实验三调节效应与中介效应的检验

实验三调节效应与中介效应的检验
实验三调节效应与中介效应的检验

实验三调节效应与中介效应的检验

一、实验性质

上机实验(计算机、spss软件)

二、实验目的与要求

1、理解调节效应和中介效应的理论涵义;

2、使学生熟练掌握应用SPSS针对调节效应和中介效应进行统计检验,熟悉操作步骤,并能够对统计分析的结果进行解释。

三、实验原理

(一)调节效应

1、调节变量(moderator)的定义

变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。这种有调节变量的模型一般地可以用图1 示意。调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱。

在做调节效应分析时,通常要将自变量和调节变量做中心化变换。简要模型:Y = aX + bM + cXM + e 。Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。如果c显著,说明M 的调节效应显著。

2、调节效应的分析方法

显变量的调节效应分析方法,分为四种情况讨论:

(1)当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;

(2)调节变量是连续变量时,自变量是连续变量时,将自变量和调节变量中心化,做

Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。或者,作XM的回归系数检验,若显著,则调节效应显著;

(3)当自变量是连续变量时,调节变量是类别变量,分组回归:按 M的取值分组,做 Y 对 X的回归。若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。

(4)潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。当调节变量是类别变量时,做分组结构方程分析。做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau提出的无约束的模型。

(二)中介效应

1、中介变量(mediator)的定义

自变量X对因变量Y的影响,如果X通过影响变量M来影响Y,则称M为中介变量。Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3。其中,c是X对Y的总效应,ab是经过中介变量M的中介效应,c′是直接效应。当只有一个中介变量时,效应之间有c=c′+ab,中介效应的大小用c-c′=ab 来衡量。

2、中介效应分析方法

中介效应是间接效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。步骤为:第一步检验系统c,如果c不显著,Y与X相关不显著,停止中介效应分析,如果显著进行第二步;第二步一次检验a,b,如果都显著,那么检验c′,c′显著中介效应显著,c′不显著则完全中介效应显著;如果a,b至少有一个不显著,做Sobel检验,显著则中介效应显著,不显著则中介效应不显著。Sobel检验的统计量是z=^a^b/sab ,中 ^a, ^b 分别是 a, b的估计, sab=^a2sb2 +b2sa2, sa,sb分别是 ^a, ^b的标准误。

(三)调节变量与中介变量的比较

中介效应与调节效应的SPSS操作方法

处理数据的方法

第一:做描述性统计,包括MSD 和内部一致性信a(用分析里的scale里的realibility analsys)

第二:将所有变量做相关,包括统计学变量和假设的X,Y,M

第三:做回归分析。(在回归中选线性回归linear)

要先将自变量和M中心化,即减去各自的平均数

1、现将M(调节变量或者中介变量)、Y因变量,以及与自变量、因变量、M调节变量其中任何一个变量相关的人口学变量输入indpendent

2、再按next 将X自变量输入(中介变量到此为止)

3、要做调节变量分析,还要将X与M的乘机在next里输入作进一步回归。

分析结果中的Beta就是Y=cX+bM+e的系数,B下的constant是常数。检验主要看F是否显著

五、实验操作

1、调节效应检验

Employee 问卷,该数据库搜集了474位员工的人事与薪酬数据,重要变量包括性别(为字符变量,需要虚拟化为0,1的数值变量、受教育年限、在该公司的年薪、先前的工作年限、是否为少数民族、起薪与目前薪资。

本范例以目前薪资为因变量,教育程度与起薪为解释变量,研究者假设起薪对目前薪酬的影响时候,请以教育程度为调节变量来检验调节效应。

如果研究教育程度对目前薪资的影响时,以性别为调节变量呢?

