岩石材料的非均质性与动态参数

岩石材料的非均质性与动态参数
岩石材料的非均质性与动态参数

第20卷 第4期 辽宁工程技术大学学报(自然科学版) 2001年 8 月V ol.20, No.4 Journal of Liaoning Technical University (Natural Science ) Aug., 2001

收稿日期:2001-04-20 作者简介:尤明庆(1964-),男,博士,教授。本文编校:杨瑞华

文章编号:1008-0562(2001)04-0492-03

岩石材料的非均质性与动态参数

尤明庆,苏承东,申 江

(焦作工学院, 河南 焦作 454159)

摘 要:对四种岩石进行了超声波测试。从同一岩块加工的试样尽管宏观上没有明显差异,但超声波通过时间的差异最大可以达到9%。

将岩样间具有相同性质的长度相抵后,可以认为时间差异只是发生在局部材料,即岩样是由力学特性差异极大的材料构成的。而岩样的动态、静态参数是以不同的方式反映岩样内部材料的力学性质,因而并不会相等。由超声波速度计算的泊松比变动范围较大(最大43%),难以运用;动态模量总是大于变形模量,而与弹性模量的差异可以达到±15%以上。 关键词:超声波;动态参数;非均质性;平均方法 中图号:TD 313 文献标识码:A

0 引 言 

杨氏模量、泊松比是岩石的重要参数,其确定方法在试验规程和教科书中均有详细说明。另一方面,基于弹性波理论,在测量岩石中纵波(P 波)和横波(S 波)的传播速度之后,可以确定岩石的动态弹性模量和动态泊松比系数。本文仅基于实验室岩样的试验结果,定性说明岩石的非均质性对动态和静态参数的不同影响。

1 岩石内的纵波和横波传播速度 

本文采用最为简单的脉冲法测量岩石中超声波传播速度。波速V由试样长度L与声波在试样内传播时间T的比值确定,V=L/T。试验的四种岩石特性如表1所示。岩样为Ф50 mm、长约100 mm的圆柱,均从同一岩块加工而成。表2是四种岩石多个试样的波速测量结果,其中变异度是所测波速的最大值、最小值之差与平均值的比值。纵波速度VP已按从小到大的顺序排列,而横波速度VS的最大值和最小值作了下划线。 

表1 四种岩石的材料特性 

Tab.1 the character of four kinds rock

岩石 产地 颜色

名称

颗粒 岩块尺寸/cm 密度

/(kg ?m -3) A 淇县 红色 钾质花岗岩 细 60×35×14 2 640 B 灵寿县

墨绿

辉绿岩 中细 60×22×12 2 945 C 鲁山县 白棕花 花岗岩 中粗 60×30×15 2 638 D

辉县

白黑花

片麻岩

43×30×10

2 703

由于探头存在阻尼,无论发射的电脉冲多么尖锐,探头振动总是逐步增加的,接收到的波型也是逐步上升的。波型及初至时刻还与信号衰减比率和探头耦合方式有关。因此超声脉冲方法的测量精度只能达到1-3%。本次试验中测量纵波采用钠基润滑脂(黄油)耦合,测量横波采用锡箔耦合,衰减比率保持不变。不过,测量结果的绝对数值可能存在较大误差,但反复多次测量可以确认,各岩样之间的波速确实存在差异。从表2可以看到,除岩石B 的纵波速度差别较小外,其余变异度都达到6%以上。又纵波速度与横波速度并非同步变化,在试验的精度范围内两者没有明确的相关性。

2 动态杨氏模量和泊松比 

基于弹性理论,纵波速度V P 和横波速度V S 与岩石的力学参数之间的关系是

图1 纵波横波速度之比与动态泊松比 Fig.1 the velocity ratio of P-wave and

S-wave poison’s ratio

V d

第4期 尤明庆等:岩石材料的非均质性与动态参数 493

V P =()()()

υυρυ2111?+?E (1) V S =

()

υρ+12E

(2)

若记K = V P /V S ,则可以求得泊松比

()

12222??=K K d υ (3)

由波速的比值K 唯一确定,且随之增大而增大 (图1)。继而求得弹性模量。

E d =()212S d V ρυ+ (4)

该值还与岩石的密度有关。

表2 四种岩石材料的试样中超声波的传播速度 (m.s -1) Tab.2 ultrasonic velocity in four kinds rock ( m.s -1)

岩石

1 2 3 4 5 6 7 8 9 10 平均值 变异度/% V P

4 80

5 4 885 4 971 4 995 5 035 5 10

6 5 148 5 173 5 180 5 033.1 7.45 A

V S 3 143 3 126 3 101 3 079 3 027 3 111 3 183 3 240 3 055 3 118.2 6.83 V P

5 473 5 522 5 522 5 549 5 582 5 598 5 604 5 604 5 615 5 563.3 2.55 B

V S 2 804 2 943 2 997 2 892 2 862 2 986 2 957 3 045 3 051 2 948.4 8.38 V P

4 269 4 426 4 491 4 504 4 518 4 518 4 527 4 54

5 4 581 4 633 4 501.3 8.09 C

V S 2 693 2 577 2 745 2 630 2 773 2 828 2 580 2 725 2 699 2 623 2 687.4 9.34 V P

4 276 4 286 4 314 4 33

5 4 379 4 393 4 448 4 474 4 487 4 539 4 393.2 5.99 D

V S

2 551

2 458

2 526

2 483

2 436

2 547

2 523

2 544

2 465

2 661

2 519.4

8.93

表3 四种岩石的动态杨氏模量(GPa) 和泊松比系数

Tab.3 the dynamic modulus (GPa) and Poisson’s ratio of four kinds rock

A

B C D K E d νd K E d νd K E d νd K E d νd 平均 1.615 61.0 0.189 1.888 66.8 0.305 1.676 46.6 0.223 1.744 43.1 0.255 最大 1.696 65.3 0.234 1.952 70.8 0.322 1.754 49.7 0.259 1.820 47.4 0.284 最小 1.563 58.7 0.153 1.841 61.2 0.291 1.585 43.6 0.170 1.676 40.9 0.224 变异(%)

