黏度法测定聚乙二醇的平均相对分子质量3

黏度法测定聚乙二醇的平均相对分子质量3
黏度法测定聚乙二醇的平均相对分子质量3

黏度法测定聚乙二醇的平均相对分子质量

姓名:学号:

班级:2012级化学2班指导教师:

一、实验目的

1、掌握用乌贝路德(Ubbelohde)黏度计测定黏度的原理和方法。

2、测定聚乙二醇的平均相对分子质量。

二、实验原理

黏度是指液体对流动所表现的阻力,这种力反抗液体中邻接部分的相对移动,因此可看作是一种内摩擦。高聚物稀溶液的黏度,主要反映了液体在流动时存在着内摩擦。其中,因溶剂分子之间的内摩擦表现出来的黏度叫纯溶剂黏度,记作η0 ;此外还有高聚物分子相互之间的内摩擦,以及高分子与溶剂分子之间的内摩擦,三者之总和表现为溶液的黏度η。同一温度下,一般来说η > η0。相对于溶剂,其溶液黏度增加的分数,称为增比黏度,记作ηsp ,即ηsp =(η-η0)/η0,

而溶液黏度与纯溶剂黏度的比值称为相对黏度,记作ηr,即ηr = η / η0ηr也是整个溶液的黏度行为,ηsp则意味着已扣除了溶剂分子之间的内摩擦效应。两者关系为:ηsp = η / η0-1= ηr-1。

对于高分子溶液,增比黏度ηsp往往随溶液的浓度c的增加而增加。为了便于比较将单位浓度下所显示出的增比黏度,即ηsp / c 称为比浓粘度;而ln ηr / c 则成为比浓对数粘度。ηr和ηsp都是无因次的量。

为了进一步消除高聚物分子之间的内摩擦效应,必须将溶液浓度无限稀释,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不计。这时溶液所呈现出的黏度行为基本上反映了高聚物分子与溶剂分子之间的内摩擦。这一黏度的极限值记为lim ηsp/c =[η],[η]被称为特性黏度,其值与浓度无关。

实验证明,当聚合物、溶剂和温度确定以后,[η]的数值只与高聚物平均相

有关,它们之间的半经验关系可用Mark Houwink方程式表对分子质量M

(平均)

α

示:[η]=KM

平均

。测定高分子的[η]时,用毛细管黏度计最黏度法只能测定[η]求算出M

平均

为方便。当液体在毛细管黏度计内因重力作用而流出时遵守泊肃叶(Poiseuille)

定律:

η/ρ=Π hgr4t /(8lV )- mV/(8Πlt)

式中ρ为液体的密度;l是毛细管长度;r是毛细管半径;t是流出时间;h 是流经毛细管液体平均液柱高度;g为重力加速度;V是流经毛细管液体的体积;m是与仪器的几何形状有关的常数。

对于某一支指定的黏度计而言,令α=Π hgr4t /(8lV ),β= mV /(8Πlt),则上式可改为η/ρ=αt-β/t 式中β<1,当t>100s时,等式右边第二项可以忽略。设溶液的密度ρ与溶剂密度ρ0近似相等。这样,通过分别测定溶液和溶剂的流出时间t和t0,就可算出ηr:ηr=η/η0=t/t0

进而可分别计算得到ηsp、ηsp/c值。配置一系列不同浓度的溶液分别进行测定,以ηsp/c为纵坐标,c为横坐标作图,得到一条直线,外推到c=0处,其截距

即为[η],代入[η]=KM

平均α(K,α已知),即可得到高聚物的M

平均

三、实验仪器及试剂

实验仪器:乌氏黏度计、恒温水浴装置、烧杯、移液管、秒表、洗耳球

实验试剂:4% 聚乙二醇溶液

四、实验步骤

1、溶剂流出时间t0的测定

开启恒温水浴和搅拌器电源,调节水温为25℃。先在黏度计的C管和B管的上端套上干燥清洁的橡皮管,在铁架台上调节好黏度计的垂直度和高度,然后将黏度计安放在恒温水浴中。从A管加入10 mL左右的蒸馏水,并用夹子夹住C管上的橡皮管下端,使其不通大气。在B管的橡皮管口用洗耳球将水从F球经D球、毛细管、E球抽至G球中部,取下洗耳球,同时松开C管上夹子,使其通大气。此时溶液顺毛细管而流下,当液面流经上刻度线时,立刻按下秒表开始计时,至下刻度线处则停止计时。记下液体流经上下刻度线所需的时间t0。

2、溶液流出时间的测定

取出黏度计,倾去其中的水,加入少量的聚乙二醇润洗黏度计。用同样的方法安装调节好黏度计,用移液管吸取10.0 mL质量分数为0.04的聚乙二醇水溶液小心注入黏度计内,在溶液恒温过程中,应用溶液润洗毛细管后在测定溶液的流出时间t。然后依次分别小心加入5.0 mL、10.0 mL的蒸馏水,按上述方法分

别测量不同浓度时的t值。每次稀释后都要将溶液在F球中充分搅拌,使黏度计内各处溶液的浓度相等,而且须恒温。

取出粘度计,倾去其中的溶液,润洗粘度计,烘干。用移液管移取5.0 mL 质量分数为0.04的聚乙二醇水溶液小心注入黏度计内,分别小心加入5.0 mL、

10.0 mL的蒸馏水。按上述方法分别测量不同浓度的t值。

五、实验数据记录与处理

1、实验数据记录(实验温度:T=25℃)

由实验测得纯溶剂水的流出时间t0=87s

编号 1 2 3 4 5

溶液量(mL)10.00 10.00 10.00 5.00 5.00 溶剂量(mL)0.00 5.00 10.00 10.00 15.00 溶液浓度c 0.040 0.033 0.029 0.022 0.0125 t(s)103 99 95 93 91 ηr 1.1839 1.1379 1.0920 1.0690 1.0460 Ln ηr /c 3.3877 3.5404 3.6285 4.3414 4.4270 ηsp0.1839 0.1379 0.0920 0.0690 0.0460 ηsp/c 4.5975 4.1788 3.1724 3.1364 3.6800 2、以ln ηr/c对c作图:

由ln ηr/c-c图象可知:截距[η]=5.0434 ;

3、计算聚乙二醇的平均相对分子质量。

已知:25℃时聚乙二醇的常数K=1.56*10-3,α=0.5。

故由[η]=KM

平均α 得M

平均

= [5.0434/(1.56*10-3)]2 =1.2133*107。

六、问题与讨论

1、乌式黏度计测定高聚物分子量时有哪些注意事项?

