm φ

ττττ??

=

=

=?=+=+=

c.危险点应力验算

最大正应力位置点处,由扭矩产生的剪应力亦为最大,即

()

()

36

2

max 5

2

max 13.27310131.24510141.633/105009.351026.811/t N M N mm A W N mm σσττ??==+=+=?==

根据第四强度理论

()(

)

*2222

2

2

4

3141.633326.811

149.052

/21

5/

N m m f N

m m σστ=+=+?=<=

d.稳定性计算

悬臂构件的长度系数μ=2,立柱作为中心受压直杆时,其柔度为:

1

2 6.65

1020.130

h i

μλ?=

=

=,查表得稳定系数0.622?=

钢材弹性模量 ()

3220610/E N mm =? 欧拉临界应力为:

()()

()22232=EA/1.1=3.142061010500/1.1102=1863.5E N kN πλ????,

等效弯矩系数 1.0m β=

()()

3635

3,2213.27310 1.0131.245100.6221050013.273101.159.351010.810.81863.510124.79/215/,m E M

N A

N W N N mm f N mm β?γ???+=+?????????-?-? ? ?????

?=<=满足精度要求

(2)变形验算

由风载标准值引起的立柱顶部的水平位移为:

()()()()()()()()()4

2

10110113294

33

94

//36817.3970.301/1.0 1.410 6.6537.9 6.65620610 1.762103.271/1.0 1.4107.90.0477820610 1.76210

wp Q wb wh Q p F h h F F h f h h EI EI

m γγγγ--??+?

?=-++?????-=+???????=????

0.04771

0.0060430.013,7.975

p f p

=

=<=满足要求。 立柱顶部由扭矩标准值产生的扭转角为:

()()()309

4

/50.138/1.0 1.4107.9=

0.010167910 3.52510

t G p

M h

rad GI γγθ-???=

=???

从图6.1可以看出,该标志结构左上点处水平位移最大,由横梁水平位移、立柱水平位

移及由于立柱扭转而使横梁产生的水平位移三部分组成。前两个位移已经求出,第三个位移近似根据θ角与横梁长度相乘得到,因此该点总的水平位移为:

10.02850.04770.01016 5.0760.1278()x p f f f l m θ=++=++?=

该点距路面高度h=7.9m 。

0.127810.016170.02,7.950

f h ==<=满足要求 立柱在两根横梁之间部分由于横梁永久荷载产生的弯矩标准值而发生的转角为:

()()()3019

4

12.872/1.0 1.210 6.65//0.0019720610 1.76210

y G M h EI rad θγγ-?????==

=?????,

单根横梁由此引起的垂直位移为:

()1 5.0760.001970.00998y f l m θ==?=,,

横梁的垂直总位移为:

()=0.0091+0.00998=0.01908nl y y f f f m =+,

该挠度可作为设置横梁预拱度的依据。

5.立柱与横梁的连接(图

6.3)

连接螺栓拟采用A 级普通螺栓8M24,查表得每个螺栓受拉承载力设计值59.9b t N kN =,

受剪(单剪)承载力设计值为76.9b

v

N kN =。

1

23

4

5

6

7

8

M

x

y

a)

b)

图6.3 主柱与横梁的链接(尺寸单位:mm )

a )螺栓孔及加劲肋位置图;

b )加劲肋

螺栓群重心处所受外力为:

合成剪力Q=9.186kN,合成弯矩M=25.882kN m ? 每个螺栓所受的剪力为:

()9.186 1.1488

v Q N kN n =

== 以横梁外壁与M 方向平行的切线为旋转轴,各螺栓距旋转轴的距离分别为:

螺栓1:()()10.203

0.155sin 14.8522.50.0812y m =+?-?=

螺栓2: ()()20.203

0.155sin 14.8522.50.1962y m =+?+?=

螺栓3:()()30.203

0.155sin 14.8522.530.2552y m =+?+??=

螺栓4:()()40.203

0.155sin 14.8522.550.2252y m =+?+??=

螺栓5:()()50.203

0.155sin 14.8522.570.1222y m =+?+??=

螺栓6:()()60.203

0.155sin 14.8522.590.0072y m =+?+??=

螺栓7:()()70.203

0.155sin 14.8522.5110.0522y m =+?+??=-

螺栓8:()()80.203

0.155sin 14.8522.5130.0222

y m =+?+??=-

由各y 值可见,3y 距旋转轴的距离最远,其拉力3

32b i

M y N y =∑,b M 为各螺栓拉力对旋转轴的力矩之和,则

2

33

i b N y M y =

∑ (2-1)

式中,22220.0810.1960.0070.176i y =++???+=∑

如图6.3所示,以过悬臂法兰盘圆心,分别与M 方向重合和垂直的两根直线为x 轴和y 轴,设受压区最大压应力为max c σ,则受压区压力对旋转轴产生的力矩为: ()()0.4022

20.2032

20.20.1015c c M y y dy σ=--? (2-2)

压应力合力绝对值为: ()

0.402220.203220.2c c N y dy σ=-?

(2-3)

式(8.4.2-2)、式(8.4.2-3)中c σ为距x 轴y 距离处法兰盘受压区的压应力,

max

0.20320.400.203

22

c

c y σσ-

=

- (2-4) 根据法兰盘的平衡条件:

b c c i

M M M N N +==∑

于是

()()2

0.20

2

322max 0.1015

3

0.20

2

223

max 0.1015

3

20.3040.10150.220.3040.10150.2i c c i N y y y dy M y N y y dy y y σσ+--=--=

∑?

∑?