8.23

10.7

42.9

5.88

14.3

10.2

10.08

13.1

39.9

8.26

15.0

23.5

利用表2中纵波、横波速度,可以求得每一岩样的动态弹性模量E d 和泊松比d υ。表3中仅给出它们的最大值、最小值和平均值。变异度是最大值、最小值之差与平均值的比值。尽管表2中超声波速度的变异度均小于10%,但由此求得的动态杨氏模量的变异度在10% 至15%之间;而动态泊松比的变异度对岩石B 是10%,而对岩石A 则高达到43%。从图1可以看到,K 较小时不仅d υ较小,而且其变动对d υ的影响也较大。显然动态泊松比不能作为一个力学参数来表示岩石的变形特性。

3 岩石材料的非均质性 

本文采用的岩石块,宏观上具有一致性,岩样变形具有线弹性特征。但岩石材料本身具有非均质性,岩样的特性参数如强度和杨氏模量并不是局部参数的算术平均。同一岩块加工的两个岩样,如B 1和B 9,具有大致相同的矿物颗粒和结构,在宏观上没有明显的区别。但局部结构的不同使得弹性波并非匀速通过岩样。因而B 1和B 9两个岩样相比较,将具有相同特征的材料相抵后,波速不同的材料长度为S 。更为明确地说,横波通过岩样B 1时间35.7

μs 和B 9的时间32.8μs 相差2.9μs ,并不是在总长度100 mm 上均匀分布的,而只是发生在长度S 的这段材料上。因S 较小,相应的速度差异很大。进而可以确认,岩样实际上是由横波速度或力学性质相差很大的材料构成。不同岩样含有这些材料的比例稍有差异,引起了超声波通过岩样的时间不同。目前尚难以定量研究这种差异。下面仅作一个简单的定性说明。假设岩样内部含有两种不同材料,在岩样中占有同样的比例。这两种材料是完全线弹性的,杨氏模量分别为E 1、E 2,泊松比为1υ、2υ,密度为ρ1、ρ2。于是岩样的密度

()2

21

ρρρ+= (5)

宏观静态杨氏模量

2

1211122/E E E E E S +=

+==σσσεσ (6) 而岩样静态泊松比则是

2

122

1113E E E E S σσσ

υσυεευ++===2

1221111E E E E ++υυ (7)

超声波通过这两种材料的横波、纵波速度分别

494 辽宁工程技术大学学报(自然版) 第20卷 是V P1、V P2和V S2、V S2,由上面的公式(1)、(2)给出。于是通过岩样的平均速度是

V P =2

12

P P + (8)

V S =21112

S S + (9)

利用V P 、V S 和平均密度ρ,以公式(3)、(4)计算出岩样的动态参数E d 和d υ,它们与岩石局部力学参数之间的关系非常复杂。由于动态参数和静态参数是通过不同的方式反映岩石内部的力学性质,并非简单的算术平均。只要岩石存在非均质性,它们就是不等的。在1υ=2υ和ρ1=ρ2时,可以证明E d ≥E S 。不过岩石材料并非完全线弹性,内部缺陷对动、静态参数也会产生影响[9],因而更为复杂。试验表明,动态模量总是大于变形模量E 50,但与弹性模量E T 的差异可以达到±15%以上。如岩石A ,其动态模量最小者为E d =58.7GPa ,大于E 50=46.0GPa 和E T =54.9GPa ;而岩石C 动态模量最低者 E d =43.6GPa ,在E 50=36.5GPa 和E T =51.5GPa

两者之间。图2是相应岩样的单轴压缩应力-应变曲线。岩石C 初期压缩的非线性变形表明其内部存在裂隙,因而超声波的速度较低,而实际单轴压缩过程中,轴向应力使裂隙闭合,增加了岩样的刚度即弹性模量。总之,不同岩石的动态、静态参数之间的关系,在定性上也是不同的。

4 结 论 

(1)从同一岩块加工的试样尽管宏观上没有明显差异,但超声波通过时间的差异最大可以达到10%。将岩样间具有相同性质的长度相抵后,可以认为时间差异只是发生在局部材料,并非均匀分布。即岩样是由力学特性差异极大的材料构成的。 (2)岩样宏观变形具有线弹性特征。但岩石材料

本身具有非均质性,动态参数和静态参数以不同的方式反映了岩石内部的力学性质,它们不可能相等。

(3)同组岩样的纵波、横波速度并没有直接的相关性,动态泊松比系数离散较大,不能表示岩石材料的变形特征。动态模量总是大于变形模量E 50,与弹性模量E T 的差异可以达到±15%以上。岩样内存在裂隙使超声波速度降低,而轴向应力可以使之闭合,弹性模量E T 提高。 参考文献:

[1] 陈禺页..地壳岩石的力学性能-理论基础与实验方法[M].北京:地震出版社.1988. 295-307.

