中考数学 直角三角形的边角关系 培优 易错 难题练习(含答案)含答案

中考数学 直角三角形的边角关系 培优 易错 难题练习(含答案)含答案
中考数学 直角三角形的边角关系 培优 易错 难题练习(含答案)含答案

中考数学直角三角形的边角关系培优易错难题练习(含答案)含答案

一、直角三角形的边角关系

1.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=1

2

∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;

(2)通过观察、测量、猜想:BF

PE

=,并结合图2证明你的猜想;

(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE

值.(用含α的式子表示)

【答案】(1)证明见解析(2)

1

2

BF

PE

=(3)

1

tan

2

BF

PE

α

=

【解析】

解:(1)证明:∵四边形ABCD是正方形,P与C重合,

∴OB="OP" ,∠BOC=∠BOG=90°.

∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).

(2)BF1

PE2

=.证明如下:

如图,过P作PM//AC交BG于M,交BO于N,

∴∠PNE=∠BOC=900,∠BPN=∠OCB.

∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.

∴NB=NP.

∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.

∴△BMN ≌△PEN (ASA ).∴BM=PE .

∵∠BPE=

1

2

∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.

又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=1

2

BM . ∴BF=

12PE , 即

BF 1

PE 2

=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,

∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.

由(2)同理可得BF=1

2

BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .

BM BN

PE PN

=. 在Rt △BNP 中,BN tan =PN α, ∴

BM =tan PE α,即2BF

=tan PE

α. ∴

BF 1

=tan PE 2

α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .

(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出

BF 1

PE 2

=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=1

2

BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BN

tan =PN

α即可求得

BF 1

=tan PE 2

α.

2.如图,在△ABC 中,∠ABC=∠ACB ,以AC 为直径的⊙O 分别交AB 、BC 于点M 、N ,点P 在AB 的延长线上,且∠CAB=2∠BCP . (1)求证:直线CP 是⊙O 的切线.

(2)若BC=2,sin∠BCP=,求点B到AC的距离.

(3)在第(2)的条件下,求△ACP的周长.

【答案】(1)证明见解析(2)4(3)20

【解析】

试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;

(2)利用锐角三角函数,即勾股定理即可.

试题解析:(1)∵∠ABC=∠ACB,

∴AB=AC,

∵AC为⊙O的直径,

∴∠ANC=90°,

∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,

∵∠CAB=2∠BCP,

∴∠BCP=∠CAN,

∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,

∵点D在⊙O上,

∴直线CP是⊙O的切线;

(2)如图,作BF⊥AC

∵AB=AC,∠ANC=90°,

∴CN=CB=,

∵∠BCP=∠CAN,sin∠BCP=,

∴sin ∠CAN=,

∴AC=5, ∴AB=AC=5,

设AF=x ,则CF=5﹣x ,

在Rt △ABF 中,BF 2=AB 2﹣AF 2=25﹣x 2, 在Rt △CBF 中,BF 2=BC 2﹣CF 2=2O ﹣(5﹣x )2, ∴25﹣x 2=2O ﹣(5﹣x )2, ∴x=3,

∴BF 2=25﹣32=16, ∴BF=4,

即点B 到AC 的距离为4. 考点:切线的判定

3.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:

如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:

把图1中的△AEF 绕点A 顺时针旋转.

(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;

(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记

AC

BC

=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)

【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为3

3

时,CPE V 总是等边三角形 【解析】 【分析】

(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有

EM FP

MC PB

=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.

(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC

BC

=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】

解:(1)PC=PE 成立,理由如下:

如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴

EM FP

MC PB

=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;

(2)PC=PE 成立,理由如下:

如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,

∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴

DM FP

MC PB

=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC ,

∴PC=PD ,又∵PD=PE , ∴PC=PE ;

(3)如图4,∵△CPE 总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,

∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵

AC k BC ,AC

BC

=tan30°, ∴k=tan30°=3

, ∴当k 为

3

3

时,△CPE 总是等边三角形.