2、中介效应检验

H1:教育程度X会影响目前薪资Y

H2:教育程度X会影响起薪Z

H3:起薪Z会影响目前薪资Y

H4:起薪Z为教育程度X对目前薪资Y的影响的中介变量

如何做SPSS的调节效应

标签: 杂谈 1、调节变量的定义 变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。调节变量可以是定性的,也可以是定量的。在做调节效应分析时,通常要将自变量和调节变量做中心化变换。简要模型:Y = aX + bM + cXM + e 。Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。如果c显著,说明M 的调节效应显著。 2、调节效应的分析方法 显变量的调节效应分析方法:分为四种情况讨论。当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做 Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按 M的取值分组,做 Y对 X的回归。若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e 的层次回归分析。 潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。当调节变量是类别变量时,做分组结构方程分析。做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau提出的无约束的模型。 3.中介变量的定义

塞曼效应观测实验

塞曼效应实验 1.实验目的 (1)学习观察塞曼效应的方法,用法布里-珀罗标准具观测汞546.1nm谱线的塞满分裂。 (2)掌握塞曼效应分裂谱线裂距的测量方法,并与理论值比较烦算某一激励电流下磁感应强度B的大小。 2.实验原理 (1)磁场中的能级分裂——塞曼效应 塞曼效应的产生是由于源自的总磁矩受到磁场作用的结果,其有如下关系: 总磁矩与总角动量不再一条线上,计算后得到有效为 其中g为朗德因子, 当原子处于外磁场中,μ绕外磁场B作旋进,原子获得附加能量: 说明在稳定磁场的作用下,原来的一个能级,分裂成(2J+1)个能级。 (2)塞曼跃迁的选择定则 在外磁场作用下,上下量能级附加能量分别为ΔE2,ΔE1,则

其中 为洛伦兹单位,B的单位是T,L的单位为cm-1. (3)汞546.1nm谱线在磁场中的分裂 汞546.1nm波是汞原子从到能级跃迁时产生的,在磁场中分 裂产生9条谱线,相邻谱线裂距为,垂直于磁场方向观察,中间三条为π线,两边各三条为σ线。 (4)F-P标准具 F-P标准具为多光束干涉装置,单色平行光在其中形成同心圆环等倾干涉。 自由光谱范围: 由此可以确定d,在实验中d取2mm。 设Δ是标准具能分辨的最小波长差,通常定义 为分辨率 Δ 一般为了比较高的精确度取,R为90%以上。 (5)塞曼效应测量公式 用透镜将F-P标准具的干涉环成像在焦平面的圆环直径为D,有 变化得到 对于同一波长相邻级次k,k-1级圆环直径分别为,,其直径平方差

,可见是一个与干涉级次k无关的常数。 对于同一级次有微小波长差的不同波长,而言可以得到 3.实验仪器装置 电磁铁,笔形汞灯,聚光镜,偏振光,滤光片,望远镜测微目镜 4.实验内容及操作 在垂直方向用F-P标准具定性观察Hg546.1nm谱线的塞曼分裂,分析谱线的偏振成分,定量测量塞曼分裂间隔并反算磁感应强度B。 (1)准备工作 (2)光路调节 1)调节聚光镜 2)放置干涉滤光片 3)调节聚光镜、滤光片,标准具与光源大致共轴 4)调整测量望远镜的高度 (3)塞曼效应观测 1)在加磁场前后观察 2)加装偏振片 (4)测量 1)在时,选择子谱线中一对合适的谱线圆环(最好不选相邻环线),和其中之一环对应的低一级次的环,并记录所测子谱线的间隔个数,测量直 径。算出波数差,依据间隔个数算出B。

如何用SPSS做中介效应与调节效应

如何用SPSS做中介效应与调节效应 1、调节变量的定义 变量Y与变量X的关系受到第三个变量M的影响,就称M为调节变量。调节变量可以是定性的,也可以是定量的。在做调节效应分析时,通常要将自变量和调节变量做中心化变换。简要模型:Y = aX + bM + cXM + e。Y与X的关系由回归系数a + cM来刻画,它是M的线性函数, c衡量了调节效应(moderating effect)的大小。如果c显著,说明M的调节效应显著。 2、调节效应的分析方法 显变量的调节效应分析方法:分为四种情况讨论。当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做 Y=aX+bM+cXM+e的层次回归分析:1、做Y对X和M的回归,得测定系数R12。2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e 的层次回归分析。 潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。当调节变量是类别变量时,做分组结构方程分析。做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau 提出的无约束的模型。 3.中介变量的定义 自变量X对因变量Y的影响,如果X通过影响变量M来影响Y,则称M为中介变量。Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3。其中,c是X对Y的总效应,ab是经过中介变量M的中介效应,c′是直接效应。当只有一个中介变量时,效应之间有 c=c′+ab,中介效应的大小用c-c′=ab来衡量。