[2] 林英松,葛洪魁,王顺昌.岩石动静态力学参数的试验研究[J].岩石

力学与工程学报,1998, 17(2):216-222.

[3] 方华,伍向阳,杨伟.岩石裂纹对弹性波速的影响[J].地球物理学进

展,1998, 13(4):79-83.

Effect of Heterogeneity on the Dynamic Parameters of Rock

YOU Ming-qing ,SU Cheng-dong ,SHEN Jiang

( Jiaozuo Institute of Technology ,Jiaozuo 454159,China )

Abstract: Four kinds of rock were measured with ultrasonic waves. Rock specimen drilled from the same granite block were not differente by eye look, through which the time variations of ultrasonic waves reached 9%. Much material was the same between two specimen, so the time difference of sonic wave passing specimens only produced in a short length, not distributed along the whole specimen. It could be concluded that rock specimen consist of materials with great various property. The static parameters and dynamic parameters describe the mechanics property of rock in different ways, which results in their inequality. The variations of Poisson’s ratio calculated from the ultrasonic speeds were up to 43%. The dynamic modulus is always larger than secant the modulus E 50, and larger or smaller than the elastic modulus within ±15%.

Key words: ultrasonic waves ;dynamic parameters ;heterogeneity ;average method

图2 两种岩石试样的应力––应变曲线 Fig.2 curves of stress and strain of two kinds

rock samples

0.01

0.03 0.02 0.04 0.05

?

常用的岩土和岩石物理力学参数

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

常用的岩土和岩石物理力学参数

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7、2) 当ν值接近0、5的时候不能盲目的使用公式3、5,因为计算的K 值将会非常的高,偏离实际值很多。最好就是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 与ν来计算G 值。 表7、1与7、2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7、1 土的弹性特性值(实验室值)(Das,1980) 表7、2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13与G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13与G 23。这些常量的定义见理论篇。 均质的节理或就是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度与空间参数来表示的弹性常数的公式。表3、7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7、3

K f ,如果土粒就是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值就是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或就是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这就是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7、3) 对于可变形流体(多数课本中都就是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7、4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位与速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式瞧瞧其产生的误差。 流动体积模量还会影响无流动但就是有空隙压力产生的模型的收敛速率(见1、7节流动与力学的相互作用)。如果K f 就是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但就是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱与体积模量为: n K K K f u + = (7、5) 不排水的泊松比为: ) G 3K (22G 3K u u u +-= ν (7、6) 这些值应该与排水常量k 与ν作比较,来估计压缩的效果。重要的就是,在FLAC 3D 中,

岩石力学作业

岩石力学习题 第一章绪论 1.1 解释岩石与岩体的概念,指出二者的主要区别与联系。 1.2 岩体的力学特征是什么? 1.3 自然界中的岩石按地质成因分类可分为几大类,各有什么特点? 1.4 简述岩石力学的研究任务与研究内容。 1.5 岩石力学的研究方法有哪些? 第二章岩石的物理力学性质 2.1 名词解释:孔隙比、孔隙率、吸水率、渗透性、抗冻性、扩容、蠕变、松弛、弹性后效、长期强度、岩石的三向抗压强度 2.2 岩石的结构和构造有何区别?岩石颗粒间的联结有哪几种? 2.3 岩石物理性质的主要指标及其表示方式是什么? 2.4 已知岩样的容重=22.5kN/m3,比重,天然含水量,试计算该岩样的孔隙率n,干容重及饱和容重。 2.5 影响岩石强度的主要试验因素有哪些? 2.6 岩石破坏有哪些形式?对各种破坏的原因作出解释。 2.7 什么是岩石的全应力-应变曲线?什么是刚性试验机?为什么普通材料试 验机不能得出岩石的全应力-应变曲线? 2.8 什么是岩石的弹性模量、变形模量和卸载模量?

2.9 在三轴压力试验中岩石的力学性质会发生哪些变化? 2.10 岩石的抗剪强度与剪切面上正应力有何关系? 2.11 简要叙述库仑、莫尔和格里菲斯岩石强度准则的基本原理及其之间的关系。 2.12 简述岩石在单轴压力试验下的变形特征。 2.13 简述岩石在反复加卸载下的变形特征。 2.14 体积应变曲线是怎样获得的?它在分析岩石的力学特征上有何意义? 2.15 什么叫岩石的流变、蠕变、松弛? 2.16 岩石蠕变一般包括哪几个阶段?各阶段有何特点? 2.17 不同受力条件下岩石流变具有哪些特征? 2.18 简要叙述常见的几种岩石流变模型及其特点。 2.19 什么是岩石的长期强度?它与岩石的瞬时强度有什么关系? 2.20 请根据坐标下的库仑准则,推导由主应力、岩石破断角和岩石单轴抗压强度给出的在坐标系中的库仑准则表达式,式中。 2.21 将一个岩石试件进行单轴试验,当压应力达到100MPa时即发生破坏,破坏面与大主应力平面的夹角(即破坏所在面与水平面的仰角)为65°,假定抗剪强度随正应力呈线性变化(即遵循莫尔库伦破坏准则),试计算: 1)内摩擦角。 2)在正应力等于零的那个平面上的抗剪强度。