【点睛】

考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.

4.如图,将一副直角三角形拼放在一起得到四边形ABCD ,其中∠BAC=45°,∠ACD=30°,点E 为CD 边上的中点,连接AE ,将△ADE 沿AE 所在直线翻折得到△AD′E ,D′E 交AC 于F 点.若AB=6

cm .

(1)AE 的长为 cm ;

(2)试在线段AC 上确定一点P ,使得DP+EP 的值最小,并求出这个最小值; (3)求点D′到BC 的距离.

【答案】(1);(2)12cm;(3)cm.

【解析】

试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:

∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).

∵点E为CD边上的中点,∴AE=DC=cm.

(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.

(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.

试题解析:解:(1).

(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,

∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.

∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.

∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.

∴点E,D′关于直线AC对称.

如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.

∵△ADE是等边三角形,AD=AE=,

∴,即DP+EP最小值为12cm.

(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,

∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,

∵AE=EC,∴AD′=CD′=.

在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′

(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.

设D′G长为xcm,则CG长为cm,

在Rt△GD′C中,由勾股定理得,

解得:(不合题意舍去).

∴点D′到BC边的距离为cm.

考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.

5.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.

(1)求证:CD是⊙O的切线;

(2)若AB=6,∠ABE=60°,求AD的长.

【答案】(1)详见解析;(2)9 2

【解析】

【分析】

(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.

【详解】

证明:如图,连接OE,

∵AE平分∠DAC,

∴∠OAE=∠DAE.

∵OA=OE,

∴∠AEO=∠OAE.

∴∠AEO=∠DAE.

∴OE∥AD.

∵DC⊥AC,

∴OE⊥DC.

∴CD是⊙O的切线.

(2)解:∵AB是直径,

∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,

在Rt△ABE中,AE=AB·cos30°=6×

3

2

=33,

在Rt△ADE中,∠DAE=∠BAE=30°,

∴AD=cos30°×AE=3×33=9 2 .

【点睛】

本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.

6.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.

(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,

tan67°≈2.36)

(2)求扇形BOC的面积(π取3.14,结果精确到1cm)

【答案】(1)半径OA的长约为24.5cm;(2)扇形BOC的面积约为2

822cm.

【解析】

【分析】

(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .

(2)用扇形面积公式即可求得. 【详解】

(1)在Rt △ODE 中,15cm DE =,67ODE ∠=?. ∵cos DE

ODE DO

∠=, ∴15

0.39

OD ≈

, ∴()384614245cm OA OD AD =-≈-≈.

., 答:半径OA 的长约为24.5cm . (2)∵67ODE ∠=?, ∴157BOC ∠=?, ∴2

360

BOC

n r S π=

扇形 2

157 3.1424.52360

??≈

()2822cm ≈.

答:扇形BOC 的面积约为2822cm . 【点睛】

此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.

7.如图,建筑物

上有一旗杆

,从与

相距的处观测旗杆顶部的仰角为

观测旗杆底部的仰角为

,求旗杆

的高度.(参考数据:

,

【答案】旗杆的高度约为.

【解析】 【分析】

在Rt△BDC中,根据tan∠BDC=求出BC,接着在Rt△ADC中,根据

tan∠ADC==即可求出AB的长度

【详解】

解:∵在Rt△BDC中,tan∠BDC==1,∴BC=CD= 40m

在Rt△ADC中,tan∠ADC==

∴tan50°= =1.19

∴AB7.6m

答:旗杆AB的高度约为7.6m.

【点睛】

此题主要考查了三角函数的应用

8.已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.

(1)如图1,求证:KE=GE;

(2)如图2,连接CABG,若∠FGB=1

2

∠ACH,求证:CA∥FE;

(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=3

5

,AK=10,求CN

的长.

