MATLAB 生成高斯噪声wgn函数

MATLAB 生成高斯噪声wgn函数
MATLAB 生成高斯噪声wgn函数

function y = wgn(varargin)

%WGN Generate white Gaussian noise.

% Y = WGN(M,N,P) generates an M-by-N matrix of white Gaussian noise. % P specifies the power of the output noise in dBW.

%

% Y = WGN(M,N,P,IMP) specifies the load impedance in Ohms.

%

% Y = WGN(M,N,P,IMP,STATE) resets the state of RANDN to STATE.

%

% Additional flags that can follow the numeric arguments are:

%

% Y = WGN(..., POWERTYPE) specifies the units of P. POWERTYPE can

% be 'dBW', 'dBm' or 'linear'. Linear power is in Watts.

%

% Y = WGN(..., OUTPUTTYPE); Specifies the output type. OUTPUTTYPE can % be 'real' or 'complex'. If the output type is complex, then P

% is divided equally between the real and imaginary components.

%

% Example 1:

% % To generate a 1024-by-1 vector of complex noise with power

% % of 5 dBm across a 50 Ohm load, use:

% Y = wgn(1024, 1, 5, 50, 'dBm', 'complex')

%

% Example 2:

% % To generate a 256-by-5 matrix of real noise with power

% % of 10 dBW across a 1 Ohm load, use:

% Y = wgn(256, 5, 10, 'real')

%

% Example 3:

% % To generate a 1-by-10 vector of complex noise with power

% % of 3 Watts across a 75 Ohm load, use:

% Y = wgn(1, 10, 3, 75, 'linear', 'complex')

%

% See also RANDN, AWGN.

% Copyright 1996-2008 The MathWorks, Inc.

% $Revision: 1.11.4.5 $ $Date: 2008/08/01 12:17:45 $

% --- Initial checks

error(nargchk(3,7,nargin,'struct'));

% --- Value set indicators (used for the strings)

pModeSet = 0;

cplxModeSet = 0;

% --- Set default values

p = [];

row = [];

col = [];

pMode = 'dbw';

imp = 1;

cplxMode = 'real';

seed = [];

% --- Placeholders for the numeric and string index values

numArg = [];

strArg = [];

% --- Identify string and numeric arguments

% An empty in position 4 (Impedance) or 5 (Seed) are considered numeric for n=1:nargin

if(isempty(varargin{n}))

switch n

case 4

if(ischar(varargin{n}))

error('comm:wgn:InvalidDefaultImp','The default impedance should be marked by [].');

end;

varargin{n} = imp; % Impedance has a default value

case 5

if(ischar(varargin{n}))

error('comm:wgn:InvalidNumericInput','The default seed should be marked by [].');

end;

varargin{n} = []; % Seed has no default

otherwise

varargin{n} = '';

end;

end;

% --- Assign the string and numeric vectors

if(ischar(varargin{n}))

strArg(size(strArg,2)+1) = n;

elseif(isnumeric(varargin{n}))

numArg(size(numArg,2)+1) = n;

else

error('comm:wgn:InvalidArg','Only string and numeric arguments are allowed.');

end;

end;

% --- Build the numeric argument set

switch(length(numArg))

case 3

% --- row is first (element 1), col (element 2), p (element 3)

if(all(numArg == [1 2 3]))

row = varargin{numArg(1)};

col = varargin{numArg(2)};

p = varargin{numArg(3)};

else

error('comm:wgn:InvalidSyntax','Illegal syntax.')

end;

case 4

% --- row is first (element 1), col (element 2), p (element 3), imp (element 4)

%

if(all(numArg(1:3) == [1 2 3]))

row = varargin{numArg(1)};

col = varargin{numArg(2)};

p = varargin{numArg(3)};

imp = varargin{numArg(4)};

else

error('comm:wgn:InvalidSyntax','Illegal syntax.')