温忠麟老师的检验中介效应程序

温忠麟老师的检验中介效应程序 一、中介效应概述 中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系而是通过一个或一个以上变量(M)的间接影响产生的,此时我们称M为中介变量,而X通过M对Y产生的的间接影响称为中介效应。中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应的不等于间接效应,此时间接效应可以是部分中介效应的和或所有中介效应的总和。 以最简单的三变量为例,假设所有的变量都已经中心化,则中介关系可以用回归方程表示如下: Y=cx+e1 1) M=ax+e2 2) Y=c’x+bM+e3 3) 上述3个方程模型图及对应方程如下: 二、中介效应检验方法 中介效应的检验传统上有三种方法,分别是依次检验法、系数乘积项检验法和差异检验法,下面简要介绍下这三种方法:

1.依次检验法(causual steps)。依次检验法分别检验上述1)2)3)三个方程中的回归系数,程序如下: 1.1首先检验方程1)y=cx+ e1,如果c显著(H0:c=0被拒绝),则继续检验方程2),如果c不显著(说明X对Y无影响),则停止中介效应检验; 1.2在c显著性检验通过后,继续检验方程2)M=ax+e2,如果a 显著(H0:a=0被拒绝),则继续检验方程3);如果a不显著,则停止检验; 1.3在方程1)和2)都通过显著性检验后,检验方程3)即y=c’x + bM + e3,检验b的显著性,若b显著(H0:b=0被拒绝),则说明中介效应显著。此时检验c’,若c’显著,则说明是不完全中介效应;若不显著,则说明是完全中介效应,x对y的作用完全通过M来实现。 评价:依次检验容易在统计软件中直接实现,但是这种检验对于较弱的中介效应检验效果不理想,如a较小而b较大时,依次检验判定为中介效应不显著,但是此时ab乘积不等于0,因此依次检验的结果容易犯第二类错误(接受虚无假设即作出中介效应不存在的判断)。 2.系数乘积项检验法(products of coefficients)。此种方法主要检验ab乘积项的系数是否显著,检验统计量为z = ab/ s ab,实际上熟悉统计原理的人可以看出,这个公式和总体分布为正态的总体均值显著性检验差不多,不过分子换成了乘积项,分母换成了乘积项联合标准误而已,而且此时总体分布为非正态,因此这个检验公式的Z值和正态分布下的Z值检验是不同的,同理临界概率也不能采用正态分布

西安交大《塞曼效应实验报告》

应物31 吕博成学号:10

塞曼效应 1896年,荷兰物理学家塞曼()在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。

中介变量 调节变量

如何用SPSS做中介效应与调节效应(转) 如何用SPSS做中介效应与调节效应 1、调节变量的定义 变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。调节变量可以是定性的,也可以是定量的。在做调节效应分析时,通常要将自变量和调节变量做中心化变换。简要模型:Y = aX + bM + cXM + e 。Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。如果c显著,说明M 的调节效应显著。 2、调节效应的分析方法 显变量的调节效应分析方法:分为四种情况讨论。当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。 潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。当调节变量是类别变量时,做分组结构方程分析。做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。前面的χ2减去后面的χ2得到一个新的