答:①使用乌式黏度计时,要在同一只黏度计内测定一系列浓度的溶液的流出时间。每次吸取和加入的液体的体积要很准确。为了温度变化可能引起的体积变化,溶液和溶剂应在同一温度下移取,实验应在恒温槽中进行。②在每次加入的溶剂稀释溶液时,必须将黏度计的液体混合均匀,还要将溶液吸到G球内,润洗毛细管,否则溶液流出时间的重复性差。③测定时黏度计要垂直放置,否则影响结果的准确性。

2、乌式黏度计中的支管C有什么作用?除去支管C是否仍可以测黏度?

答:①乌式黏度计由A、B、C三个支管构成,其中,A管是用来装待测液体的,B管则是测量主件,可以测定液体定向流动一定距离的流动时间,C管则是使B 管与大气相连通。当毛细管下端的液面下降,毛细管内流下的液体形成一个悬液柱,液体流出毛细管下端后沿管壁流下,避免出口处形成湍流现象,或者减少了A管液面升高对毛细管中液流压力差带来的影响。

②除去C管仍可测定,但是要保证每次测量的体积都相同。乌式黏度计由于有C 管,故所加待测液的体积不用每次相同,即可在黏度计中直接稀释液体。若除去C管,液体下流时所受的压力差与B管中液面高度有关,故应保证每次测量的体积相同。

CO2相对分子质量的测定

实验五二氧化碳相对分子质量得测定 一、实验目得 1。学习气体相对密度法测定分子量得原理与方法,加深理解理想气体状态方程式与阿佛加德罗定律; 2。学会大气压力计得使用; 3.巩固分析天平得使用; 4。了解启普发生器得构造与原理,掌握其使用方法,熟悉洗涤、干燥气体得装置。 二、实验原理 阿佛加德罗定律:同T、P,同V得气体物质得量相等 理想气体状态方程式:PV=nRT=mRT/M 对同T、P,同V得空气(air)与二氧化碳(CO2)有: = 式中,m,M分别为空气(二氧化碳)得质量与相对分子质量 则, [教学重点] 分析天平得使用 启普发生器得使用 分子量得测定与计算 [教学难点] 分析天平得称量操作 启普发生器得使用 [实验用品] 仪器:台秤(电子称)、分析天平、启普发生器、洗气瓶、锥形瓶、干燥管 药品:石灰石、无水CaCl2、6mol·L-1HCl、1mol·L-1NaHCO3、1mol·L-1CuSO4 材料:玻璃棒、玻璃导管、橡皮塞(3、6、8~12号)、玻璃棉 [基本操作] 一、大气压力计得使用方法 1.首先观察附属温度计,记录温度; 2.调节水银槽中得水银面。旋转调节螺旋使槽内水银面升高,这时利用水银槽后面白磁片得反光,可以瞧到水银面与象牙针得间隙,再调节螺旋至间隙恰好消失为止; 3。调节游标。转动控制游标得螺旋,使游标得底部恰与水银柱凸面顶端相切; 4.读数方法。读数标尺上得刻度单位为hPa.整数部分得读法:先瞧游标得零线在刻度标尺上得 位置,如恰与标尺上某一刻度相吻合,则该刻度即为气压计读数.例如,游标零线与标尺上1160相吻合,气压读数即为1161、0hPa,如果游标零线在1161与1162之间,则气压计读数得整数部分即为1161,再由游标确定小数部分.小数部分得读法:从游标上找出一根与标尺上某一刻度相吻合得刻度线,此游标读数即为小数部分,如1161、5 hPa; 5.读数后转动气压计底部得调节螺旋,使水银面下降到与象牙针完全脱离; 6.做仪器误差、温度、海拔高度与纬度等项校正. 二、电子天平得使用 1.电子天平得使用精确度0、1 mg (最大载荷200 g) (1)使用前观察天平仪就是否水平,如不水平,用水平脚调整水平; (2)接通电源,预热20~30 min以获得稳定得工作温度; (3)让秤盘空载并轻按“On”键,天平显示自检(所有字段闪现等),当天平回零时,就可以称量了;

粘度法测分子量实验报告(精)

高聚物相对分子量的测定 一、实验目的 1、了解黏度法测定高聚物分子量的基本原理和分子。 2、测定聚乙二醇的黏均分子量。 3、掌握用乌贝路德黏度的方法。 4、用Origin或Excel处理实验数据 二、实验原理 分子量是表征化合物特征的基本参数之一。但高聚物分子量大小不一,参差不一,一般在10~10之间,所以通常所测高聚物的分子量是平均分子量。测定高聚分子量的方法很多,对线型高聚物,各方法适合用范围如下; 10 端基分析〈3*4 10 沸点升高,凝固点降低,等温蒸馏〈3*4 10~10 渗透压46 10~10 光散射47 10~10 起离心沉降及扩散47 10~10 黏度法47 其中黏度发设备简单,操作方便,有相当好的实验精度,但黏度发不是测分子量的绝对方法,因为此法中所有的特征黏度与分子量的经验方程是要用其他方法来确定的,高聚物不同,溶剂不同,分子量范围不同,就要用不同的经验方程式。 高聚物在稀溶液中的黏度,主要反映了液体在流动是存在着内摩檫。在测高聚物溶液黏度求分子量时,常用到下面一些名词。 如果高聚物分子的分子量越大,则它与溶剂间的接触表面之间的经验关系为; 式中,M为粘均分子量;K为比例常数;a是与分子形状有关的经验参数。K与a植a与温度、高聚物]溶剂性质及分子量大小有关。K植受温度的影响较明显,而a值主要取决与高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K 与a的值可以通过其它的实验方法确定,例如渗透压法、光散射大等,从黏度法只能测定得[ɡ] 根据实验,在足够稀的溶液中有: 这样以及对C作图得两条直线,外推到这两条直线在纵坐标轴上想叫与一点,可求出数值。为了绘图方便,引进相对浓度,即。其中,C表示溶液的真实浓度,表示溶液的其始浓度,由图可知,其中A为截距 黏度测定中异常现象的近似处理。在特定性黏度测量过程中,有时并非操作不慎,而出现对图与对图外推到时,在纵坐标轴上并不相交于一点的异常现象。在式中和