经整理: 43max 33max 0.690 5.58410258823.4759.889100c c N N σσ--+?=-?=

解得:

()

()

32max 29.20510.263/c N kN N mm σ==

(1)螺栓强度验算

22

22

max 1.14829.2050.4881,76.959.9v b b v t N N N N ????????+=+=< ? ? ? ?????????

满足要求

设悬臂法兰盘厚度20mm ,则单个螺栓的承压承载力设计值为:

()30.0240.020*********.148,b c b

v c

N kN N kN N =???==<满足要求

(2)法兰盘的确定

受压侧受力最大的法兰盘区格,如图8.4.2-3所示的三边支承板,此时, 自自由边长 ()20.3101802sin 0.11928a m ???

=?= ???

固定边长 ()()21

0.4000.2030.09852

b m =

-=

220.09850.828,=0.0990.119

b a α==查表得 该区格内的最大弯矩为:

()2

32max max 20.09910.263100.11914.288/c M a kN m m ασ==???=?

法兰盘所需厚度为:

()3m a x 6

16614.28810

0.01970.020,21510

b M t m m f ??===

3号螺栓所在法兰盘区格为受拉侧受力最大的三边支承法兰盘,据此计算的法兰厚度

为:

()()()36

620.3100.203

629.20510

20.3100.2030.024*********.01820.020

,t a a i ai N l t D l f

m

m =

+-???=-??+??

? ???

=<满足要求

(3)加劲肋的确定

由受压区法兰盘的分布反力得到剪力为:

()3m a x 0.310180

s i n 20.09010.26310

109.

57828i Ri Ri c V a l kN σ???==

?????= ???

螺栓拉力所产生的剪力为329.205i V N kN ==

设加劲肋的高度和厚度分别为0.150,0.010Ri Ri h m t m == 剪应力为:

()()

3

22101.21067.387/125/,0.1500.01

i R v Ri Ri V N mm f N mm h t τ?===<=?满足要求

设加劲肋与横梁的竖向连接焊缝的焊脚尺寸8f h mm =,焊缝计算长度0.14w l m =,则角焊缝的抗剪强度为:

()()

3

22101.21064.456/160/,220.70.0080.14

i f e w V N mm N mm h l τ?===

6.柱脚强度验算

柱脚计算简图如图6.4所示。

a)

b)

图6.4 计算简图(尺寸单位:mm ) a)加劲法兰盘;b)底座加劲肋

(1)受力情况

垂直力()00 1.00.911.0619.955G G G N γγ==??= 水平力20.969H kN = 合成弯矩:

12.872131.245=arctan 5.63,=0130.612y x M M kN M αα????

===?? ? ? ?????

其偏角为简化计,认为

扭矩50.138t M kN m =?

(2)底板法兰盘受压区的长度n x 偏心距()131.245

13.1849.955

M e m G =

== 法兰盘几何尺寸:0.70;0.70;0.075t L m B m L m ===

基础采用C20混凝土,3

4

206108.0782.5510S c E n E ?=

==? 地脚螺栓规格采用8M30,受拉侧3M30地脚螺栓的总有效面积为:

()

4423 5.6061016.81810a e A m --=??=?

n x 根据下列试算求解:

()()()()()

()()

32432

3263/2/20

68.07816.81810313.1840.70/213.1840.70/20.0750.70

0.700.075038.502 1.5670.9800

0.14026a

e n

n

t t n n n n n n n n nA x e L x e L l L l x B

x x x x x x x m -+--+---=???+--+-?--=++-==

(3)底板法兰盘下的混凝土最大受压应力

()()

()()()()

322

2/229.9551013.1840.7/20.075/30.700.1400.70.0750.140/31.8 2.1

4.728/10.027.775/0.70.7

t c n t n c cc G e L l Bx L l x N mm f N mm σβ+-??+-=

=

--??--?=<=

?=?

(4)地脚螺栓强度验算

受拉侧地脚螺栓的总拉力为:

()()

()()

3

/2/3/3

9.9551013.1840.70/20.140/3221.718378.5235.50.70.0750.140/3

n a t n G e L x T L l x kN kN -+=--?-+=

=

(5)对水平剪力的校核

由柱脚底板法兰盘和基础混凝土的摩擦所产生的水平抗剪承载力为:

()()()()0.40.49.955221.71892.66920.969,fb a V G T kN H kN =+=+=>=满足要求

(6)柱脚法兰盘厚度的验算 a.受压侧

对三边支承板:

22220.2280.1615/0.1615/0.2280.708

a m

b m

b a ====

查表得:0.088α=

()2

322

0.088 4.728100.22821.629/c M a kN m m ασ==???=? 对两相邻边支承板:

()

()2222220.2360.16150.2860.1615sin 55.60.133/0.133/0.2860.466

a m

b m b a =+==??===

查表得:0.055α=

()2

3220.055 4.728100.28621.270/c M a kN m m ασ==???=?

取()max 21.629/M kN m m =? 法兰盘的厚度为:

()()3

max 6

16621.629100.02550.03020010b M t m m f ??===

b.受拉侧

()()()()36626221.71810/30.2750.377/20.02960.030,

0.3770.03220.275200102ta ai

ai N l t D l f

m m =

+???-=

=

?