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

温忠麟老师的检验中介效应程序

温忠麟老师的检验中介 效应程序 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

温忠麟老师的检验中介效应程序 一、中介效应概述 中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系而是通过一个或一个以上变量(M)的间接影响产生的,此时我们称M为中介变量,而X通过M对Y产生的的间接影响称为中介效应。中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应的不等于间接效应,此时间接效应可以是部分中介效应的和或所有中介效应的总和。 以最简单的三变量为例,假设所有的变量都已经中心化,则中介关系可以用回归方程表示如下: 1) Y=cx+e 1 M=ax+e 2) 2 3) Y=c’x+bM+e 3 上述3个方程模型图及对应方程如下: 二、中介效应检验方法 中介效应的检验传统上有三种方法,分别是依次检验法、系数乘积项检验法和差异检验法,下面简要介绍下这三种方法:

1.依次检验法(causual steps)。依次检验法分别检验上述1)2)3)三个方程中的回归系数,程序如下: 首先检验方程1)y=cx+ e1,如果c显着(H0:c=0被拒绝),则继续检验方程2),如果c不显着(说明X对Y无影响),则停止中介效应检验; 在c显着性检验通过后,继续检验方程2)M=ax+e2,如果a显着(H0:a=0被拒绝),则继续检验方程3);如果a不显着,则停止检验; 在方程1)和2)都通过显着性检验后,检验方程3)即y=c’x + bM + e3,检验b的显着性,若b显着(H0:b=0被拒绝),则说明中介效应显着。此时检验c’,若c’显着,则说明是不完全中介效应;若不显着,则说明是完全中介效应,x对y的作用完全通过M来实现。 评价:依次检验容易在统计软件中直接实现,但是这种检验对于较弱的中介效应检验效果不理想,如a较小而b较大时,依次检验判定为中介效应不显着,但是此时ab乘积不等于0,因此依次检验的结果容易犯第二类错误(接受虚无假设即作出中介效应不存在的判断)。 2.系数乘积项检验法(products of coefficients)。此种方法主要检验 ,实际上熟悉统计ab乘积项的系数是否显着,检验统计量为z = ab/ s ab 原理的人可以看出,这个公式和总体分布为正态的总体均值显着性检验差不多,不过分子换成了乘积项,分母换成了乘积项联合标准误而已,而且此时总体分布为非正态,因此这个检验公式的Z值和正态分布下的Z 值检验是不同的,同理临界概率也不能采用正态分布概率曲线来判断。

塞曼效应实验报告

1、前言和实验目的 1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。 2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。 3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。 2、实验原理 处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。 总磁矩为 J μ 的原子体系,在外磁场为B 中具有的附加能为: E ?= -J μ *B 由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。则我们有: E ?= -z μB =B g m B J J μ 其中z μ为J μ 在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ= e m eh π4称为玻尔磁子,J g 为朗德因子,其值为 J g =) 1(2) 1()1()1(1++++-++ J J S S L L J J 由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=?j m 。 磁场作用下能级之间的跃迁发出的谱线频率变为: )()(1122' E E E E hv ?+-?+==h ν+(1122g m g m -)B μB 分裂的谱线与原谱线的频率差ν?为: ν?=' ν-ν=h B g m g m B /)(1122μ-、 λ?= c ν λ?2 =2λ (1122g m g m -)B μB /hc =2 λ (1122g m g m -)L ~

用SPSS作中介效应检验

SPSS实例:[16]中介效应的检验过程 spss做中介效应现在用的越来越普遍,虽然说用amos是最佳的工具,但是很多人还是喜欢spss,更容易理解,操作起来也比amos简单。下面我们就来分享一下如何使用spss进行中介效应的检验,这个教程是理论上的讲解,目的是让你理解这个过程。后面我们会具体的来操作一下,让你知道如何具体的去做,先来看看理论上的过程: 1.先要明确你的自变量和因变量,假如我们有三个变量分别是:自变量(x),因变量(y),中介变量(M)。 2.第一个要检验的是自变量对因变量的作用,我们用下面的方程表示:我们首先要做的是对系数c的检验,你 应该知道,用回归做检验,假如c不显著,说明不存在中介效应,停止检验;假如c显著,还不能说明存在中介效应,接着进行下面的步骤: 3.接着我们做自变量和中介变量之间的回归方程的检验,也就是用下面的方程来表示,假如系数a显著,说明X 确实可以预测M,但仍然没有说明中介效应的存在。假如a不显著,那就需要进行sobel检验。我们暂时不去 做sobel,因为还有一个步骤 4.现在我们要检验M和Y之间的关系,也就是下面的方程的系数是否显著。假如a显著、b也显著,那么就可以 证明中介效应存在;假如a和b中有一个不显著,另一个先不显著我们不知道,我们需要进行sobel检验,s obel检验显著,那么中介效应存在。 5.到此为止,我们就完成了中介效应的检验,下面来总结一下整个流程,看下面的流程图: 6.中介效应的具体操作,参考我的下一篇文章。