end;

case 5

% --- row is first (element 1), col (element 2), p (element 3), imp (element 4), seed (element 5)

if(all(numArg(1:3) == [1 2 3]))

row = varargin{numArg(1)};

col = varargin{numArg(2)};

p = varargin{numArg(3)};

imp = varargin{numArg(4)};

seed = varargin{numArg(5)};

else

error('comm:wgn:InvalidSyntax','Illegal syntax.');

end;

otherwise

error('comm:wgn:InvalidSyntax','Illegal syntax.');

end;

% --- Build the string argument set

for n=1:length(strArg)

switch lower(varargin{strArg(n)})

case {'dbw''dbm''linear'}

if(~pModeSet)

pModeSet = 1;

pMode = lower(varargin{strArg(n)});

else

error('comm:wgn:TooManyPowerTypes','The Power mode must only be set once.');

end;

case {'db'}

error('comm:wgn:InvalidPowerType','Incorrect power mode passed in. Please use ''dBW'', ''dBm'', or ''linear.''');

case {'real''complex'}

if(~cplxModeSet)

cplxModeSet = 1;

cplxMode = lower(varargin{strArg(n)});

else

error('comm:wgn:TooManyOutputTypes','The complexity mode must only be set once.');

end;

otherwise

error('comm:wgn:InvalidArgOption','Unknown option passed in.');

end;

end;

% --- Arguments and defaults have all been set, either to their defaults or by the values passed in

% so, perform range and type checks

% --- p

if(isempty(p))

error('comm:wgn:InvalidPowerVal','The power value must be a real scalar.');

end;

if(any([~isreal(p) (length(p)>1) (length(p)==0)]))

error('comm:wgn:InvalidPowerVal','The power value must be a real scalar.');

end;

if(strcmp(pMode,'linear'))

if(p<0)

error('comm:wgn:NegativePower','In linear mode, the required noise power must be >= 0.');

end;

end;

% --- Dimensions

if(any([isempty(row) isempty(col) ~isscalar(row) ~isscalar(col)]))

error('comm:wgn:InvalidDims','The required dimensions must be real, integer scalars > 1.');

end;

if(any([(row<=0) (col<=0) ~isreal(row) ~isreal(col) ((row-floor(row))~=0) ((col-floor(col))~=0)]))

error('comm:wgn:InvalidDims','The required dimensions must be real, integer scalars > 1.');

end;

% --- Impedance

if(any([~isreal(imp) (length(imp)>1) (length(imp)==0) any(imp<=0)]))

error('comm:wgn:InvalidImp','The Impedance value must be a real scalar > 0.');

end;

% --- Seed

if(~isempty(seed))

if(any([~isreal(seed) (length(seed)>1) (length(seed)==0)

any((seed-floor(seed))~=0)]))

error('comm:wgn:InvalidState','The State must be a real, integer scalar.');

end;

end;

% --- All parameters are valid, so no extra checking is required

switch lower(pMode)

case'linear'

noisePower = p;

case'dbw'

noisePower = 10^(p/10);

case'dbm'

noisePower = 10^((p-30)/10);

end;

% --- Generate the noise

if(~isempty(seed))

randn('state',seed);

end;

if(strcmp(cplxMode,'complex'))

z = randn(2*row,col);

y = (sqrt(imp*noisePower/2))*(z(1:row,:)+j*z(row+1:end,:)); else

y = (sqrt(imp*noisePower))*randn(row,col);

end;

MATLAB中产生高斯白噪声

MATLAB中产生高斯白噪声,涉及到awgn和wgn函数 MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(m,n,p,imp,state) 重置RANDN的状态。 在数值变量后还可附加一些标志性参数: y = wgn(…,POWERTYPE) 指定p的单位。POWERTYPE可以是'dBW', 'dBm'或 'linear'。线性强度(linear power)以瓦特(Watt)为单位。 y = wgn(…,OUTPUTTYPE) 指定输出类型。OUTPUTTYPE可以是'real'或 'complex'。 2. AWGN:在某一信号中加入高斯白噪声 y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。 y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。 y = awgn(…,POWERTYPE)指定SNR和SIGPOWER的单位。POWERTYPE可以是'dB'或'linear'。如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER 以瓦特为单位。 注释 1. 分贝(decibel,dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对单位。例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电平的单位通常就以分贝表示,即事先取一个电压或电流作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。 2. 分贝瓦(dBW, dB Watt):指以1W的输出功率为基准时,用分贝来测量的功率放大器的功率值。 3. dBm (dB-milliWatt):即与1milliWatt(毫瓦)作比较得出的数字。 0 dBm = 1 mW 10 dBm = 10 mW 20 dBm = 100 mW 也可直接用randn函数产生高斯分布序列,例如: 程序代码 y=randn(1,2500); y=y/std(y);