岩石力学计算题

第2章 岩石物理力学性质 例:某岩样试件,测得密度为1.9kg/cm3,比重为2.69,含水量为29%。试求该岩样的孔隙比、孔隙率、饱和度和干容量。 解:孔隙比:83.019 .1) 29.01(69.21) 1(=-+= -+?= γ ωεd v 孔隙度:%3.45%10083 .0183 .0%1001=?+=?+= v v n εε 饱和度:%9483 .0% 2969.2=?==εωG S r 干容重:)/(47.183 .0169.213cm g d =+=+?= εγ 例 某岩石通过三轴试验,求得其剪切强度c=10MPa ,υ=45°,试计算该岩石的单轴抗压强度和单轴抗拉强度。 解:由 例 大理岩的抗剪强度试验,当σ1n=6MPa, σ2n=10MPa ,τ1n=19.2MPa, τ2n=22MPa 。该岩石作三轴抗压强度试验时,当σa=0,则Rc=100MPa 。求侧压力 σa=6MPa 时,其三轴抗压强度等于多少? 解:(1)计算内摩擦角υ φστtg C n n 11+= (1) φστtg C n n 22+= (2) 联立求解: 021212219.2 0.735106 n n n n tg ττφφσσ--= ==?=-- (2)计算系数K : 7.335sin 135sin 1sin 1sin 10 =-+=-+=φφK (3)计算三轴抗压强度: 0100 3.7612.22C a S S K MPa σ=+=+?= 第3章 岩石本构关系与强度理论 例:已知岩石的应力状态如图,并已知岩石的内聚力为4MPa ,内摩擦角为35°。求: (1)各单元体莫尔应力圆,主应力大小和方向; (2)用莫尔库仑理论判断,岩石是否发生破坏

最新常见岩石力学参数

几种常见岩石力学参数汇总 2010年9月2日 参考资料:《构造地质学》,谢仁海、渠天祥、钱光谟编,2007年第2版,P25-P37。 1.泊松比的变化范围: 2.弹性模量的变化范围:

3.常温常压下强度极限: 4.内摩擦角和内聚力的变化范围: 一、课程名称:中国戏曲介绍课时:2个学时 二、背景分析:戏曲是中国文化的瑰宝,同学们对中国戏曲 还不够了解,不能经常接触戏曲。 三、教学内容:中国戏曲 四、教学目标:初步了解中国戏曲的相关知识,并学会哼唱具有代表性的戏曲,简要说出

他们的起源 五、教学过程: 【引入课程】1、先介绍董永和七仙女的故事,然后放[天仙配],为讲戏曲作铺垫,将同学们带入戏曲的氛围中 【初步了解】1、介绍戏曲相关知识中国戏曲主要是由民间歌舞、说唱和滑稽戏三种不同艺术形式综合而成。它起源于原始歌舞,是一种历史悠久的综合舞台艺术样式。经过汉、唐到宋、金才形成比较完整的戏曲艺术,它由文学、音乐、舞蹈、美术、武术、杂技以及表演艺术综合而成,约有三百六十多个种类。它的特点是将众多艺术形式以一种标准聚合在一起,在共同具有的性质中体现其各自的个性。[1]中国的戏曲与希腊悲剧和喜剧、印度梵剧并称为世界三大古老的戏剧文化,经过长期的发展演变,逐步形成了以“京剧、越剧、黄梅戏、评剧、豫剧”五大戏曲剧种为核心的中华戏曲百花苑。[2-5]中国戏曲剧种种类繁多,据不完全统计,中国各民族地区地戏曲剧种约有三百六十多种,传统剧目数以万计。其它比较著名的戏曲种类有:昆曲、粤剧、淮剧、川剧、秦腔、晋剧、汉剧、河北梆子、河南坠子、湘剧、黄梅戏、湖南花鼓戏等。放[刘海砍樵] 2、戏曲行当 生、旦、净、丑各个行当都有各自的形象内涵和一套不同的程式和规制;每个都行当具有鲜明的造型表现力和形式美。 3、艺术特色 综合性、虚拟性、程式性,是中国戏曲的主要艺术特征。这些特征,凝聚着中国传统文化的美学思想精髓,构成了独特的戏剧观,使中国戏曲在世界戏曲文化的大舞台上闪耀着它的独特的艺术光辉。 4、唱腔 第一种是抒情性唱腔,其特点为速度较缓慢,曲调婉转曲折,字疏腔繁,抒情性强。它宜于表现人物深沉而细腻的内心感情。许多剧种的慢板、大慢板、原板、中板均厉于这-类。放[女驸马] 第二种是叙事性唱腔,其特点为速度中等,曲调较平直简朴,字密腔简,朗诵性强。它常用于交代情节和叙述人物的心情。许多剧种的二六、流水等均属于这一类。放[花木兰] 第三种是戏剧性唱腔,其特点为曲调的进行起伏较大,节奏与速度变化较为强烈,唱词的安排可疏可密。它常用于感情变化强烈和戏剧矛盾冲突激化的场合。各戏剧中的散板、摇板等板式曲调都属于这一类。 5、国五大戏曲剧种