粘度法测分子量

粘度法测定聚合物的粘均分子量 线型聚合物溶液的基本特性之一,是粘度比较大,并且其粘度值与分子量有关,因此可利用这一特性测定聚合物的分子量。粘度法尽管是一种相对的方法,但因其仪器设备简单,操作方便,分子量适用范围大,又有相当好的实验精确度,所以成为人们最常用的实验技术,在生产和科研中得到广泛的应用。 一、 实验目的 掌握粘度法测定聚合物分子量的原理及实验技术。 二、基本原理 聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins )公式 2[][]sp k c c ηηη =+ --------------------------------------- (1) 在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。另一个常用的式子是 2[][]ln r c c ηβηη =--------------------------------------- (2) 式中k 与β均为常数,其中k 称为哈金斯参数。对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。从(1)式和(2)式看出,如果用sp c η或ln r c η对c 作图并外 推到c →0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为 特性粘度[η],如图1-1所示 0ln lim lim []sp r c c c c ηηη→→== ----------------------------------------(3) 图1-1

粘度法测定高聚物分子量

实验五粘度法测定水溶性高聚物分子量 一.实验目的 1. 测定多糖聚合物-右旋糖苷的平均分子量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二.实验原理 高聚物相对分子质量是表征聚合物特征的基本参数之一,相对分子质量不同,高聚物的性能差异很大。所以不同材料,不同的用途对分子质量的要求是不同的。测定高聚物的相对分子质量对生产和使用高分子材料具有重要的实际意义。本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一。它是一种无臭、无味、白色固体物质,易溶于近沸点的热水中,相对分子质量是2∽8×104范围内,选用它来做实验是合乎要求的。 线型高分子可被溶剂分子分散,在具有足够的动能下相互移动,成为黏度态,η是可溶性的高聚物在稀溶液中的黏度,是它在流动过程中所存在内摩擦的反映,这种摩擦主要有:溶剂分子与溶剂分子之间的内摩擦,也就是纯溶剂的黏度,记作η0;还有高分子与高分子之间的内摩擦以及高分子与溶剂分子之间的内摩擦,三者总和表现为高聚物溶液的黏度,记作η。 在同一温度下,高聚物的黏度一般都比纯溶剂的黏度大,即η>η0,这些黏度增加的分数,叫做增比黏度,记作ηsp,即 式中,ηr 称为相对黏度,这指明溶液黏度对溶剂黏度的相对值,仍是整个溶液的黏度行为;ηsp则意味着已经扣除了溶剂分子之间的内摩擦效应。 溶液的浓度可大可小,显然,浓度越大,黏度也就越大,为了便于比较,将单位浓度下所显示的黏度,即引入ηsp/c,称作比浓黏度,其中c是浓度,采用单位为g/mL。 为了进一步消除高聚物分子之间的内摩擦效应,必须将溶液浓度无限稀释,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不记。这时溶液所呈现出的粘度行为基本上反映了高分子与溶剂分子之间的内摩擦。这一粘度的极限值记为: [η]被称为特性粘度,其值与浓度无关。实验证明,当聚合物、溶剂和温度确定以后,[η]的数值只与高聚物平均相对分子质量M有关,它们之间的半经验关系可用Mark Houwink 方程式表示:

高分子相对分子量的测定

高分子分子量的主要测定方法 用途 高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。 表征方法及原理 1.粘度法测相对分子量(粘均分子量Mη) 用乌式粘度计,测高分子稀释溶液的特性粘数[η],根据Mark-Houwink公式[η]=kMα,从文献或有关手册查出k、α值,计算出高分子的分子量。其中,k、α值因所用溶剂的不同及实验温度的不同而具有不同数值。 2.小角激光光散射法测重均分子量(Mw) 当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。这种散射波的强弱和小粒子(高分子)中的偶极子数量相关,即和该高分子的质量或摩尔质量有关。根据上述原理,使用激光光散射仪对高分子稀溶液测定和入射光呈小角度(2℃-7℃)时的散射光强度,从而计算出稀溶液中高分子的绝对重均分子量(MW)值。采用动态光散射的测定可以测定粒子(高分子)的流体力学半径的分布,进而计算得到高分子分子量的分布曲线。 3.体积排除色谱法(SES)(也称凝胶渗透色谱法(GPC)) 当高分子溶液通过填充有特种多孔性填料的柱子时,溶液中高分子因其分子量的不同,而呈现不同大小的流体力学体积。柱子的填充料表面和内部存在着各种大小不同的孔洞和通道,当被检测的高分子溶液随着淋洗液引入柱子后,高分子溶质即向填料内部孔洞渗透,渗透的程度和高分子体积的大小有关。大于填料孔洞直径的高分子只能穿行于填料的颗粒之间,因此将首先被淋洗液带出柱子,而其他分子体积小于填料孔洞的高分子,则可以在填料孔洞内滞留,分子体积越小,则在填料内可滞留的孔洞越多,因此被淋洗出来的时间越长。按此原理,用相关凝胶渗透色谱仪,可以得到聚合物中分子量分布曲线。配合不同组分高分子的质谱分析,可得到不同组分高分子的绝对分子量。用已知分子量的高分子对上述分子量分布曲线进行分子量标定,可得到各组分的相对分子量。由于不同高分子在溶剂中的溶解温度不同,有时需在较高温度下才能制成高分子溶液,这时GPC柱子需在较高温度下工作。 4.质谱法 质谱法是精确测定物质分子量的一种方法,质谱测定的分子量给出的是分子质量m对电荷数Z之比,即质荷比(m/Z)过去的质谱难于测定高分子的分子量,但近20余年由于我的离子化技术的发展,使得质谱可用于测定分子量高达百万的高分子化合物。这些新的离子化技术包括场解吸技术(FD),快离子或原子轰击技术(FIB或FAB),基质辅助激光解吸技术(MALDI-TOF MS)和电喷雾离子化技术(ESI-MS)。由激光解吸电离技术和离子化飞行时间质谱相结合而构成的仪器称为“基质辅助激光解吸-离子化飞行时间质谱”(MALDI-TOF MS 激光质谱)可测量分子量分布比较窄的高分子的重均分子量(Mw)。由电喷雾电离技术和离子阱质谱相结合而构成的仪器称为“电喷雾离子阱质谱”(ESI- ITMS 电喷雾质谱)。可测量高分子的重均分子量(Mw)。