满足要求。

7.地脚螺栓支承加劲肋的计算

由底座法兰盘(混凝土)的分反力得到的剪力为:

()()3221.718

0.2750.16 4.72810208.03273.9063

Ri

i Ri c ta V a l kN N kN σ==???=>=

=

地脚螺栓支承加劲肋的高度和厚度为:

0.25;0.015Ri Ri h m t m ==

剪应力为()()

3

22208.0321055.475/125/0.250.015

Ri

i R v Ri V N mm f N mm h t τ?===<=? 设加劲肋与标志立柱的竖向连接角焊缝的焊脚尺寸10f h mm =,焊缝的计算长度

0.250.010.24w l m =-=,则角焊缝的抗剪强度为:

()()

3

22208.0321061.914/160/,220.70.0100.24

i f e w V N mm N mm h l τ?===

8.基础验算

设基础由两层构成,上层宽1 1.80f W m =,高1 2.30f H m =,长1 3.30f L m =,下层宽

2 2.00f W m =,高20.20f H m =,长2 3.50f L m =,如图8.4.2-5所示

设基础混凝土重度324/kN m ,基底容许应力

100kPa

图6.5 基础示意图(尺寸单位:mm )

(1)基底所受荷载 竖向总荷载为:

()()11.061241.8 2.4 3.3 2.00.2 3.5386.805N G V kN γ=+=+??+??=

水平荷载20.969H kN = 由风载引起的弯矩为:

()()()()()()()

11112112/217.3970.301 6.65 2.300.20 3.2717.90/2 2.300.20183.035x wb wh f f wp f f M F F h H H F h H H kN m =++++?++=+?+++?++=? 由永久荷载引起的弯矩12.872y M kN m =? (2)基底应力验算

按轴心受压计算的基底平均应力为: ()()386.80555.258100,2.0 3.5

k a N p kPa f kPa A =

==<=?满足要求 基底应力最大值为:

()(),max 22

386.805183.03512.872

105.599112.0 3.5 2.0 3.5 3.5 2.066

1.2120,y

x k x y

a M M N p A W W kPa f kPa =

++=

++=?????<=满足要求

最小值为: (),m i n

4.9170y

x k x y

M M N p kPa A W W =--=> (3)基础倾覆稳定性验算

()()()

22220183.035

12.8720.473;0.0333386.805386.8050.4730.03330.474y x x y x y M M e m e m N N e e e m =

======+=+=

抗倾覆稳定系数 200 3.50

22 3.7 1.20.473

x Lf y

K e e ====>

(4)基础滑动稳定性验算

基础底面与地基土之间的摩擦系数为0.30,则基础抗滑动稳定性系数为: 0.30386.805

5.534 1.20,20.969

c K ?=

=>满足要求。

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

交通标志牌设计说明

交通标志牌设计说明 设计说明 概述采用的主要技术规范 公路工程技术标准》JTG B01-2003 道路交通标志和标线》GB5768-1999 公路工程基本建设项目设计文件编制办法》 设计要点 ( 一) 交通标志 1. 设计原理 交通标志指应用图形符号和文字符号传递特定信息,对交通进行导向、警规定 和指示,用以管理交通安全的设施。 (1) 标志及牌面信息以《道路交通标志和标线》GB5768-1999为基 础,参考河南省地方标准《公路设计技术要求》DB41/419-2005。 根据实际需要,尽量做到各类标志完善、齐全。 (2) 标志内容应准确、醒目,以便引导司机正确行驶,应避免标志 遗漏或内容模糊等现象。 (3) 标志的结构设计应合理,牌面设计应以庄重、美观为原则。 2. 标志牌面设计 标志牌面设计以司机在公路上60km/h 速度下行驶能及时辨认标志 内容为基本原则。根据《道路交通标志和标线》GB5768-1999的有关规定设置标志牌。标志汉字高度采用30厘米,高宽比为1:1 ,字间 距不小于3 厘米,行距不小于1 0厘米,汉字笔划粗为3 厘米,标志

采用中英文对照,英文字高为汉字高度的一半。 牌面反光材料的选择,既要考虑各类反光膜的反光特性、使用功 能、应用场合和使用年限,又要分清牌面中不同内容部分的主次关系, 这样才能使牌面交通信息在夜间有较好的视认效果; 标志牌面采用 3M工程7年级反光膜。 3. 标志结构设计 根据标志牌面尺寸大小及设置位置的需要,采用悬臂式安装。标志下缘净空 4.5米;标志板采用2mn后铝合金板制作。 4. 标志技术要求 (1) 交通标志的形状、图案、颜色应严格按照《道路交通标志和标线》GB5768- 1999标准或设计图的规定执行。 (2) 交通标志的边框外缘,应有衬底色。衬底色规定为指路、指示标志为蓝色,警告标志为黄色; 禁令标志为红色。标志板与滑动铝槽、卷边加固件连接,在保证连接强度和标志板面平整,不影响贴反光膜的前提下,可采用铆接或点焊。 5. 标志的设置原则 在十字路口和被交道路交叉处设置方向、地点标志,标志上地点名称应是交通流的主要生成源。 6. 施工主要事项 (1)路侧设置的柱式标志,标志板内缘距土路肩边缘距离不小于25cm;悬臂式标志,标志板下缘距路面的净空高度不得小于 4.5m。 (2) 所有标志立柱和横梁都应焊接柱帽和横梁帽,柱帽和横梁帽用钢板冲压成型。 (3) 标志板在运输、吊装过程中应小心,避免对标志板、反光膜产生损坏。 (4) 标志支撑结构(包括: 立柱、横梁、法兰盘)应按照规定进行热镀锌处理。镀 锌量为600g/?. (5) 螺栓、螺母、垫圈采用镀锌处理。如采用热镀锌,必须清理螺方或作离心处理。 (6) 铝合金板、与钢材接触的部位,应采用相应的防锈措施。镀锌层在运输、安装过程中造成损坏,应及时采取补救措施。

大学生结构设计大赛计算书模板

枣庄学院第一届结构设计大赛第九组作品设计计算书 学校名称:枣庄学院 专业名称:土木工程专业 学生姓名:蒋文忠吴少波杨广晓黎斌邵淑营 指导教师:高志飞张秀丽 二〇一四年五月