SPSS实例:[17]进行sobel检验(小白教程) 通常我们在做中介效应的时候,遇到有一个系数没有达到显著性水平,我们需要进行sobel检验,但是sobel检验的公式非常麻烦,如果你按计算器就很麻烦了,更何况你还有很多中介效应去验证,所以今天我给大家分享一个Excel可以很快的计算。 1.从下面的参考资料里下载一个Excel文件 2.下载下来以后,打开Excel,你会看到一个这样的表格 3.将你的三个模型的三线表粘贴过来

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

用SPSS作中介效应检验

SPSS 实例:[16]中介效应的检验过程 spss 做中介效应现在用的越来越普遍,虽然说用 amos 是最佳的工具,但是很多人还是喜欢 spss ,更容易理解,操作起 来也比amos 简单。下面我们就来分享一下如何使用 spss 进行中介效应的检验,这个教程是理论上的讲解,目的是让你 理解这个过程。后面我们会具体的来操作一下,让你知道如何具体的去做,先来看看理论上的过程: 1. 先要明确你的自变量和因变量,假如我们有三个变量分别是:自变量( x ),因变量(y ),中介变量(M 。 2. 第一个要检验的是自变量对因变量的作用,我们用下面的方程表示:我们首先要做的是对系数 c 的检验,你 应该知道,用回归做检验,假如 c 不显著,说明不存在中介效应,停止检验;假如 c 显著,还不能说明存在 Y=cX+en 中介效应,接着进行下面的步骤: 3. 接着我们做自变量和中介变量之间的回归方程的检验,也就是用下面的方程来表示,假如系数 a 显著,说明X 确实可以预测M 但仍然没有说明中介效应的存在。假如 a 不显著,那就需要进行sobel 检验。我们暂时不去 N4=aX+02; 做sobel ,因为还有一个步骤 现在我们要检验M 和Y 之间的关系,也就是下面的方程的系数是否显著。假如 a 显著、b 也显著,那么就可以 证明中 介效应存在;假如a 和b 中有一个不显著,另一个先不显著我们不知道,我们需要进行 sobel 检验,s YF X+bM+e 3a obel 检验显著,那么中介效应存在。 6.中介效应的具体操作,参考我的下一篇文章。 4. 5. 中介效完全中介 应显著效应显著 中介效中介效应 应显著不显着 Y 与冥相去不昱菁 停止中介建应分析 到此为止,我们就完成了中介效应的检验,下面来总结一下整个流程,看下面的流程图:

塞曼效应实验报告

塞曼效应实验 实验原理 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(PJ)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能: 由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下:

2、塞曼分裂谱线与原谱线关系: (1) 基本出发点: ∴分裂后谱线与原谱线频率差 由于 定义为洛仑兹单位: 3、谱线的偏振特征: 塞曼跃迁的选择定则为:ΔM=0 时为π成份(π型偏振)是振动方向平行于磁场的线偏振光,只有在垂直于磁场方向才能观察到,平行于磁场方向观察不到;但当ΔJ=0时,M2=0到M1=0的跃迁被禁止。