黏度法测高聚物分子量(最终版)

华 南 师 范 大 学 实 验 报 告 学生姓名 平璐璐 学 号 20132401179 专 业 化学(师范) 年级、班级 13级一班 课程名称 物理化学实验 实验项目 黏度法测定水溶性高聚物分子量 实验类型 □验证□设计□综合 实验时间 2016 年 4 月 7 日 实验指导老师 林晓明 实验评分 一、实验目的 1.测定多糖聚合物-右旋糖苷的平均分子量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二、实验原理 高聚物摩尔质量不仅反映了高聚物分子的大小,而且直接关系到它的物理性能。与一般的无机物或低分子的有机物不同,高聚物多是摩尔质量大小不同的大分子混合物,所以通常所测高聚物的分子量是一种统计的平均分子量。 用粘度法测定的分子量称“黏均分子量”记作M η 高聚物稀溶液的黏度(η)是流体在流动时摩擦力大小的反映,这种流动过程中的内摩擦力主要有:纯溶剂间的内摩擦,也就是纯溶剂的粘度,记作η0,高聚物分子与溶剂分子间的内摩擦,以及高聚物分子间的内摩擦。这三种内摩擦的综合成为高聚物溶液的黏度η 实验证明,在相同温度下,η> η0,相对于溶剂,其溶液粘度增加的分数,称为增比粘 度,记作 sp η, 0sp r 00 11 ηηη ηηηη-= =-=- r η称为相对粘度,即溶液粘度对溶剂粘度的相对值。 高聚物溶液的ηsp 往往随浓度增加而增大,为了便于比较,定义单位浓度的增比黏度ηsp /c 为比浓黏度,定义ln ηsp /c 为比浓对数黏度。当溶液溶液无限稀释,高聚物分子彼此相隔甚远,其相互作用可以忽略不计。此时比浓粘度趋近于一个极限值,即: [η]称为特性粘度,在足够稀的溶液中,比浓黏度ηsp /c 和比浓对数黏度ln ηsp/c 与溶液的浓度有以下的关系(关系公式):

实验二 粘度法测定高聚物的分子量

实验二 粘度法测定高聚物的分子量 [适用对象] 化学教育 [实验学时] 5学时 一、实验目的 1、掌握粘度法测定高聚物相对分子质量的原理。 2、用乌氏粘度计测定聚乙烯醇的特性粘度,计算聚乙烯醇的粘均相对分子质量。 二、实验原理 单体分子经加聚或缩聚过程便可合成高聚物。并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。对于聚合和解聚过程的机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。 高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。 粘性液体在流动过程中,必须克服内摩擦阻力而做功。其所受阻力的大小可用粘度系数η(简称粘度)来表示(kg ·m -1·s -1)。 高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。在相同温度下,通常η>η0,相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp ,即 ηsp =(η-η0)/η0 而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr ,即 ηr =η/η0 ηr 反映的也是溶液的粘度行为,而ηsp 则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。 高聚物溶液的增比粘度ηsp 往往随质量浓度C 的增加而增加。为了便于比较,将单位浓度下所显示的增比粘度ηsp /C 称为比浓粘度,而1n ηr /C 则称为比浓粘度。当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可忽略,此时有关系式 [η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。由于ηr 和η sp 均是无因次量,所以[η]的单位是质量浓度C 单位的倒数。 [] ηηη==→→c c r c sp c ln lim lim 00

二氧化碳相对分子质量的测定

实验4 二氧化碳相对分子质量的测定 1.实验目的 (1)了解气体密度法测定气体相对分子质量的原理的方法; (2)了解气体的净化和干燥的原理和方法; (3)熟练掌握启普发生器的使用; (4)进一步掌握天平的使用。 2.实验原理 根据阿伏伽德罗定律,同温同压下,同体积的任何气体含有相同数目的分子。因此,在同温同压下,同体积的两种气体的质量之比等于它们的相对分子质量之比,即 M1/M2=W1/W2=d 其中:M1和W1代表第一种气体的相对分子质量和质量;M2和W2代表第二种气体的相对分子质量和质量;d(=W1/W2) 叫做第一种气体对第二种的相对密度。 本实验是把同体积的二氧化碳气体与空气(其平均相对分子质量为29.0)相比。这样二氧化碳的相对分子质量可按下式计算: M co2=Wco2×M空气/W空气=d空气×29.0 式中一定体积(V)的二氧化碳气体质量Wco2可直接从天平上称出。根据实验时的大气压(p)和温度(t),利用理想气体状态方程式,可计算出同体积的空气的质量: W空气=pV×29.0/RT 这样就求得了二氧化碳气体对空气的相对密度,从而测定二氧化碳气体的相对分子质量。 3.实验仪器与试剂 启普发生器,洗气瓶(2只),250mL锥形瓶,台秤,天平,温度计,气压计,橡皮管,橡皮塞等。 HCl (工业用,6mol·L-1),H2SO4 (工业用),饱和NaHCO3溶液,无水CaCl2,大理石等。 4.实验步骤 按图连接好二氧化碳气体的发生和净化装置。

图6.3.1 二氧化碳的发生和净化装置 1—大理石+稀盐酸;2—饱和NaHCO3;3—浓H2SO4; 4—无水CaCl2;5—收集器 取一个洁净而干燥的锥形瓶,选一个合适的橡皮塞塞入瓶口,在塞子上作一个记号,以固定塞子塞入瓶口的位置。在天平上称出(空气+瓶+塞子)的质量。 从启普发生器产生的二氧化碳气体,通过饱和NaHCO3溶液、浓硫酸、无水氯化钙,经过净化和干燥后,导入锥形瓶内。因为二氧化碳气体的相对密度大于空气,所以必须把导气管插入瓶底,才能把瓶内的空气赶尽。2~3分钟后,用燃着的火柴在瓶口检查CO2已充满后,再慢慢取出导气管用塞子塞住瓶口(应注意塞子是否在原来塞入瓶口的位置上)。在天平上称出(二氧化碳气体+瓶+塞子)的质量,重复通入二氧化碳气体和称量的操作,直到前后两次(二氧化碳气体+瓶+塞子)的质量相符为止(两次质量相差不超过1~2mg)。这样做是为了保证瓶内的空气已完全被排出并充满了二氧化碳气体。 最后在瓶内装满水,塞好塞子(注意塞子的位置),在台秤上称重,精确至0.1g。记下室温和大气压。 5.数据记录和结果处理 室温t(℃)____,T(K) ____ 气压p(Pa) ____ (空气+瓶+塞子)的质量A ____ g (二氧化碳气体+瓶+塞子)的质量B____g (水+瓶+塞子)的质量C____g 瓶的容积V=(C-A)/1.00____ ml ____ g 瓶内空气的质量W 空气 ____ g 瓶和塞子的质量D=A-W 空气