理论分析计算书目录 一、设计说明 (3) 1、方案构思 (3) 2、结构选型 (4) 3、结构特色 (4) 二、方案设计 (5) 1、设计基本假定 (5) 2、模型结构图 (5) 3、节点详图 (5) 4、主要构件材料表及结构预计重量 (5) 三、结构设计计算 (6) 1、静力分析 (6) 2、内力分析 (6) 3、承载力及位移计算 (7) 四、结构分析总结 (8)

一、设计说明 根据竞赛规则要求,我们从模型制作的材料抗压特性,冲击荷载形式和静力加载大小要求等方面出发,结合节省材料,经济美观,承载力强等特点,采用比赛提供的木材细杆和木板,502胶水味粘结剂精心设计制作了结构模型。 1、方案构思 模型主要承受竖直静荷载,竖直静荷载较容易满足。 (1)本结构主要构思是想利用腹杆的轴力来抵抗荷载的作用 (2)设计的总原则是:尽可能的利用竖向支撑的腹杆来提高柱子的承载力而在柱子之间辅以细杆来稳定结构,并利用木材的抗拉性能,及抗压性能来抵抗荷载的作 2、结构选型 由于梯形具有较强的稳定性,而且在平面上容易找平,我们选择梯形为主体结构框架,桁架受力均匀简单,仅受轴力,便于木材性能的发挥。 2.1结构外形 结构上平面为跨度为900mm的等边三角形,内部采用空间桁架结构加强稳定性。 2.2材料截面选择

主体下弦杆截面为四根8*6的杆件粘接而成,两边的两个侧杆截面为5*3的杆件,保证抗压的同时减轻材料的质量。上弦杆为截面为四个5*3的杆件,两侧腹杆为两个截面8*6的杆件,中间三个腹杆为截面5*3的杆件。 2.3节点设计 主体框架结构相交的节点由于杆的倾斜在加静载时会引起较大的剪力,在连接时用小木片填充密实,再用水平短木条相连使木条在下面顶住节点上部斜梁,在加载处节点贴上薄木片来增大接触面积,从而来增大节点强度,从而在结构受力计算时一些节点模拟成刚节点。 3、结构特色 这个结构是在我们制作结构对结构进行试验的多次循环反复而后的出来的结构,它凝聚了所有的试验所得的经验。 它的优点: (1)从结构的外形上看,我们选择梯形作为主体形状,受力均匀,加载方便,上宽下窄,形状渐随着高度逐渐变化,有活力。 (2)根据结构力学求解器软件建立的模型分析,可得出结构位移最大点,针对这一情况,我们改造出变截面柱,成为我们结构一大特色。 (3)斜梁相交时,用胶水加固,这大大提高了斜梁的稳定性和强度。 (4)结构有效的节约了材料,采用合适的杆加固,经济适用。 (5)结构模仿实际工程,采用腰梁,增强抗震性和稳定性。 (6)根据结构力学求解器软件建立的模型分析结果,我们加强顶部和支座强度。

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

交通标志牌结构验算

悬臂式标志牌结构设计计算书 1 设计资料 1.1 板面数据 板面高度:H = 2.00(m) 板面宽度:W = 8.00(m) 板面单位重量:W1 = 13.26(kg/m^2) 1.2 横梁数据 边长:0.18(m) 横梁长度:L = 7.8(m) 横梁壁厚:T = 0.008(m) 横梁间距:D1 = 1.0(m) 横梁单位重量:W1 = 45.22(kg/m) 1.3 立柱数据

边长: 0.35(m) 立柱高度:L = 7.40(m) 立柱壁厚:T = 0.014(m) 立柱单位重量:W1 = 153.86(kg/m) 2 荷载计算 2.1 永久荷载 各计算式中系数1.1系考虑有关连接件及加劲肋等的重量而添加。2.1.1 板面重量计算 标志版单位重量为13.26(kg/m2) 标志版重量: G1 = 13.26×16×9.8×1.1(N) = 2.2871(KN) 2.1.2 横梁重量计算 G2 = 2×45.22×7.8×9.8×1.1(N) = 7.6046(KN) 2.1.3 立柱重量计算 G3 = 153.86×7.8×9.8×1.1(N) = 12.9372(KN) 2.1.4 计算上部总重量 G = G1 + G2 + G3 = 22.8289(KN) 3 风荷载计算 3.1 标志版风力 F1 = βz×μs×μz×ω0×(W ×H) = 12.944(KN) 3.2 立柱风力 F2 =βz×μs×μz×ω0×(W ×H) = 2.096(KN) 4 横梁设计计算 说明:由于单根横梁材料、规格相同,根据基本假设,可认为每根横梁所受的荷载为总荷载的一半。 对单根横梁所受荷载计算如下: 4.1 荷载计算 竖直荷载G4 = γ0×γG×G1 / 2 = 1.372(KN) 均布荷载ω1 = γ0×γG×G2 / (2 ×H) = 0.585(KN/m) 水平荷载F wb = F1 / 2 =6.472(KN) 4.2 强度验算 计算横梁跟部由重力引起的剪力 Q y1 = G4+ ω1 ×H = 5.935(KN) 计算由重力引起的弯矩 M y1 = G4×(l2 + l3) + ω1 ×l12 / 2 = 45.393(KN*m) 计算横梁跟部由风力引起的剪力 Q x1 = F1 = 6.472(KN) 计算由风力引起的弯矩 M x1 = F1×(l2 + l3) = 30.0948(KN*m) 4.3 横梁截面信息 横梁截面积 A = 5.504 ×10-3 (m2) 横梁截面惯性矩I = 2.72 ×10-5 (m4)

结构设计大赛计算书

黑龙江省大学生结构设计 大赛 作品名称:塔吊 参赛队员: 指导老师:

目录 一.设计说明书 (3) 1.方案构思 (3) 2.结构选型 (4) 二.方案设计 (4) 1.CAD三维图 (4) 2.实体结构 (5) 3.节点祥图 (8) 三.计算书 (8) 1. 结构分析 (8) (1)结构周期 (9) (2)结构九模态 (11) 2.节点分析 (11) 3.位移计算 (11) (1)位移表 (11) (2)位移图 (12) 4.轴力图、弯矩图 (13) (1)轴力图 (13) (2)弯矩图 (14) 5. 结构计算假定、各单元性能参数和模型材料 (15) 四. 结构分析总结 (15) 五. 结语 (16)

一. 设计说明书 现代结构讲究结构和美学相适应,在满足结构功能的通时体现建筑美,同时也传递一种精神,一种理念。这是本作品设计的源泉,打破传统塔吊的结构型式,体现了力与美的完美结合。 图1. 塔吊 1. 方案构思 形象是结构内在品质物化的外在形态,是表现结构内涵和个性的形式和语言系统。为使我们的结构能给人留下特别的印象,考虑从各种技术手段上来表现结构形象。塔吊在我们建筑施工领域是不可却少的一部分,当下的塔吊种类也相对单一,所以设计出一个既美观又实用而且质量轻便的塔吊是一个重要的工作。此次比赛我们致力于设计出一个最合理,质量最轻,且无多余联系的塔吊体系。同时也希望能够在未来的生产生活中有很大的促进作用。

我们的结构采用两个三角形对插在一起撑起一个整体,塔身共8根主承重杆件,整个结构外观简洁、新颖。 2. 结构选型 从材料力学中我们学到,结构会受到拉、压、弯、剪、扭共四个力。从力学可分析,三角形是最稳定的结构,我们的结构采用两个三角形,利用三角斜撑的稳定性,结构上部荷载就可逐层分解到下部支架,受力均匀,从而使整个结构稳定。考虑到比赛中模型先后受到侧向荷载和竖向荷载,其中以侧向荷载为主要控制荷载,模型结构选择了框架和撑杆构成的体系,框架结构主要承受竖向荷载,撑杆主要承受侧向荷载,从而保证结构具有足够的侧向刚度,控制其侧向位移在规定范围内。 二.方案设计 1.CAD三维图 图2. 俯视图

道路交通标志设计的一般要求标准范本

操作规程编号:LX-FS-A35138 道路交通标志设计的一般要求标准 范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

道路交通标志设计的一般要求标准 范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 交通标志的基本功能是为车辆和行人提供完善和清晰的情报。面对复杂多变的交通状况和环境因素,理想的交通标志设计应满足以下要求: (1)对交通标志颜色的要求 对于颜色的选择,一方面要确保交通标志的视认性,另一方面还应考虑颜色所表达的抽象概念。根据颜色视觉的规律,道路交通标志多采用红、黄、绿、蓝、白、黑等颜色,不用中间色。 a.红色,在人们心理上会产生强烈的兴奋感和刺激性,适用于表达禁止、紧急停止等信息。用于禁令

交通标识技术要求

交通标识技术要求-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

施工组织设计 第一章总体施工组织布置及规划 若我公司中标,即按照本投标文件中的承诺,派遣强有力的领导班子,组建项目经理部。并由项目经理率领由各部门负责人、施工队负责人及部分劳动力组成的先遣队,迅速完成承包人驻地建设及施工临时设施布设,尽早全面展开施工。项目经理部挂牌办公,代表公司全面履行合同。一、项目管理机构 根据本项目具体情况,结合我司施工经验,项目经理部设项目经理、技术负责人,下按“四部一室”(工程技术部、质安部、物资设备部、计财部、综合办公室)的编制设置。实行项目经理负责制,并按项目法实行统一组织、统一管理、统一协调,做到精心组织、科学管理、合理安排,确保本工程安全、质量、工期、环保及文明施工等各项目标的实现。 二、施工临建 1、驻地建设 合同段项目经理部及施工队营地设置在建设单位提供的场所,或租用民房并完善办公、生产生活设施,施工营地内设标志标牌加工制作棚和仓库。详见临建设施集中布置图。 2、施工用水 本工程所在区域水系较发达,施工驻地内生产、生活用水分开设蓄水池,自附近居民用水点接入,施工现场用水采用水车供应。 3、施工用电 用电与地方电力部门协商接入,并自备30kw发电机组确保施工用电连续性,施工现场用电采用自发电。 4、通讯联络 当地通信条件较完善,所有人员配备移动电话,项目经理部配备固定电话一部,传真机一部,电脑1台并接入因特网。三、施工任务划分及机械设备、劳动力配置 根据本合同段具体工程量及工期要求,拟设1个标志标牌专业施工队及1个交通安全维护巡查组,分别承担本合同段的施工任务及交通安全畅通维护。因施工工期紧,作业面广,应投入劳动力及设备多开工作面同步施工。 标识标牌施工队:配备氧割设备、切割机、吊车、砼拌合设备、自卸汽车及其他小型机具等,劳动力26人,负责全线标志板、倒水尺安装等施工。 交通安全维护巡查组:配置交通车1台,人员2人,负责本合同段施工区的交通安全畅通维护工作。 四、设备、人员动员周期和设备、人员、材料运到施工现场的方法 1、施工准备组织及工期计划安排 本工程工期100天,我方拟定施工准备期为3天,根据招标文件要求,暂预定2011年9月3日开工(具体按业主要求执行),2011年12月10日前完成全部施工。 2、劳动力进场计划及到场方法 ⑴第一批:接到中标通知书后2天内,施工先遣队在项目经理部组织及施工队长的带领下进场,进行施工准备及临时驻地建设。 ⑵第二批:签订合同后2天内,施工队劳动力全部进场,并全面展开施工。 3、机械设备动员周期及运到现场的方法 投标“资审文件”所列的施工机械设备及仪器,公司均已准备到位,开工前可全部提前进场,施工机械设备采用动态管理,满足服务周期和监理工程师、业主的要求。 4、材料运到现场的方法 经现场调查,初步拟订材料来源和运输方法如下:

长安大学2016年度结构设计大赛赛题-竹质塔结构

长安大学2016年大学生结构设计竞赛赛题 竹质塔结构模型设计、制作与测试 1.竞赛模型 设计能够承受一定的竖向荷载和水平地震作用的竹质塔结构模型,具体结构形式不限,可为四根、六根或八根柱组成的框架式空间结构,也可为其他结构。模型包括小振动台系统、上部塔结构模型和塔顶铁块三个部分,铁块通过热熔胶固定于塔顶,塔结构模型由参赛选手制作,并通过螺栓和竹质底板固定于振动台上,图1给出了一示意性结构图。 图1 模型立面示意图(单位:mm) 2. 模型要求 2.1 几何尺寸要求: (1) 底板:塔结构模型用胶水固定于模型底板上,底板为330mm×330mm×

8mm的木板(如图2所示),底板用螺栓固定于振动台上。 (2) 模型大小:模型总高度应为900mm,允许误差为±3mm。总高度为模型底板顶面至塔顶(模型顶面)上表面的垂直距离,但不包括塔顶铁块的高度。模型顶面为平面,应满足安全放置铁块的要求。模型底面尺寸不得超过220mm×220mm的正方形平面,塔顶不得小于150mm×150mm的正方形平面,即整个模型需放置于该正方形平面范围内,可为等截面结构也可为变截面结构,模型底面外轮廓与底板边缘应有足够的距离以保证螺栓能顺利紧固。模型的主要受力构件应合理布置,整体结构应体现“创新、轻巧、美观、实用”的原则。 图2模型底板示意图(单位:mm) 2.2 模型及附加铁块安装要求: (1)利用热熔胶将附加铁块固定在塔顶上,可在顶层设置固定铁块辅助装置,但辅助装置和铁块不能超出塔顶范围且不能直接跟柱接触。 (2) 提供的铁块为底边150mm高50mm的长方体,重量约为8.83 kg。 3. 加载设备介绍

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

交通安全设施设计说明

交通安全设施设计说明 一、设计依据 1、测量提供的地形图 2、沿线规划路网 3、现场踏勘资料 4、主体工程施工图设计图纸 二、设计采用规范 (1)《城市道路工程设计规范》(CJJ37-2012); (2)《城市道路路线设计规范》(CJJ 193-2012); (3)《城市道路交叉口设计规程》(CJJ152-2010); (4)《城市道路交叉口规划规范》(GB50647-2011); (5)《城市道路交通设施设计规范》(GB 50688-2011); (6)《道路交通标志和标线》(GB5768-2009); (7)《城市道路交通标志和标线设置规范》(GB51038-2015); (8)《道路交通标志板及支撑件》(GB/T 23827-2009); (9)《道路交通反光膜》(GB/T18833-2012); (10)《路面标线涂料》(JT/T280-2004); (11)《路面标线用玻璃珠》(GB/T 24722-2009); (12)《连续热镀锌钢板及钢带》(GB/T2518-2008); (13)《一般工业用铝及铝合金热挤压型材》(GB/T6892—2006); (14)《道路交通标线质量要求和检测方法》(GB/T16311—2009); (15)《道路交通信号灯设置与安装规范》(GB 14886-2006); (16)《道路交通信号控制机》(GB25280-2010); (17)《道路交通信号灯》(GB 14887-2011); (18)《城市交通信号控制系统术语》(GA/T 509- 2004); (19)《城市道路交通信号控制方式适用规范》(GA/T 527-2005); (20)《建筑物防雷设计规范》(GB 50057-2010); (21)《电力工程电缆设计规范》(GB50217-2007); (22)《低压配电设计规范》(GB 50054-2011)。三、工程简况 工程全长564.62m,道路等级为城市次干路,设计速度为30km/h,路面为沥青混凝土路面。 横断面形式为:25m=5m人行道+0.25m路缘带+2×3.5m车行道+0.5m中间双黄线+2×3.5m车行道+0.25m路缘带+5m人行道。 本工程交通安全和经管设施等级为C级。 四、设计原则 1. 根据行车速度、道路线形、交通流量、流向和交通组成、道路沿线的状况等,适当确定交通标志和标线等交通设施的设置位置;以道路工程设计为依据,统盘考虑,整体布局,做到连贯性、一致性,满足近期道路交通经管的需求,确保行驶的安全、快捷、畅通。标志的布设应以不熟悉周围路网体系的司机为对象,通过标志的引导,能顺利、快捷地抵达目的地,不允许发生错向行驶。 2. 道路交通标志和标线是交通经管设施,路上的标志具有法律效力,应按交通经管法规及有关规范,正确、合理地设置。道路交通设施设置不得侵占建筑限界,保证侧向余宽;不应侵占人行道有效宽度和净空高度。 3.当需要在同一地方设置两种以上标志时,可以安装在一根标志立柱上,但同一方向的标志最多不应超过四种。标志牌在一根立柱上并设时,应按禁令、指示、警告的顺序,先上后下,先左后右地排列。交通标志设置的净空高度:单柱式一般宜为1.5~2.5m,悬臂式一般应大于该道路规定的净空高度。 4.道路标线中车行道分界线的尺寸、导向箭头的尺寸和路面文字标记的高度应根据路段的设计速度确定。 五、交通标志设计 交通标志是用图形符号、颜色和文字向交通参与者传递特定信息,用于经管交通的设施。道路交通标志的形状、图案、尺寸、设置、构造、反光和照明以及制作,必须按《道路交通标志和标线》(GB5768-2009)规定执行。以不熟悉本工程路网体系的司机为使用对象,使其通过交通标志的引导,顺利、快捷、安全地抵达目的地,避免发生错误行驶。 1. 警告标志 警告标志颜色为黄底、黑边、黑图案;形状为等边三角形,顶角朝上;黄底反光,黑图案和边框不反光。 2. 禁令标志