【答案】(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(320

10 13

【解析】

试题分析:

(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;

(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=1

2

∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;

(3)如下图2,作NP ⊥AC 于P ,

由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=3

5

AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=

4

3

CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=

3AH

HK

=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP

=,可设PN=12b ,AP=9b ,由tan ∠ACG=

PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=5

13

,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:

(1)如图1,连接OG .

∵EF 切⊙O 于G , ∴OG ⊥EF ,

∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,

∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,

∵∠FGB=

1

2

∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .

(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=3

5

AH AC =,设AH=3a ,AC=5a ,

则4a =,tan ∠CAH=

4

3

CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH , ∴∠CAK=∠AKH ,

∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AH

HK

=3,=, ∵

=

∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°,

在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°, ∵∠AKH+∠HKG=180°, ∴∠AKH=∠ABG , ∵∠ACN=∠ABG , ∴∠AKH=∠ACN , ∴tan ∠AKH=tan ∠ACN=3, ∵NP ⊥AC 于P , ∴∠APN=∠CPN=90°, 在Rt △APN 中,tan ∠CAH=4

3PN AP =,设PN=12b ,则AP=9b , 在Rt △CPN 中,tan ∠ACN=PN

CP

=3, ∴CP=4b , ∴AC=AP+CP=13b , ∵AC=5, ∴13b=5,

∴b=5

13

∴CN=22

PN CP

+=410b?=20

10 13

9.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D

(1)求证:PC是⊙O的切线;

(2)求证:PA AD PC CD

=;

(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=3

5

,CF=5,求BE

的长.

【答案】(1)见解析;(2)BE=12.

【解析】

【分析】

(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到

∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到

CF=AF,在R t△AFD中,AF=5,sin∠FAD=3

5

,求得FD=3,AD=4,CD=8,在R t△OCD中,

设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为

⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=3

5,得到

BE

AB

3

5

,于是求得

结论.

【详解】

(1)证明:连接OC,

∵PC切⊙O于点C,∴OC⊥PC,

∴∠PCO=90°,

∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,

∴∠ABC+∠OAC=90°,∵OC=OA,

∴∠OCA=∠OAC,

∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,

∵AB⊥CG,

∴弧AC=弧AG,

∴∠ACF=∠ABC,

∵∠PCA=∠ABC,

∴∠ACF=∠CAF,

∴CF=AF,

∵CF=5,

∴AF=5,

∵AE∥PC,

∴∠FAD=∠P,

∵sin∠P=3

5

∴sin∠FAD=3

5

在R t△AFD中,AF=5,sin∠FAD=3

5

∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,

∴r=10,

∴AB=2r=20,

∵AB为⊙O的直径,

∴∠AEB=90°,在R t△ABE中,

∵sin∠EAD=3

5,∴

3

5

BE

AB

∵AB=20,

∴BE=12.

【点睛】

本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.

10.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,

(1)求弦AD的长;

(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?

(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.

【答案】(1)23

(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形

(3)不变,理由见解析

【解析】

【分析】

(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;

(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后

根据含30°的直角三角形三边的关系得DN=1

2

3

3

当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,

又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到

∠DNO=45°,根据等腰直角三角形的性质得到

; (3)连AP 、AQ ,DP ⊥AB ,得AC ∥DP ,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB ,∠AQC=∠P ,则∠PAQ=60°,∠CAQ=∠PAD ,易证得△AQC ≌△APD ,得到

DP=CQ ,则DP-DQ=CQ-DQ=CD ,而△ADC 为等边三角形,DP-DQ 的值. 【详解】

解:(1)∵∠BAC =90°,点D 是BC 中点,BC = ∴AD =

1

2

BC = (2)连DE 、ME ,如图,∵DM >DE , 当ED 和EM 为等腰三角形EDM 的两腰, ∴OE ⊥DM , 又∵AD =AC ,

∴△ADC 为等边三角形, ∴∠CAD =60°, ∴∠DAO =30°, ∴∠DON =60°,

在Rt △ADN 中,DN =1

2

AD ,

在Rt △ODN 中,ON DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形; 当MD =ME ,DE 为底边,如图3,作DH ⊥AE , ∵AD =∠DAE =30°,