Matlab 各种随机数设置

Matlab 各种随机数设置 randn(伪随机正态分布数) Normally distributed pseudorandom numbers Syntax r = randn(n) randn(m,n) randn([m,n]) randn(m,n,p,...) randn([m,n,p,...]) randn(size(A)) r = randn(..., 'double') r = randn(..., 'single') Description r = randn(n) returns an n-by-n matrix containing pseudorandom values drawn from the standard normal distribution. randn(m,n) or randn([m,n]) returns an m-by-n matrix. randn(m,n,p,...) or randn([m,n,p,...]) returns an m-by-n-by-p-by-... array. randn returns a scalar. randn(size(A)) returns an array the same size as A. r = randn(..., 'double') or r = randn(..., 'single') returns an array of normal values of the specified class. Note The size inputs m, n, p, ... should be nonnegative integers. Negative integers are treated as 0. The sequence of numbers produced by randn is determined by the internal state of the uniform pseudorandom number generator that underlies rand, randi, and randn. randn uses one or more uniform values from that default stream to generate each normal value. Control the default stream using its properties and methods. Note In versions of MATLAB prior to 7.7 (R2008b), you controlled the internal state of the random number stream used by randn by calling randn directly with the 'seed' or 'state' keywords. Examples Generate values from a normal distribution with mean 1 and standard deviation 2. r = 1 + 2.*randn(100,1); Generate values from a bivariate normal distribution with specified mean vector and covariance matrix. mu = [1 2]; Sigma = [1 .5; .5 2]; R = chol(Sigma); z = repmat(mu,100,1) + randn(100,2)*R; Replace the default stream at MATLAB startup, using a stream whose seed is based on clock, so that randn will return different values in different MATLAB sessions. It is usually not desirable to do this more than once per MATLAB session. RandStream.setDefaultStream ...

高斯白噪声

MATLAB中产生高斯白噪声的两个函数 MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(m,n,p,imp,state) 重置RANDN的状态。 在数值变量后还可附加一些标志性参数: y = wgn(…,POWERTYPE) 指定p的单位。POWERTYPE可以是'dBW', 'dBm'或'linear'。线性强度(linear power)以瓦特(Watt)为单位。 y = wgn(…,OUTPUTTYPE) 指定输出类型。OUTPUTTYPE可以是'real'或 'complex'。 2. AWGN:在某一信号中加入高斯白噪声 y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x 的强度假定为0dBW。如果x是复数,就加入复噪声。 y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。 y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。 y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。POWERTYPE 可以是'dB'或'linear'。如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER以瓦特为单位。 注释 1. 分贝(decibel, dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对单位。例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电