结构设计大赛(桥梁)计算书

桥梁结构设计理论方案作品名称蔚然水岸 参赛学院建筑工程学院 参赛队员吕远、李丽平、李怡潇、赵培龙 专业名称土木工程 一、方案构思 1、设计思路 对于这次的设计,我们分别考虑了斜拉桥、拱桥、梁式桥和桁架桥的设计方案。斜拉桥可以看作是小跨径的公路桥,且对刚度有较高的要求,所以斜拉桥对材料的要求比较高,对于用桐木强度比不上其他样式的桥来得结实;拱桥最大主应力沿拱桥曲面而作用,而沿拱桥垂直方向最小主应力为零,可以很好的控制桥梁竖直方向的位移,但锁提供的支座条件较弱,且不提供水平力,显然也不是一个好的选择;梁式桥有较好的承载弯矩的能力,也可以较好的控制使用中的变形,但桥梁的稳定性是个很大的问题,控制不了桥梁的扭转变形,因此,我们也放弃了制作梁式桥的想法;而桁架桥具有比较好的刚度,腹杆即可承拉亦可承压,同时也可以较好的控制位移用料较省,所以,相比之下我们最后选择了桁架桥。 2、制作处理

(1)、截杆 裁杆是模型制作的第一步。经过试验我们发现,截杆时应该根据不同的杆件,采用不同的截断方法。对于质地较硬的杆应该用工具刀不断切磋,如同锯开;而对于较软的杆应该直接用刀刃用力按下,不宜用刀口前后切磋,易造成截面破损。 (2)、端部加工 端部加工是连接的是关键所在。为了能很好地使杆件彼此连接,我们根据不同的连接形式,对连接处进行处理,例如,切出一个斜口,增大连接的接触面积;刻出一个小槽,类似榫卯连接等。 (3)拼接 拼接是本模型制作的最大难点。由于是杆件截面较小,接触面积不够,乳胶干燥较慢等原因,连接是较为困难的。我们采取了很多措施加以控制,如用铁夹子对连接处加强压、用蜡线进行绑扎固定等。对于拱圈的制作,则预先将杆件置于水中浸泡并加上预应力使其不断弯曲,并按照先前划定的拱形不断调整,直至达到理想形状。 在拱脚处处理时,先粘结一个小的木块,让后用铁夹子施加很大的压力,保证连接能足够牢固。 乳胶粘接时要不断用电吹风间断性地吹风,使其尽快形成粘接力,达到强度的70%(基本固定)后即可让其自行风干。 (4)风干 模型制作完成后,再次用吹风机间断性地吹粘接处,基本稳定后,让其自然风干。 (5)修饰

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

道路交通标志设计的一般要求示范文本

道路交通标志设计的一般要求示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

道路交通标志设计的一般要求示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 交通标志的基本功能是为车辆和行人提供完善和清晰 的情报。面对复杂多变的交通状况和环境因素,理想的交 通标志设计应满足以下要求: (1)对交通标志颜色的要求 对于颜色的选择,一方面要确保交通标志的视认性, 另一方面还应考虑颜色所表达的抽象概念。根据颜色视觉 的规律,道路交通标志多采用红、黄、绿、蓝、白、黑等 颜色,不用中间色。 a.红色,在人们心理上会产生强烈的兴奋感和刺激性, 适用于表达禁止、紧急停止等信息。用于禁令标志的红 圈、红斜杠、“停车让行”标志、“禁止进入”标志等的 底色;

b.黄色,具有警戒的感觉,适用于传递警告信息。用于警告标志、高速公路的“终点提示”、“车距确认”等标志的底色; c.蓝色,使人产生沉静、安宁的感觉,多用于传递指示信息。用于指示标志、施工标志、一般道路指路标志的底色; d.绿色,使人产生舒适、恬静、安全感,多用它来提示安全、行进等信息。用于高速公路和城市快速路的指路标志底色; e.棕色,用于旅游区标志的底色; f.黑色和白色,具有较好的对比度,交通标志的文字、图形符号多采用这两种颜色。 (2)对交通标志形状的要求 人们对于交通标志的认知始于对其形状、颜色的判断。因此交通标志的形状被赋予了一定的含义,以增加其

交通标志牌结构验算

悬臂式标志牌结构设计计算 书 1设计资料 1.1板面数据 板面高度:H = 2.00(m) 板面宽度:W = 8.00(m)

板面单位重量:W1 = 13.26(kg/m^2)

边长:0.18(m) 横梁长度:L = 7.8(m) 横梁壁厚:T = 0.008(m) 横梁间距:D1 = 1.0(m) 横梁单位重量:W1 = 45.22(kg/m) 1.3立柱数据 边长: 0.35(m) 立柱高度:L = 7.40(m) 立柱壁厚:T = 0.014(m) 立柱单位重量:W1 = 153.86(kg/m) 2荷载计算 2.1永久荷载 各计算式中系数 1.1 系考虑有关连接件及加劲肋等的重量而 添加。 2.1.1板面重量计算 标志版单位重量为13.26(kg/m 2) 标志版重量: G1 = 13.26× 16× 9.8× 1.1(N) = 2.2871(KN) 2.1.2横梁重量计算 G2 = 2× 45.22× 7.8× 9.8× 1.1(N) = 7.6046(KN) 2.1.3立柱重量计算