当ΔM=±1时,为σ成份,σ型偏振垂直于磁场,观察时为振动垂直于磁场的线偏振光。 平行于磁场观察时,其偏振性与磁场方向及观察方向都有关:沿磁场正向观察时(即磁场方向离开观察者:) ΔM= +1为右旋圆偏振光(σ+偏振) ΔM= -1为左旋圆偏振光(σ-偏振) 也即,磁场指向观察者时:⊙ ΔM= +1为左旋圆偏振光 ΔM= -1为右旋圆偏振光 分析的总思路和总原则: 在辐射的过程中,原子和发出的光子作为整体的角动量是守恒的。 原子在磁场方向角动量为 ∴在磁场指向观察者时:⊙B 当ΔM= +1时,光子角动量为,与同向 电磁波电矢量绕逆时针方向转动,在光学上称为左旋圆偏振光。 ΔM= -1时,光子角动量为,与反向 电磁波电矢量绕顺时针方向转动,在光学上称为右旋圆偏振光。

中介效应分析方法

中介效应分析方法 1 中介变量和相关概念 在本文中,假设我们感兴趣的是因变量(Y) 和自变量(X) 的关系。虽然它们之间不一定是因果关系,而可能只是相关关系,但按文献上的习惯而使用“X 对的影响”、“因果链”的说法。为了简单明确起见,本文在论述中介效应的检验程序时,只考虑一个自变量、一个中介变量的情形。但提出的检验程序也适合有多个自变量、多个中介变量的模型。 1.1 中介变量的定义 考虑自变量X 对因变量Y 的影响,如果X 通过影响变量M 来影响Y ,则称M 为中介变量。例如“, 父亲的社会经济地位”影响“儿子的教育程度”,进而影响“儿子的社会经济地位”。又如,“工作环境”(如技术条件) 通过“工作感觉”(如挑战性) 影响“工作满意度”。在这两个例子中,“儿子的教育程度”和“工作感觉”是中介变量。假设所有变量都已经中心化(即均值为零) ,可用下列方程来描述变量之间的关系: Y = cX + e 1 (1) M = aX + e 2 (2) Y = c ’X + bM + e 3 (3) 1 Y=cX+e 1 e 2 M=aX+e 2 a b M

e3 Y=c’X+bM+e3 图1 中介变量示意图 假设Y与X的相关显著,意味着回归系数c显著(即H0 : c = 0 的假设被拒绝) ,在这个前提下考虑中介变量M。如何知道M真正起到了中介变量的作用,或者说中介效应(mediator effect ) 显著呢? 目前有三种不同的做法。 传统的做法是依次检验回归系数。如果下面两个条件成立,则中介效应显著: (i) 自变量显著影响因变量;(ii) 在因果链中任一个变量,当控制了它前面的变量(包括自变量) 后,显著影响它的后继变量。这是Baron 和Kenny 定义的(部分) 中介过程。如果进一步要求: (iii) 在控制了中介变量后,自变量对因变量的影响不显著, 变成了Judd和Kenny 定义的完全中介过程。在只有一个中介变量的情形,上述条件相当于(见图1) : (i) 系数c显著(即H0 : c = 0 的假设被拒绝) ;(ii) 系数a 显著(即H0: a = 0 被拒绝) ,且系数b显著(即H0: b = 0 被拒绝) 。完全中介过程还要加上: (iii) 系数c’不显著。 第二种做法是检验经过中介变量的路径上的回归系数的乘积ab是否显著,即检验H0 : ab = 0 ,如果拒绝原假设,中介效应显著 ,这种做法其实是将ab作为中介效应。 第三种做法是检验c’与c的差异是否显著,即检验H0 : c - c’= 0 ,如果拒绝原假设,中介效应显著。 1.2 中介效应与间接效应 依据路径分析中的效应分解的术语 ,中介效应属于间接效应(indirect effect) 。在图1 中, c是X对Y的总效应, ab是经过中介变量M 的间接效应(也就是中介效应) , c’是直接效应。当只有一个自变量、一个中介变量时,效应之间有如下关系 c = c’+ ab (4) 当所有的变量都是标准化变量时,公式(4) 就是相关系数的分解公式。但公式(4) 对一般的回归系数也成立)。由公式(4) 得c-c’=ab,即c-c’等于中介效应,因而检验H0 : ab = 0 与H0 : c-c’= 0 是等价的。但由于各自的检验统计量不同,检验结果可能不一样。 中介效应都是间接效应,但间接效应不一定是中介效应。实际上,这两个概念