煤系地层常见岩石力学参数

常见岩层力学参数

11 细砂岩2800 28.85 16.04 12.02 0.20 3.47 43 4.96 5-2煤1410 2.12 1.73 0.82 0.30 0.18 20 0.2 细砂岩2597 27.00 15.28 11.2 0.21 3.1 42 3.48 5-1煤1410 2.12 1.73 0.82 0.30 0.18 20 0.2 细砂岩2586 33.40 18.02 14.02 0.19 3.8 43 5.13 砂质泥岩2520 7.88 4.9 3.2 0.23 1.18 35 1.8 泥岩2567 6.90 4.3 2.8 0.23 0.7 30 1.68 4-1煤1460 2.43 2.12 0.93 0.31 0.5 24 0.35 泥岩2463 6.39 3.94 2.6 0.23 0.68 30 0.98 底板岩层2463 6.39 3.94 2.6 0.23 0.68 30 0.98 砂岩2650 4.35 2.9 1.74 0.25 9.5 41 4.21 7煤1400 1.49 2.08 0.54 0.38 1.2 20 0.64 砂质泥岩2550 3.45 2.61 1.35 0.28 7.6 30 3.0 砂岩2690 5.61 3.35 2.3 0.22 10.7 41 4.96 9煤1400 1.49 2.08 0.54 0.38 1.2 20 0.64 砂岩2650 4.76 3.05 1.92 0.24 10.2 40 4.8 砂质泥岩2600 3.84 2.91 1.5 0.28 7.8 32 3.65 石灰岩2800 10.69 5.57 4.53 0.18 11.4 38 6.7 砂质泥岩2600 3.84 2.91 1.5 0.28 7.8 32 3.65 石灰岩2800 10.69 5.57 4.53 0.18 11.4 38 6.7

岩石力学参数测试

3.2 侏罗系煤岩层物理力学性质测试 3.2.1试验仪器及原理 本试验采用电子万能压力试验机(图3.24)对侏罗系、石炭系岩石试样进行抗压强度、抗拉强度以及抗剪强度的测定。 (a) 电子万能压力试验机 (b) 单轴抗压强度测试 (c) 抗拉强度测试 (d) 抗剪强度测试 图3.24 岩石力学电子万能压力试验机及试验过程 (1) 岩石抗压强度测定: 单轴抗压强度的测定:将采集的岩块试件放在压力试验机上,按规定的加载速度(0.1mm/min)加载至试件破坏。根据试件破坏时,施加的最大荷载P ,试件横断面A 便可计算出岩石的单轴抗压强度S 0,见式(3.1)。 S 0= P A (3.1) 一般表面单轴抗压强度测定值的分散性比较大,因此,为获得可靠的平均单轴抗压强度值,每组试件的数目至少为3块。 (2) 岩石抗拉强度的测定: 做岩石抗拉试验时,将试件做成圆盘形放在压力机上进行压裂试验,试件受集中荷载的作用,见式(3.2)。

S t = 2P DT π (3.2) 式中:S t ——岩石抗拉强度 MPa ; P ——岩石试件断裂时的最大荷载,KN ; D ——岩石试件直径; T ——岩石试件厚度。 为使抗拉强度值较准确,每种岩石试件数目至少3块。 (3) 岩石抗剪强度测定: 将岩石试件放在两个钢制的倾斜压模之间,然后把夹有试件的压模放在压力实验机上加压。当施加荷载达到某一值时,试件沿预定的剪切面剪断,见式(3.3)。 sin cos n T P A A N P A A τασα? = =? ??? ==?? (3.3) 式中:P ——试件发生剪切破坏时的最大荷载; T ——施加在破坏面上的剪切力; N ——作用在破坏面上的正压力; A ——剪切破坏面的面积; τ——作用在破坏面上的剪应力; n σ——作用在破坏面上的正应力; α——破坏面上的角度。 每组取3块试件,变换不同的破坏角,根据所得的数值,便可在στ-坐标系上画出反映岩石发生剪切破坏的强度曲线。并可求出反映岩石力学性质的另外两个参数:粘聚力c 及内摩察角?。 3.2.2 标准岩样加工 根据需要和所在矿的条件,在晋华宫矿12#煤层2105巷顶板钻取岩样,钻孔长度约22m ,在。根据各段岩心长度统计结果,晋华宫矿顶板岩层的RQD 值为72.4%,围岩质量一般。 岩心取出后,随即贴上标签,用透明保鲜袋包好以防风化,之后装箱,托运到实验室,经切割、打磨、干燥制成标准的岩石试样,岩样制作过程见图3.25。

岩体力学参数确定的方法

岩体力学参数的确定方法 在岩石工程实践中,首先需要了解其研究对象———工程岩体的力学特性,确定其特性参数。力学参数的合理确定在岩石力学的研究和发展过程中始终是难题之一。在应用工程力学领域, 如果原封不动地借用经典理论力学的连续性假设和定义,会出现理解上的毛病。必须考虑假设的合理使用范围和各物理量的适用定义。本文就地下岩体工程根据侧重的点不同对岩体参数的确定方法进行探讨。 一.传统岩体参数的确定方法 地下巷道、硐室开挖后,围岩产生应力重分异作用,径向应力减少,切向应力增加,并且随着工程不断推进,岩体应力状态不断改变。巷道、硐室围岩处于“三高一扰动”条件下,岩体表现的力学特性是破坏条件下的稳定失稳再平衡过程。围岩体处于一种拉压相间出现的复杂应力状态。该类工程岩体的力学参数的确定要进行岩体的卸荷试验研究,且要依据现场工程实际条件进行卸荷条件下的应力、渗流与温度三场耦合试验研究。需要进行循环加卸载条件下的岩体力学特性研究,进而获得岩体的力学参数特征。 确定地下巷道、硐室工程岩体力学参数的方法为: (1)三轴应力状态下的卸荷三场耦合力学试验,获得有关参数; (2)进行岩体流变特性试验研究,获得有关岩体的流变参数。 目前在该领域要进行大量的工作,包括设备仪器的研制等,同时还要利用新的计算机技术才会实现。 二.建立力学模型确定岩体力学参数