(推荐)粘度法测定水溶性高聚物分子量实验报告

黏度法测定水溶性高聚物分子量 一.实验目的 1. 测定水溶性高聚物聚乙烯醇的相对分子质量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二.实验原理 高聚物相对分子质量是表征聚合物特征的基本参数之一,本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一, 由于高聚物分子量大小不一,故通常测定高聚物分子量都是利用统计的平均分子量。常用的测定方法有很多,如粘度法、端基分析、沸点升高、冰点降低、等温蒸馏、超离心沉降及扩散法等,其中,用粘度法测定的分子量称“黏均分子量”,记作。 增比黏度: 特性粘度:

时间与粘度的关系 N=n/n0=t/t0 (3-84) 三、仪器与试剂 恒温槽 1 套乌式黏度计 1支 1/10 秒表 1只聚乙烯醇 四、实验步骤 1.洗涤黏度计 取出一只黏度计,先用丙酮灌入黏度计 中,浸洗去留在黏度计中的高分子物质, 黏度计的毛细管部分,要反复用丙酮流 洗。方法是:用约 10 mL 丙酮至大球中, 并抽吸丙酮经毛细管 3 次以上,洗毕,

倾去丙酮倒入回收瓶中,再重复一次,然 后用吹风机吹干黏度计备用。 2.测定溶剂流出时间 在铁架台上调节好黏度计的垂直度和高度,然后将黏度计安放在恒温水浴中。用移液管吸取10mL 纯水,从A 管注入。于37℃恒温槽中恒温5min。进行测定时,在 C管上套上橡皮管,并用夹子夹住,使其不通气,在 B 管上用橡皮管接针筒,将蒸馏水从 F 球经 D 球、毛细管、E球抽到G球上(不能高出恒温水平面),先拔去针筒并解去夹子,使 C管接通大气,此时 D 球内液体即流回 F 球,使毛细管以上液体悬空。毛细管以上液体下流,当液面流经 a刻度时,立即按停表开始记录时间,当液面降到b刻度时,再按停表,测得刻度a、b之间的液体流经毛细管所需时间,重复操作两次,记录留出时间且误差不大于1-2s,取两次平均值为 t0, 3.溶液流出时间的测定 取出黏度计,倾去其中的水,加入少量的丙酮溶液润洗,经过各个瓶口流出,以达到洗净的目的。同上法安装调节好黏度计,用移液管吸取 10mL 溶液小心注入黏度计内(注意不能将溶液黏在黏度计的管壁上),在溶液恒温过程中,应用溶液润洗毛细管后再测定溶液的流出时间t。然后一次分别加入 2.0mL、3.0 mL、5.0 mL、10.0 mL 蒸馏水,按上述方法分别测量不同浓度时的t 值。每次稀释后都要将溶液在F 球中充分搅匀(可用针筒打气的方法,但不要将溶液溅到管壁上),然后用稀释液抽洗黏度计的毛细管、E 球和 G 球,使黏度计内各处溶液的浓度相等,而且须恒温。 五、数据处理及结论 1.数据整理(恒温槽温度:37℃) 为了作图方便,假定起始相对浓度是1,根据原理中的公式计算所得数据记录如下表 表一数据记录表

高聚物相对分子量测定方法

高聚物相对分子量测定方法 高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。科标分析实验室科研团队集成多名资深行业专家,拥有博士、硕士等高学历人才数名,提供专业分子量测定服务,为客户提供检测数据,检测方法,检测图谱等论文需要的资料。 (1)端基分析法(end-group analysis,简称EA) 如果线形高分子的化学结构明确而且链端带有可以用化学方法(如滴定)或物理方法(如放射性同位素测定)分析的基团,那么测定一定重量高聚物中端基的数目,即可用下式求得试样的数均相对分子质量。 式中:m-试样质量;Z-每条链上待测端基的数目;n-被测端基的摩尔数。 如果用其他方法测得,反过来可求出Z,对于支化高分子,支链数目应为Z-1。 (2)沸点升高和冰点降低法(boiling-point elevation,freezing-point depression) 利用稀溶液的依数性测定溶质相对分子质量的方法是经典的物理化学方法。对于高分子稀溶液,只有在无限稀的情况下才符合理想溶液的规律,因而必须在多个浓度下测ΔT b(沸点升高值)或ΔT f(冰点下降值),然后以ΔT/C对C作图,外推到c->0时的值来计算相对分子质量。 式中:A2称第二维里系数。 (3)膜渗透压法(osmometry,简称OS)

当高分子溶液与纯溶剂倍半透膜隔开时,由于膜两边的化学位不等,发生了纯溶剂向高分子溶液的渗透。当渗透达到平衡时,纯溶剂的化学位应与溶液中溶剂的化学位相等,即 或 由Floy-Huggins理论,从Δμ1的表达式可以得到 由于C2项很小,可忽略, 式中:χ) A2表征了高分子与溶剂相互作用程度的大小。 对于良溶剂,χ1; 对于θ溶剂,χ1; 对于非溶剂,χ1