G3 = 153.86× 7.8× 9.8× 1.1(N) = 12.9372(KN)

G = G1 + G2 + G3 = 22.8289(KN) 3风荷载计算 3.1标志版风力 F1 = βz × μs × μz ×ω 0× (W × H) = 12.944(KN) 3.2立柱风力 F2 = βz × μs × μz ×ω 0× (W × H) = 2.096(KN) 4横梁设计计算 说明:由于单根横梁材料、规格相同,根据基本假设,可认为每根横梁所受 的荷载为总荷载的一半。 对单根横梁所受荷载计算如下: 4.1荷载计算 竖直荷载G4 = γ 0 × γ G × G1 / 2 = 1.372(KN) 均布荷载ω1 = γ 0 × γ G × G2 / (2 × H) = 0.585(KN/m) 水平荷载F wb = F1 / 2 =6.472(KN) 4.2强度验算 计算横梁跟部由重力引起的剪力 Q y1 = G4 + ω1 × H = 5.935(KN) 计算由重力引起的弯矩

结构设计大赛计算书模板

第1组 设计说明 作品名称龙骨桥 作品重量342g

建筑方案说明 1、建筑材料 A0绘图纸两张、200ml白乳胶、线。在实际制作中常常在白纸之间刷上胶,故所用的材料实际上是纸胶复合材料。根据组委会提供的参考资料可知:纸胶复合材料受拉时呈现线弹性和脆性,受拉弹性模量为E t=2492.2 N/mm2,抗拉强度设计值为f t=32.91N/ mm2;不失稳的情况下纸管的抗压强度设计值为E c=7.18 N/mm2,是理想的弹塑性材料,受压弹性模量为f c=831.89 N/mm2。其抗拉强度设计值f t是抗压强度设计值f c的4倍多,可见纸的受拉性能比受压性能好的多。 2、建筑工程 我们利用纸胶的抗拉、抗压和抗弯性能,及绳子的抗拉强度高而无刚度特点,用纸胶构件和绳子搭制一座跨度1040mm,桥宽190mm 的纸桥。通过最合理的结构设计,构件尺寸设计和最优的构件组装方法,以达到在用料最省的条件下尽可能地通过更大的荷载,使荷质比达值最大,充分发挥材料的力学性能。 结构设计说明 1、结构的选型 按设计要求,小车的速度较慢,故可以不考虑荷载的动态效应,即把每一时刻的荷载都当作静荷载处 理。小车从杆的一端移到另一端,内应 力最大处的包络图如右图所示,为一抛

物线方程y=-(x-1/2)^2+1/2,取其为设计拱轴线,在拱的构造上我们用三根杆做成梯形来代替合理拱轴线。 拱桥按桥面的位置分为上承式,中承式,下承式。 上承式桥优点是桥面系构造简单,拱圈与墩台的宽度较小,桥上视野开阔,施工方便;缺点是桥梁的建筑高度大,纵坡大和引桥长。一般用在跨度较大的桥梁。 中承式桥的优点是建筑高度较小,引道较短;缺点是桥梁宽度大,构造较复杂,施工也较麻烦。 下承式桥的优点是桥梁建筑高度很小,纵坡小,可节省引道长度;缺点是构造复杂,拱肋施工麻烦。一般用于地基差的桥位上。 按照有无水平推力分可分为有水平推力和无水平推力。 在竖向荷载作用下拱脚对墩台无水平推力作用的拱桥。其推力由刚性梁或柔性杆件承受,属于内部超静定、外部静定的组合体系拱桥。适用于地质不良的桥位处,墩台与梁式桥基本相似,体积较大,只能做成下承式桥,建筑高度很小,桥面标高可设计的很低,降低纵坡,减小引桥长度,因此可以节约材料。但是,结构的施工比较复杂。 在竖向荷载作用下拱脚对墩台有水平推力作用的拱桥。水平推力可减小跨中弯矩,能建成大跨度的桥梁。造型美观,城市桥梁一般优先选用,可做成上承式、中承式桥。缺点是,对地质要求很高,为防止墩台移动或转动,墩台须设计很大,施工较麻烦。 我们知道在纸桥加载的时候,并没有提供水平力,由这一点在综合考虑以上两方面我们采取的是下承式拱桥。主拱和承梁的截面选

城市道路交通标志标线的设计

浅谈城市道路交通标志标线的设计 摘要:道路交通标志标线是用以管制和引导交通的安全设施,在道路交通技术中广泛地被广大道路使用者所接触,是驾驶员行车的方向和向导,是道路标识的最重要组成部分。城市道路交通标志标线都有共同的设计原则:规范化原则,良好的视认性原则,明确的引导性原则,良好的易读性原则,良好的通用性原则,环保性原则。城市道路交通标志的设计应科学合理,有效地组织交通流,提高通行能力,减少交通事故,预防交通拥堵,节约能源,降低公害,美化道路交通环境并提高城市品位。 关键词:城市道路交通标志交通标线设计 abstract: road traffic signs and markings are used to control and guide the traffic safety facilities, in the road traffic technology widely vast road user contact, is the direction and guide the driver drive, is the most important part of the road sign. city road traffic signs and markings are design principles in common: standardization principle, legibility principles of good, clear guiding principle, principle of good readability, principle of good versatility, environmental protection principle. the design of city road traffic signs should be scientific and reasonable, efficient organization of traffic flow, to improve traffic capacity, reduce traffic accidents, prevention of traffic congestion,

相关文档
最新文档