建立工程岩体力学参数模型主要是解决复杂岩体力学参数确定的问题。要确定复杂岩体的力学参数需要把工程岩体看作具有连续性的模型,运用确定岩体力学参数的新方法,对含层状斜节理的岩体建立力学模型进行力学实验,从而确定了该岩体的各项基本力学参数值。 1.工程岩体力学参数模型 目前对岩石的力学属性及其划分基本有两种观点:一种观点认为岩石本身是一个连续的、没有各向异性的材料,另一种意见认为岩石由多晶体系组成,并存在空洞和裂纹等缺陷,使得岩体本身结构表现出各向异性和不连续性。一般情况下岩体被视为非连续介质,但在一定条件下仍满足连续介质力学的基本假定。因此给定工程岩体的连续性假设:假定整个物体的体积都被组成这个物体的物质微元所充满,没有任何空隙。物质微元是有大小的,物质微元的尺寸决定于所研究的工程物体的尺寸。这样就存在一个用连续体理论来研究非连续体的问题。 2.工程岩体力学参数 为确定工程岩体的力学参数,需要通过井下工程地质调查,根据岩体所含结构面的不同及结构体特性的差异,选取具有代表性的不同尺寸的岩块和结构面,然后进行一系列室内力学实验和数值模拟实验。具体步骤如下: (1) 通过井下工程调查,确定结构面的空间分布模式,抽象工程岩体结构模型;并在现场采集有代表性的完整岩块和软弱结构面试

岩体力学计算题

计算题 四、岩石的强度特征 (1) 在劈裂法测定岩石单轴抗拉强度的试验中,采用的立方体岩石试件的边长为5cm ,一组平行试验得到的破坏荷载分别为16.7、17.2、17.0kN ,试求其抗拉强度。 解:由公式σt =2P t /πa 2=2×P t ×103/3.14×52×10-4=0.255P t (MPa) σt1=0.255×16.7=4.2585 σt2=0.255×17.2=4.386 σt3=0.255×17.0=4.335 则所求抗拉强度:σt ==(4.2585+4.386+4.335)/3=4.33MPa 。 试计算其抗拉强度。(K =0.96) 解:因为K =0.96,P t 、D 为上表数据,由公式σt =KI s =KP t /D 2代入上述数据依次得: σt =8.3、9.9、10.7、10.1、7.7、8.7、10.4、9.1。 求平均值有σt =9.4MPa 。 (3) 试导出倾斜板法抗剪强度试验的计算公式。 解: 如上图所示:根据平衡条件有: Σx=0 τ-P sin α/A -P f cos α/A =0

τ=P (sinα- f cosα)/A Σy=0 σ-P cosα-P f sinα=0 σ=P (cosα+ f sinα) 式中:P为压力机的总垂直力。 σ为作用在试件剪切面上的法向总压力。 τ为作用在试件剪切面上的切向总剪力。 f为压力机整板下面的滚珠的磨擦系数。 α为剪切面与水平面所成的角度。 则倾斜板法抗剪强度试验的计算公式为: σ=P(cosα+ f sinα)/A τ=P(sinα-f cosα)/A (4) 倾斜板法抗剪强度试验中,已知倾斜板的倾角α分别为30o、40o、50o、和60o,如果试样边长为5cm,据经验估计岩石的力学参数c=15kPa,φ=31o,试估计各级破坏荷载值。(f=0.01) 解:已知α分别为30o、40o、50o、和60o,c=15kPa,φ=31o,f=0.01, τ=σ tgφ+c σ=P(cosα+ f sinα)/A τ=P( sinα-f cosα)/A P( sinα-f cosα)/A= P(cosα+ f sinα) tgφ/A+c ( sinα-f cosα)= (cosα+ f sinα) tgφ+cA/P P=cA/[( sinα-f cosα)- (cosα+ f sinα) tgφ] 由上式,代入上述数据,计算得: P30=15(kN/mm2)×25×102(mm2)/[( sin30 - 0.01×cos30) - (cos30 + 0.01×sin30) tg31] αsinαcosα( sinα-f cosα)(cosα+ f sinα)(cosα+ f sinα) tgφ P 3 0 0.5 0.86602 5 0.49134 0.873751 0.525002 -111.4 4 0 0.64278 8 0.76604 4 0.635127 0.772522 0.464178 21.9363 8 5 0 0.76604 4 0.64278 8 0.759617 0.647788 0.38923 10.1245 6 6 0 0.86602 5 0.5 0.861025 0.5 0.30043 6.68932 (5) 试按威克尔(Wuerker)假定,分别导出σt、σc、c、φ的相互关系。 解:如图:

岩石物理学及岩石性质

岩石物理学及岩石性质 一、矿物 1.1矿物 矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。 1.2矿物的主要物理特性 1.2.1光学特性 (1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。一般来说矿物的颜色是矿物对入射光吸收色的补色。 (2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。 (3)光泽:光泽是矿物表面对入射光所射的总光量。根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。 (4)透明度:透明度与矿物对矿物透射光的多少有关。 1.2.2力学性质 (1)硬度: 矿物的硬度是指矿物的坚硬程度。一般采用摩氏硬度法鉴别矿物硬度。即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。 (2)解理与断口: 矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。因此,断口具有了非晶质体的基本含义。解理与晶质体内质点间距有明显的关系,