_二氧化碳相对分子质量的测定

实验四二氧化碳相对分子质量的测定 一、实验目的 1.学习气体相对密度法测定分子量的原理和方法,加深理解理想气体状态方程式和阿佛加德罗定律;2.学会大气压力计的使用; 3.巩固分析天平的使用; 4.了解启普发生器的构造和原理,掌握其使用方法,熟悉洗涤、干燥气体的装置。 二、实验原理 阿佛加德罗定律:同T、P,同V的气体物质的量相等 理想气体状态方程式:PV= nRT = m RT/M 对同T、P,同V的空气(air)和二氧化碳(CO2)有: = 式中,m,M分别为空气(二氧化碳)的质量和相对分子质量 则, [教学重点] 分析天平的使用 启普发生器的使用 分子量的测定和计算 [教学难点] 分析天平的称量操作 启普发生器的使用 [实验用品] 仪器:台秤(电子称)、分析天平、启普发生器、洗气瓶、锥形瓶、干燥管 药品:石灰石、无水CaCl2、6mol·L-1HCl、1mol·L-1NaHCO3、1mol·L-1CuSO4 材料:玻璃棒、玻璃导管、橡皮塞(3、6、8~12号)、玻璃棉 [基本操作] 一、大气压力计的使用方法 1.首先观察附属温度计,记录温度; 2.调节水银槽中的水银面。旋转调节螺旋使槽内水银面升高,这时利用水银槽后面白磁片的反光,可以看到水银面与象牙针的间隙,再调节螺旋至间隙恰好消失为止; 3.调节游标。转动控制游标的螺旋,使游标的底部恰与水银柱凸面顶端相切; 4.读数方法。读数标尺上的刻度单位为hPa。整数部分的读法:先看游标的零线在刻度标尺上的位置,如恰与标尺上某一刻度相吻合,则该刻度即为气压计读数。例如,游标零线与标尺上1160相吻合,气压读数即为1161.0 hPa,如果游标零线在1161与1162之间,则气压计读数的整数部分即为1161,再由游标确定小数部分。小数部分的读法:从游标上找出一根与标尺上某一刻度相吻合的刻度线,此游标读数即为小数部分,如1161.5 hPa; 5.读数后转动气压计底部的调节螺旋,使水银面下降到与象牙针完全脱离; 6.做仪器误差、温度、海拔高度和纬度等项校正。 二、电子天平的使用 1.电子天平的使用精确度0.1 mg (最大载荷200 g)

粘度法测分子量

一、实验目的 1、掌握用粘度法测定高分子化合物相对分子量的原理。 2、用乌氏粘度计测定聚乙烯醇溶液的特性粘度,计算其粘均相对分子量。 二、实验原理 高分子化合物相对分子量对于高分子化合物溶液的性能影响很大,是个重要的基本参数。一般高分 子化合物是相对分子量大小不同的大分子的混合物,相对分子量常在103~107之间,所以通常所测高分 子化合物相对分子量是平均相对分子量。 测定高分子化合物相对分子量的方法很多,不同方法所测得的平均相对分子量有所不同。粘度法是 常用的测定相对分子量的方法之一,粘度法测得的平均相对分子量称为粘均相对分子量。 高分子化合物溶液的粘度比一般较纯溶剂的粘度大得多,其粘度增加的分数称为增比粘度, 其定义为: 式中,称为相对粘度。增比粘度随粘液中高分子化合物的浓度c增加而增加。为了便于比较,定 义单位浓度的增比粘度/c为比浓粘度,它随溶液浓度c改变而改变。当浓度c趋于零时,比浓粘度的 极限值为[],[]称为特性粘度,即: 式中溶液浓度c习惯上取质量浓度(单位为或)。特性粘度[η]可以作为高分子化合 物的平均相对分子量的度量。根据实验结果证明,任意浓度下比浓粘度与浓度的关系可以用经验公式表 示如下: 因此,利用/c对c作图,用外推法可求出[η]。 当c趋近于0时,(ln)/ c的极限值也等于[η],可以证明如下: 当溶液浓度c很小时,忽略高次项,则得: 当溶液浓度较小时,(ln)/c对c作图,也得一条直线,其截距也等于[η],见图S3-1。

[η]单位和数值,随溶液浓度的表示法不同而异,[η]的单位为浓度单位的倒数。 在一定温度和溶剂条件下,特性粘度[]与高聚物的相对分子质量M间关系通常用下列经验方程式表 达:式中K和α 是与温度、溶剂及高聚物本性有关的常数。通常对于每种高聚物溶液,要用已 知平均相对分子量的高聚物求得K、α值。然后,用此K、α值及同种待测高聚物溶液的特性粘度实验值, 可求得此待测高聚物的粘均相对分子量。在确定K、α值时,已知的平均相对分子量是用其他方法测得的。 对于许多高聚物溶液,在有关手册或书中可查得它们的K、α值。 测定高聚物溶液的粘度,最方便是使用毛细管粘度计。本实验中采用乌氏粘度计,其结构如图S3-2 所示,乌氏粘度计的最大优点是粘度计中的溶液体积不影响测定结果。因此,可在粘度计中用逐步稀释 法得到不同浓度溶液的粘度。乌氏粘度计毛细管K的直径、长度和球E体积是根据溶剂的粘度选定的,要 求溶剂的流过的时间不小于100s。但毛细管直径不宜小于0.5mm,否则测定或洗涤时容易堵塞。球F的容 积应为B管中a刻度至球F底体积的8~10倍,则在测定过程中可以使溶液稀释至起始浓度的五分之一左右。 为使球F不致过大,球E的体积以4~5mL为宜。此外球D至球F底端的距离,应尽量小些。由于粘度计由玻 璃吹制而成,其三根支管很容易折断,使用时应特别小心。 液体在毛细管粘度计中因重力作用而流动时遵守泊索利方程。当考虑动能的影响,更完全的公式可写为: 式中m为毛细管末端校正系数,是一个接近于1的仪器常数,视毛细管两端处液体流动情况而异,通 常m值约为1.12。对于指定的粘度计,上式中许多参数是一定的,则此式可写为下列形式:

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量 一、前言 聚丙烯酰胺凝胶电泳 聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。催化聚合的常用方法有两种:化学聚合法和光聚合法。化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。 PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。不连续体系由电极缓冲液、浓缩胶及分离胶所组成。浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。 SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。当样品液和浓缩胶选TRIS/HCl缓冲液,电极液选TRIS/甘氨酸。电泳开始后,HCl解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成一稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。 此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。