塞曼效应实验报告完整版

学生姓名: 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1.观察塞曼效应现象,把实验结果与理论结果进行比较。 2.学习观测塞曼效应的实验方法。 3.计算电子核质比。 二、实验仪器 WPZ —Ⅲ型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ?,由于原子的磁矩J μ与总角动量J P 的关系为 2J J e g P m μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。因此, cos cos 2J J e E B g P B m μαα?=-=-(2) 其中α是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, cos ,,1,,2J h P M M J J J απ -==--L (3)

学生姓名: 刘惠文 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。设:4B he m μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+?=+(4) 由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量 耦合方式其表达式和数值完全不同。在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为 2L L e P m μ==(5) S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在 J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系: 2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ L LJ S SJ J L S J L S J J J L S J J J e P P m P P P P P P e m P P P P P e P P m e g P m μμαμααα=+= ++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1) J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在

中介效应分析方法

中介效应分析方法 1中介变量和相关概念 在本文中,假设我们感兴趣的是因变量(丫)和自变量(X )的关系。虽然它们 之间不一定是因果关系,而可能只是相关关系,但按文献上的习惯而使用“ X 对 的影响”、“因果链”的说法。为了简单明确起见 ,本文在论述中介效应的检验 程序时,只考虑一个自变量、一个中介变量的情形。但提出的检验程序也适合有 多个自变量、多个中介变量的模型。 1.1 中介变量的定义 考虑自变量X 对因变量丫的影响,如果X 通过影响变量M 来影响丫,则称 M 为中介变量。例如“,父亲的社会经济地位”影响“儿子的教育程度”,进而 影响“儿子的社会经济地位”。又如,“工作环境”(如技术条件)通过“工作感 觉”(如挑战性)影响“工作满意度”。在这两个例子中,“儿子的教育程度”和 “工作感觉”是中介变量。假设所有变量都已经中心化 (即均值为零),可用下列 方程来描述变量之间的关系: 丫 = =cX + e 1 (1) M : =aX + e 2 ⑵ 丫 = =c X + bM + e 3 ⑶ 图1 中介变量示意图 假设丫与X 的相关显著,意味着回归系数c 显著(即H o : c = 0 的假设被拒 绝),在这个前提下考虑中介变量M 。如何知道M 真正起到了中介变量的作用, 或者说中介效应 (mediator effect ) 显著呢 ? 目前有三种不同的做法。 传统的做法是依次检验回归系数 。如果下面两个条件成立 , 则中介效应显著 : (i) 自变量显著影响因变量; (ii) 在因果链中任一个变量 , 当控制了它前面的变量 (包括自变量)后,显e i Y=cX+e i M=aX+e 2 e 3 Y=c 'X+bM+e 3

实验三调节效应与中介效应的检验

实验三调节效应与中介效应的检验 一、实验性质 上机实验(计算机、spss软件) 二、实验目的与要求 1、理解调节效应和中介效应的理论涵义; 2、使学生熟练掌握应用SPSS针对调节效应和中介效应进行统计检验,熟悉操作步骤,并能够对统计分析的结果进行解释。 三、实验原理 (一)调节效应 1、调节变量(moderator)的定义 变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。这种有调节变量的模型一般地可以用图1 示意。调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱。 在做调节效应分析时,通常要将自变量和调节变量做中心化变换。简要模型:Y = aX + bM + cXM + e 。Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。如果c显著,说明M 的调节效应显著。 2、调节效应的分析方法 显变量的调节效应分析方法,分为四种情况讨论: (1)当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应; (2)调节变量是连续变量时,自变量是连续变量时,将自变量和调节变量中心化,做 Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。或者,作XM的回归系数检验,若显著,则调节效应显著; (3)当自变量是连续变量时,调节变量是类别变量,分组回归:按 M的取值分组,做 Y 对 X的回归。若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。 (4)潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。当调节变量是类别变量时,做分组结构方程分析。做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau提出的无约束的模型。 (二)中介效应 1、中介变量(mediator)的定义 自变量X对因变量Y的影响,如果X通过影响变量M来影响Y,则称M为中介变量。Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3。其中,c是X对Y的总效应,ab是经过中介变量M的中介效应,c′是直接效应。当只有一个中介变量时,效应之间有c=c′+ab,中介效应的大小用c-c′=ab 来衡量。 2、中介效应分析方法