解理常出现在质点密度较大的方向上。 (3)延展性: 矿物的延展性,也可以称为矿物的韧性。其特征是表现为矿物能被拉成长丝和辗成薄片的特性。这是自然金属元素具有的基本特性。 1.3重要矿物 (1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。 图1金刚石 (2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。 方铅矿PbS。闪锌矿ZnS。黄铁矿FeS2(见图2) 图2黄铁矿 (3)氧化物及氢氧化物类矿物:本类矿物分布相当广泛,共约180多种,包括重要的造盐矿物如石英及Fe、Al、Mn、Cr、Ti、Sn、U、Th等的氧化物或氢

岩体力学计算题

四、岩石的强度特征 (1) 在劈裂法测定岩石单轴抗拉强度的试验中,采用的立方体岩石试件的边长为5cm,一组平行试验得到的破坏荷载分别为、、,试求其抗拉强度。 解:由公式σt=2P t/πa2=2×P t×103/×52×10-4=(MPa) σt1=×= σt2=×= σt3=×= 则所求抗拉强度:σt==++/3=。 (2) 在野外用点荷载测定岩石抗拉强度,得到一组数据如下: 试计算其抗拉强度。(K= 解:因为K=,P t、D为上表数据,由公式σt=KI s=KP t/D2代入上述数据依次得: σt=、、、、、、、。 求平均值有σt=。 (3) 试导出倾斜板法抗剪强度试验的计算公式。 解: 如上图所示:根据平衡条件有: Σx=0 τ-P sinα/A-P f cosα/A=0 τ=P (sinα- f cosα)/A Σy=0 σ-P cosα-P f sinα=0 σ=P (cosα+ f sinα) 式中:P为压力机的总垂直力。

σ为作用在试件剪切面上的法向总压力。 τ为作用在试件剪切面上的切向总剪力。 f为压力机整板下面的滚珠的磨擦系数。 α为剪切面与水平面所成的角度。 则倾斜板法抗剪强度试验的计算公式为: σ=P(cosα+ f sinα)/A τ=P(sinα- f cosα)/A (4) 倾斜板法抗剪强度试验中,已知倾斜板的倾角α分别为30o、40o、50o、和60o,如果试样边长为5cm,据经验估计岩石的力学参数c=15kPa,φ=31o,试估计各级破坏荷载值。(f= 解:已知α分别为30o、40o、50o、和60o,c=15kPa,φ=31o,f=, τ=σtgφ+c σ=P(cosα+ f sinα)/A τ=P( sinα- f cosα)/A P( sinα- f cosα)/A= P(cosα+ f sinα) tgφ/A+c ( sinα- f cosα)= (cosα+ f sinα) tgφ+cA/P P=cA/[( sinα- f cosα)- (cosα+ f sinα) tgφ] 由上式,代入上述数据,计算得: P30=15(kN/mm2)×25×102(mm2)/[( sin30 - ×cos30) - (cos30 + ×sin30) tg31] αsinαcosα( sinα- f cosα) (cosα+ f sinα) (cosα+ f sinα) tgφ P 3 0 4 0

关于常用的岩土和岩石物理力学参数

(E , ν) 与(K , G )的转换关系如下: ) 1(2ν+= E G () 当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表和分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表 土的弹性特性值(实验室值)(Das,1980) 表 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν () 其中 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = () 不排水的泊松比为: ) G 3K (22G 3K u u u +-= ν () 这些值应该和排水常量k 和ν作比较,来估计压缩的效果。重要的是,在FLAC 3D 中,排水特性是用在机械连接的流变计算中的。对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。 固有的强度特性 在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面: s 13N f φσσ=-+ () 其中 )sin 1/()sin 1(N φφφ-+=

常用的岩土和岩石物理力学参数

(E, v与(K, G)的转换关系如下: 3(1 2 ) (7.2) 当v值接近0.5的时候不能盲目的使用公式 3.5,因为计算的K值将会非常的高,偏离 实际值很多。最好是确定好K值(利用压缩试验或者P波速度试验估计),然后再用K和v 来计算G值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 各向异性弹性特性一一作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要 中弹性常量:E1, E3, V2, V3和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3, V2, V3 , V3 ,G12,G 13和G23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用 各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表 3.7给出了各向异性岩石的一些典型的特性值。

流体弹性特性一一用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量 K f ,如果土粒是可压缩的,则要用到比奥模量 M 。纯净水在室温情况下的 K f 值是2 Gpa 。 其取值依赖于分析的目的。 分析稳态流动或是求初始孔隙压力的分布状态 (见理论篇第三章 流体-固体相互作用分析),则尽量要用比较低的 K f ,不用折减。这是由于对于大的 K f 流动 时间步长很小,并且,力学收敛性也较差。在 FLAC 3D 中用到的流动时间步长,tf 与孔隙度 n ,渗透系数k 以及K f 有如下关系: 丄 n t f ' (7.3) K f k 对于可变形流体(多数课本中都是将流体设定为不可压缩的) 我们可以通过获得的固结 系数C 来决定改变K f 的结果。 (7.4) 其中 1 m K 4G/3 k k f 其中,k '—— FLAC 3D 使用的渗透系数 k —渗透系数,单位和速度单位一样(如米 /秒) f ――水的单位重量 9 考虑到固结时间常量与 C 成比例,我么可以将K f 的值从其实际值(2 10 Pa )减少, 利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率 (见1.7节流动与 力学的相互作用)。如果K f 是一个通过比较机械模型得到的值, 则由于机械变形将会产生孔 隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能 K f 对其影响很小。例如在土 体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: (7.5) 不排水的泊松比为: n K f K f