粘度法测高聚物分子量

实验5 粘度法测定聚合物的粘均分子量 一. 实验目的 1.加深理解粘均分子量的物理意义。 2.学习并掌握粘度法测定分子量的实验方法。 3.学会用“一点法”快速测定粘均分子量。 二. 实验原理 由于聚合物的分子量远大于溶剂,因此将聚合物溶解于溶剂时,溶液的粘度(η)将大于纯溶剂的粘度(η0)。可用多种方式来表示溶液粘度相对于溶剂粘度的变化,其名称及定义如表8-1所示。 表8-1 溶液粘度的各种定义及表达式 名称 定义式 量纲 相对粘度 0 ηηη= r 无量纲 增比粘度 100 ?=?=r sp ηηηηη 无量纲 比浓粘度(粘数) C C r sp 1?= ηη 浓度的倒数(dl/g ) 比浓对数粘度(对数粘数) C C sp r ) 1ln(ln ηη+= 浓度的倒数(dl/g ) 溶液的粘度与溶液的浓度有关,为了消除粘度对浓度的依赖性,定义了一种特性粘数,其定义式为: C C r C sp C ηηηln lim lim ][0 →→== (8-1) 特性粘数又称为极限粘数,其值与浓度无关,其量纲也是浓度的倒数。 特性粘数取决于聚合物的分子量和结构、溶液的温度和溶剂的特性,当温度和溶剂一定时,对于同种聚合物而言,其特性粘数就仅与其分子量有关。因此,如果能建立分

子量与特性粘数之间的定量关系,就可以通过特性粘数的测定得到聚合物的分子量。这就是用粘度法测定聚合物物分子量的理论依据。 根据式8-1的定义式,只要测定一系列不同浓度下的粘数和对数粘数,然后对浓度作图,并外推到浓度为零时,得到的粘数或对数粘数就是特性粘数。 实验表明,在稀溶液范围内,粘数和对数粘数与溶液浓度之间呈线性关系,可以用两个近似的经验方程来表示: C C sp 2][][ηκηη+= (8-2) C C r 2][][ln ηβηη?= (8-3) 式8-2和式8-3分别称为Huggins 和Kraemer 方程式。 当溶剂和温度一定时,分子结构相同的聚合物,其分子量与特性粘数之间的关系可以用MH 方程来确定,即: αηKM =][ (8-4) 在一定的分子量范围内,K , α是与分子量无关的常数。这样,只要知道K 和α的值,即可根据所测得的[η]值计算试样的分子量。 在用MH 方程计算分子量时,由于不同的聚合物有不同的K , α值,因此在测定某种聚合物的分子量之前,必须事先订定K 、α值。订定的方法是:制备若干个分子量均一的样品,下面又称为标样。然后分别测定每个样品的分子量和极限粘数。其分子量可用任何一种绝对方法进行测定。由式8-4两边取对数,得: M K lg lg ]lg[αη+= (8-5) 以各个标样的lg[η]对logM 作图,所得直线的斜率是α,而截距是lgK 。 事实上,前人已对许多聚合物溶液体系的K 、 α值做了订定并收入手册,我们需要时可随时查阅,很多情况下,并不需要我们自己订定。但在选用K 、α值时,一定要注意聚合物结构、溶剂、温度的一致性,以及适用的分子量范围。此外,值得提醒的是,以前溶液的单位常以g/dl 为单位,因此使用时可先将溶液的单位进行换算。 溶液的粘度一般用毛细管粘度计来 测定,最常用的是乌氏粘度计,其结构如图8-1所示。其特点是毛细管下端与大气连通,这样,粘度计中液体的体积对测定没有影响。

粘度法测高聚物相对分子质量

粘度法测高聚物相对分子质量 1、实验要求 (1) 了解粘度法测定高聚物相对分子质量的基本原理和公式。 (2) 测定聚乙二醇的黏均分子量。 (3) 掌握用乌贝路德(Ubbelohde)黏度计测定黏度的方法。 (4) 用Origin或Excel处理实验数据。 2、实验原理 相对分子质量是表征化合物特征的基本参数之一。但高聚物分子量大小不一,参差不齐,一般在,所以通常所测高聚物的相对分子质量是平均相对分子质量。测定高聚相对分子质量的方法很多,对线型高聚物,各方法适用的范围如下:端基分析,;沸点升高,凝固点降低,等温蒸馏,;渗透压,;光散射,;起离心沉降及扩散,;黏度法,。 其中黏度法设备简单,操作方便,有相当好的实验精度,但黏度法不是测相对分子质量的绝对方法,因为此法中所用的特性黏度与相对分子质量的经验方程是要用其他方法来确定的,高聚物不同,溶剂不同,相对分子质量范围也不同,就要用不同的经验方程式。 高聚物在稀溶液中的黏度,主要反映了液体在流动时存在着内摩擦。在测高聚物溶液黏度求相对分子质量时,常用到下面一些名词(见下表)。 名词与符号物理意义 纯溶剂黏度()溶剂分子与溶剂分子间的内摩擦表现出来的黏 度 溶液黏度()溶剂分子与溶剂分子间、高分子与高分子之间 和高分子与溶剂分子之间,三者内摩擦的综合 表现 相对黏度(),溶液黏度对溶剂黏度的相对值 增比黏度(),高分子与高分子之间,纯溶剂与高分子之间 的内摩擦效应 比浓黏度()单位浓度下所显示出的浓度

特性黏度() 比浓对数黏度()溶液相对黏度的自然对数与自然浓度之比值如果高聚物分子的相对分子质量越大,则它与溶剂间的接触表面也越大,摩擦就越大,表现出的特性黏度也大。特性黏度和相对分子质量之间的经验关系式为 (2-98)式中,M为黏均分子质量;K为比例常数;为与分子形状相关的经验参数。K和值与温度、聚合物、溶剂性质及相对分子质量大小有关。K值受温度的影响较明显,而值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值介于。K与的数值可通过其他绝对方法确定,如渗透压发、光散射发等,从黏度法只能测定得。 根据实验,在足够稀的溶液中有 (2-99) (2-100) 以及对作图得两条直线,外推到,这两条直线在纵坐标轴上相交于同一点,如图2-57所示,可求出数值。为了绘图方便,引进相对浓度,即。式中,c为溶液的真实浓度;为溶液的起始浓度。由图2-57可知,式中,A为截距。 黏度测定中异常现象的近似处理。在特性黏度测量过程中,有时并非操作不慎,而出现对c图与对c图外推到时,在纵坐标轴上并不交于一点的异常现象。在式(2-99)中和值与高聚物结构和形态有关,而式(2-100)的物理意义不太明确。因此出现异常现象时,以曲线求值。 黏度测定的方法主要有毛细管法、转筒法和落球法。在测定高聚物分子的特性黏度时,以毛细管流出法的黏度计最为方便。若液体在毛细管黏度计中,因重力作用而流出时,可通过泊肃叶(Poiseuille)公式计算黏度。 (2-101) 式中,为液体的黏度;为液体的密度;L为毛细管的长度;r为毛细管的半径;t为流出的时间;h为流过毛细管液体的平均液柱高度;V为流经毛细管的液体体积;m为毛细管末端校正的参数(一般在时,可以取 m=1)。 对于某一只指定的黏度计,式(2-101)可以写成下式