∴DH

∠DEA =60°,DE =2, ∴△ODE 为等边三角形, ∴OE =DE =2,OH =1, ∵∠M =∠DAE =30°, 而MD =ME , ∴∠MDE =75°,

∴∠ADM =90°﹣75°=15°, ∴∠DNO =45°,

∴△NDH 为等腰直角三角形, ∴NH =DH

∴ON ﹣1;

综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;

(3)当⊙O 变动时DP ﹣DQ 的值不变,DP ﹣DQ =.理由如下:

连AP、AQ,如图2,

∵∠C=∠CAD=60°,

而DP⊥AB,

∴AC∥DP,

∴∠PDB=∠C=60°,

又∵∠PAQ=∠PDB,

∴∠PAQ=60°,

∴∠CAQ=∠PAD,

∵AC=AD,∠AQC=∠P,

∴△AQC≌△APD,

∴DP=CQ,

∴DP﹣DQ=CQ﹣DQ=CD=23.

【点睛】

本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.

11.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)

(1)如果∠A=30°,

①如图1,∠DCB等于多少度;

②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;

(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)

【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=

2DE?tanα.理由见解析. 【解析】 【分析】

(1)①根据直角三角形斜边中线的性质,结合∠A =30°,只要证明△CDB 是等边三角形即可;

②根据全等三角形的判定推出△DCP ≌△DBF ,根据全等的性质得出CP =BF ,

(2)求出DC =DB =AD ,DE ∥AC ,求出∠FDB =∠CDP =2α+∠PDB ,DP =DF ,根据全等三角形的判定得出△DCP ≌△DBF ,求出CP =BF ,推出BF ﹣BP =BC ,解直角三角形求出CE =DEtanα即可. 【详解】

(1)①∵∠A =30°,∠ACB =90°, ∴∠B =60°, ∵AD =DB , ∴CD =AD =DB , ∴△CDB 是等边三角形, ∴∠DCB =60°.

②如图1,结论:CP =BF .理由如下:

∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°, ∴△CDB 为等边三角形. ∴∠CDB =60°

∵线段DP 绕点D 逆时针旋转60°得到线段DF , ∵∠PDF =60°,DP =DF , ∴∠FDB =∠CDP , 在△DCP 和△DBF 中

DC DB CDP BDF DP DF =??

∠=∠??=?

, ∴△DCP ≌△DBF , ∴CP =BF.

(2)结论:BF ﹣BP =2DEtanα.

理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α, ∴DC =DB =AD ,DE ∥AC ,

∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,

∴∠BDC =∠A+∠ACD =2α, ∵∠PDF =2α,

∴∠FDB =∠CDP =2α+∠PDB ,

∵线段DP 绕点D 逆时针旋转2α得到线段DF , ∴DP =DF , 在△DCP 和△DBF 中

DC DB CDP BDF DP DF =??

∠=∠??=?

, ∴△DCP ≌△DBF , ∴CP =BF , 而 CP =BC+BP , ∴BF ﹣BP =BC ,

在Rt △CDE 中,∠DEC =90°,

∴tan ∠CDE =

CE

DE

, ∴CE =DEtanα,

∴BC =2CE =2DEtanα, 即BF ﹣BP =2DEtanα. 【点睛】

本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.

12.如图所示,小华在湖边看到湖中有一棵树AB ,AB 与水面AC 垂直.此时,小华的眼睛所在位置D 到湖面的距离DC 为4米.她测得树梢B 点的仰角为30°,测得树梢B 点在水中的倒影B′点的俯角45°.求树高AB (结果保留根号)

【答案】AB=(3)m . 【解析】 【分析】

相关主题
相关文档
最新文档