北京石油大学-岩石力学参数计算软件说明书

岩石力学参数计算软件 (Ver1.00C) 石油大学(北京)岩石力学实验室 2004年10月

(一)软件的运行环境 1.CPU PIII 500或同等运算速度以上 2.内存128Mb以上 3.显存32Mb以上 4.屏幕显示分辨率1024*768 5.操作系统Windows 98 Windows2000 Windows XP 6.WORD97或2000 (二)软件的安装 1.开启计算机 2.将安装光盘放入光驱内,记住光驱的盘符,例如:E为光驱的盘符。3.计算机屏幕左下角“开始”——“运行”,出现对话框(图4.1),输入:E:\setup.exe 图4.1 运行对话框 4.“确定”后,按照提示安装软件。 5.安装软件结束后,系统会在C盘产生Dg_RockPra100C的目录,同时在“程序”中产生“岩石参数DG”的菜单条,软件可从这里启动。

(三) 软件入门 第一步:软件启动 点击“程序”中“岩石参数DG”的菜单条,软件启动,产生如下界面:

第二步:建立一个计算文件 1.激活菜单 + 2.输入参数窗口 新建计算文件打开计算文件保存计算文件计算输出结果到文件

(1)压裂井描述 井号:井名,对软件很重要,自动计算和保存的数据都是以井号为依据;(2)层段描述: 一个层段描述由层段类别、顶界深度、底界深度、参数预测中各项内容组成。 顶界深度:压裂、隔层或其他地层的起始深度; 底界深度:压裂、隔层或其他地层的终止深度; 层段类别:压裂、隔层或其他地层; “添加”:将层段类别、顶界深度、底界深度添加到计算数据库; “删除”:将当前指定的层段类别、顶界深度、底界深度从计算数据库中删除; “确定修改”:将当前指定的层段类别、顶界深度、底界深度、参数预测内容修改后保存到计算数据库; 注意:参数预测中的每项参数改动后,“确定修改”才有效。

《岩石力学》考研计算题

某均质岩体的纵波波速是,横波波速是,岩石容重,求岩体的动弹性模量,动泊松比和动剪切模量。 解:弹性理论证明,在无限介质中作三维传播时,其弹性参数间的关系式如下: 动泊松比 动弹性模量 动剪切模量G,按公式 计算题(普氏理论,次生应力) 1抗拉强度的公式是什么巴西法p41. St=2P/πD·t=D·t P-劈裂载荷 D、t-试件直径、厚度 2将岩石试件单轴压缩压应力达到120MPa时,即破坏,破坏面与最大主应力方向夹角60 度,根据摩尔库伦准则计算1岩石内摩擦角2正应力为零时的抗剪强度(就是求C) α=45°+ψ;τ=C+fσ=C+σtanψ增加公式Sc=2Ccosψ/(1 - sinψ) 3计算原岩自重应力的海姆假说和金尼克假说的内容和各自的公式p85 海姆假说:铅垂应力为上覆掩体的重量,历经漫长的地质年代后,由于材料的蠕变性及地下水平方向的约束条件,导

致水平应力最终与铅垂应力相均衡。 公式:σ1=σ2=σ3=ρgz=γz 金尼克假说:铅垂应力仍是自重应力σz=γz,而水平方向上,均质岩体相邻微元体相互受到弹性约束,且机会均等,故由虎克定律应有εx=[σx-ν(σy+σz)]/E=0 εy=[σy-ν(σx+σz)]/E=0,得到自重力的水平分量为σx=σy=νγz/(1-ν) 例题求在自重作用下地壳中的应力状态:如果花岗岩,泊松比,则一公里深度以下的应力是多少 解:因为地壳厚度比地球半径小的多。在局部地区可以把地表看作一个半平面,在水平方向为,深度也无限。现考虑地面下深度Z处的一个微小单元体。它受到在它上边岩、土体重量的压力。在单位面积上,这个重量是,其中,是它上面物体的体积,是物理单位体积的重量,因此: 如果单元体四周是空的,它将向四周膨胀,当由于单元体四周也都在自重作用下,相互作用的影响使单元体不能向四周扩张。即 ; 解之,则得: 对于花岗岩,,一公里深度以下的应力为: 由此可见,深度每增加一公里,垂直压力增加,而横向压力约为纵向压力的三分之一。 绪论典型题解 岩石和岩体的概念有何不同 答:所谓岩石是由矿物或岩屑在地质作用下按一定的规律聚集而形成的自然物体;所谓岩体是在一定的地质条件下,含有诸如节理、裂隙、层理和断层等地质结构面的复杂地质体。岩石就是指岩块,在一般情况下,不含有地质结构面。 在力学性质上,岩体具有什么特征

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理 力学参数 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

(E , ν) 与(K , G )的转换关系如下: ) 1(2ν+= E G () 当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表和分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表 土的弹性特性值(实验室值)(Das,1980) 表

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长, tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? ()

常用土层和岩石物理力学性质

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用

各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

相关文档
最新文档