粘度法测定聚合物的分子量

实验十 粘度法测定聚合物的分子量 一、 实验目的 掌握用乌氏粘度计测定高分子溶液粘度的方法并计算粘均分子量M η。 二、 实验原理 高分子溶液具有比纯溶剂高得多的粘度,其粘度大小与高聚物分子的大小、形状、溶剂性质以及溶液运动时大分子的取向等因素有关。因此,利用高分子粘度法测定高聚物的分子量基于以下经验式: Mark 经验式: 式中:[η]-特性粘数 M -粘均分子量 K -比例常数 α-与分子形状有关的经验参数 K 和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。K 值受温度的影响较明显,而α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K 与α的数值可通过其它绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定得[η]。 粘度除与分子量有密切关系外,对溶液浓度也有很大的依赖性,故实验中首先要消除浓度对粘度的影响,常以如下两个经验公式表达粘度对浓度的依赖关系: []α ηKM =(10-2) (10-3) (10-1)

式中:r η-相对粘度 sp η-增比粘度 sp η/c -比浓粘度 c -溶液浓度 βκ,-均为常数 1-=r sp ηη(10-5) 式中:t -溶液流出时间,0t -纯溶剂流出时间 显然 ][η即是聚合物溶液的特性粘数,和浓度无关,由此可知,若以c sp /η和c sp /ln η分别对c 作图, 则它们外推到0→c 的截距应重合于一点,其值等 于][η。 ln r ηsp C η或 C 图1 外推法求[η]值 图10-1 外推法求][η值 三、仪器和试剂 试剂:聚乙烯醇,蒸馏水 []c c r c sp c ηηηln lim lim 0 →→==(10-4) (10-6)

粘度法测定高聚物分子量

粘度法测定高聚物分子量 ——东华大学 一、实验目的 高聚物的分子量就是高分子材料最基本的结构参数之一。在科学研究与生产实践中,高聚物分子量对其加工成型以及产品的物理性能有着极其密切的联系,因此高聚物分子量的测定就是鉴定高聚物性能的一个重要项目。 通过本实验应达到以下目的: 1、理解稀释粘度法测定高聚物分子量的基本原理; 2、掌握本测定的方法; 3、学会外推法作图求[η]、K H 、K K 值: 4、掌握测定粘度的动能校正方法 二、实验原理 高聚物的分子量具有多分散性,无论用何种方法所测得的分子量,均为平均分子量。测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法与粘度法等。由于粘度法的设备简单,操作方便,因此应用最为普遍。但粘度法并非绝对的测定方法,根据大量的实验证明,马克(Mark)提出更符合于实验结果的非线形方程式: []αηKM =(1) 该式实用性很广,式中K 、α值主要依赖于大分子在溶液中的形态。无规线团形状的大分子在不良溶剂中呈十分蜷曲的形状,α为0、5~0、8;在良的溶剂中,大分子因溶剂化而较为舒展,α为0、8~l;而对硬棒状分子,α>1。关于某一高聚物溶剂系的K 、α值的具体测量,可将(1)式两边取对数,得: []M K lg lg lg αη+= (2) 此为直线方程。从直线的斜率可求出,从截距可求出K 。一般采用的方法就是将样 品经分级,测定其各分级的[η],用直接方法 (如渗透压法、光散射法、超速离心法等)测定相应分子量就可作出lg[η]与lgM 的线性关系图,如图1所示。由直线的截距,斜率lgK 可求出K 与α值。 若干高聚物溶剂体系的K 、α值,文献上发表很多,对涤纶在苯酚/四氯乙烷(1:1)体系中,温度25oC 时: []82.04101.2M -?=η (3) 用(3)式计算涤纶分子量中,必需用实验求出溶液的特性粘度[η] 。其定义就是当溶液 M lg[

粘度法测化合物的分子量实验报告doc

粘度法测化合物的分子量实验报告 篇一:粘度法测聚乙烯醇分子量及分子构型实验报告广州大学化学化工学院 本科学生综合性、设计性实验报告 实验课程物理化学实验实验项目黏度法测定高聚物的相对分子质量专业学号1205100052 姓名彭丽煌指导教师及职称宋建华开课学期时间年日 一、实验方案设计 篇二:粘度法测聚乙烯醇分子量及分子构型实验报告广州大学化学化工学院 本科学生综合性、设计性实验报 告 实验课程基础化学实验(Ⅲ)---物理化学实验实验项目粘度法测聚乙烯醇分子量及分子构型&粘度法测聚乙烯醇分子量及分子构型专业功能与材料化学班级化学133 学号1305100066,1305100058姓名李智泽.陈远鸿指导教师苏育志,陈旖勃 开课学期 时间XX年12月15日 篇三:黏度法测定水溶性高聚物相对分子质量实验报告 物理化学实验报告

XX年 03 月 18 日总评:姓名:学校:陕西师范大学年级:XX级专业:材料化学室温:10.0℃大气压: 100kpa 一、实验名称:黏度法测定水溶性高聚物相对分子质量二、实验目的: 1、掌握乌式粘度计的使用; 2、掌用粘度法测水溶性高聚物相对分子质量的方法。 三、实验原理: 粘度是指液体对流动所表现的阻力,这种阻力反抗液体中相邻部分的相对移动,可看作由液体内部分子间的内摩擦而产生。如果液体是高聚物的稀溶液,则溶液的粘度反映了溶剂分子之间的内摩擦力、高聚物分子之间的内摩擦力、以及高聚物分子和溶剂分子之间的内摩擦力三部分,三者之和表现为溶液总的粘度η。其中溶剂分子之间的内摩擦力所表现的粘度如用η 0表示的话,则由于溶液的粘度一般说来要比纯溶剂的粘度高,我们把两者之差的相对值称为增比粘度,记作η sp : η sp = ( η-η0 )/η0 溶液粘度与纯溶剂粘度之比称为相对粘度ηr : ηr = η /η0 增比粘度表示了扣除溶剂内摩擦效应后的粘度,而相对

相关文档
最新文档