中介效应分析方法

中介效应分析方法 This model paper was revised by the Standardization Office on December 10, 2020

中介效应分析方法 1 中介变量和相关概念 在本文中,假设我们感兴趣的是因变量(Y) 和自变量(X) 的关系。虽然它们之间不一定是因果关系,而可能只是相关关系,但按文献上的习惯而使用“X对的影响”、“因果链”的说法。为了简单明确起见,本文在论述中介效应的检验程序时,只考虑一个自变量、一个中介变量的情形。但提出的检验程序也适合有多个自变量、多个中介变量的模型。 中介变量的定义 考虑自变量X 对因变量Y 的影响,如果X通过影响变量M来影响Y,则称M 为中介变量。例如“, 父亲的社会经济地位”影响“儿子的教育程度”,进而影响“儿子的社会经济地位”。又如,“工作环境”(如技术条件) 通过“工作感觉”(如挑战性) 影响“工作满意度”。在这两个例子中,“儿子的教育程度”和“工作感觉”是中介变量。假设所有变量都已经中心化(即均值为零) ,可用下列方程来描述变量之间的关系: Y = cX + e 1 (1) M = aX + e 2 (2) Y = c’X + bM + e 3 (3) 1 Y=cX+e 1 e 2 M=aX+e 2 a b e 3 Y=c’X+bM+e 3 M

图1 中介变量示意图 假设Y与X的相关显着,意味着回归系数c显着(即H : c = 0 的假设被拒绝) ,在这个前提下考虑中介变量M。如何知道M真正起到了中介变量的作用,或者说中介效应(mediator effect ) 显着呢目前有三种不同的做法。 传统的做法是依次检验回归系数。如果下面两个条件成立,则中介效应显着: (i) 自变量显着影响因变量;(ii) 在因果链中任一个变量,当控制了它前面的变量(包括自变量) 后,显着影响它的后继变量。这是Baron 和Kenny 定义的(部分) 中介过程。如果进一步要求: (iii) 在控制了中介变量后,自变量对因变量的影响不显着, 变成了Judd和Kenny 定义的完全中介过程。在只有一个中介变量的情形,上述条件相当于(见图1) : (i) 系数c 显着(即H 0 : c = 0 的假设被拒绝) ; (ii) 系数a 显着(即H : a = 0 被拒绝) ,且系数 b显着(即H : b = 0 被拒绝) 。完全中介过程还要加上: (iii) 系数c’不显着。 第二种做法是检验经过中介变量的路径上的回归系数的乘积ab是否显着,即检验H : ab = 0 ,如果拒绝原假设,中介效应显着 ,这种做法其实是将ab作为中介效应。 第三种做法是检验c’与c的差异是否显着,即检验H : c - c’= 0 ,如果拒绝原假设,中介效应显着。 中介效应与间接效应 依据路径分析中的效应分解的术语 ,中介效应属于间接效应(indirect effect) 。在图1 中, c是X对Y的总效应, ab是经过中介变量M 的间接效应(也就是中介效应) , c’是直接效应。当只有一个自变量、一个中介变量时,效应之间有如下关系 c = c’+ ab (4) 当所有的变量都是标准化变量时,公式(4) 就是相关系数的分解公式。但公式(4) 对 一般的回归系数也成立)。由公式(4) 得c-c’=ab,即c-c’等于中介效应,因而检验H : ab = 0 与H : c-c’= 0 是等价的。但由于各自的检验统计量不同,检验结果可能不一样。

相关文档
最新文档