matlab 产生随机数命令大全

matlab产生随机数 Matlab(https://www.360docs.net/doc/472590167.html,) 随机数生成方法: 第一种方法是用 random 语句,其一般形式为 y = random('分布的英文名',A1,A2,A3,m,n), 表示生成 m 行 n 列的 m × n 个参数为 ( A1 , A2 , A3 ) 的该分布的随机数。例如: (1) R = random('Normal',0,1,2,4): 生成期望为 0,标准差为 1 的(2 行 4 列)2× 4 个正态随机数 (2) R = random('Poisson',1:6,1,6): 依次生成参数为 1 到 6 的(1 行 6 列)6 个 Poisson 随机数 第二种方法是针对特殊的分布的语句: 一.几何分布随机数(下面的 P,m 都可以是矩阵) R = geornd(P) (生成参数为 P 的几何随机数) R = geornd(P,m) (生成参数为 P 的× m 个几何随机数) 1 R = geornd(P,m,n) (生成参数为 P 的 m 行 n 列的 m × n 个几何随机数) 例如 (1) R = geornd(1./ 2.^(1:6)) ( 生成参数依次为 1/2,1/2^2,到 1/2^6 的 6 个几何随机数) (2) R = geornd(0.01,[1 5]) (生成参数为 0.01 的(1行5列)5 个几何随机数). 二.Beta 分布随机数 R = betarnd(A,B) (生成参数为 A,B 的 Beta 随机数) R = betarnd(A,B,m) (生成× m 个数为 A,B 的 Beta 随机数) 1 R = betarnd(A,B,m,n) (生成 m 行 n 列的 m × n 个数为 A,B 的 Beta 随机数). 三.正态随机数 R = normrnd(MU,SIGMA) (生成均值为 MU,标准差为 SIGMA 的正态随机数)R = normrnd(MU,SIGMA,m) (生成 1× m 个正态随机数) R = normrnd(MU,SIGMA,m,n) (生成 m 行 n 列的 m × n 个正态随机数)例如 (1) R = normrnd(0,1,[1 5]) 生成 5 个正态(0,1) 随机数 (2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为[1,2,3;4,5,6], 方

高斯白噪声地matlab实现

通信系统建模与仿真 实验一、高斯白噪声的matlab 实现 要求: 样本点:100 1000 标准差:0.2 2 10 均值: 0 0.2 白噪声 如果噪声的功率谱密度在所有的频率上均为一常数,即 ) /(),(,)(0Hz W f n f P n +∞<<-∞= 式中:0n 为常数,责成该噪声为白噪声,用)(t n 表示。 高斯白噪声的matlab 实现

1.样本点为1000、均值为0、标准差为0.2时,高斯白噪声分布为下图所示: 程序如下所示: % White background nois clear all f = 1:1:1000; for i = 1:length(f) K = (0.2) * randn(1,1) - 0; P(i) = 10.^(K - 3.95*(10^-5)*f(i)); A(i) = sqrt(2*P(i)); end xifft = ifft(A); realx = real(xifft); ti = [1:length(xifft)-1]/1000; realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2) 2.样本点为1000、均值为0、标准差为2时,高斯白噪声分布为下图所示:

程序如下所示: % White background nois clear all f = 1:1:1000; for i = 1:length(f) K = (2) * randn(1,1) - 0; P(i) = 10.^(K - 3.95*(10^-5)*f(i)); A(i) = sqrt(2*P(i)); end xifft = ifft(A); realx = real(xifft); ti = [1:length(xifft)-1]/1000; realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2) 3.样本点为1000、均值为0、标准差为10时,高斯白噪声分布为下图所示:

MatLAB 随机数

常见分布函数表

Matlab中产生正态分布随机数的函数normrnd 功能:生成服从正态分布的随机数 语法: R=normrnd(MU,SIGMA) R=normrnd(MU,SIGMA,m) R=normrnd(MU,SIGMA,m,n) 说明: R=normrnd(MU,SIGMA):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数。输入的向量或矩阵MU和SIGMA必须形式相同,输出R也和它们形式相同。标量输入将被扩展成和其它输入具有相同维数的矩阵。 R=norrmrnd(MU,SIGMA,m):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数矩阵,矩阵的形式由m定义。m是一个1×2向量,其中的两个元素分别代表返回值R中行与列的维数。 R=normrnd(MU,SIGMA,m,n):生成m×n形式的正态分布的随机数矩阵。

>> help normrnd NORMRND Random arrays from the normal distribution. R = NORMRND(MU,SIGMA) returns an array of random numbers chosen from a normal distribution with mean MU and standard deviation SIGMA. The size of R is the common size of MU and SIGMA if both are arrays. If either parameter is a scalar, the size of R is the size of the other parameter. R = NORMRND(MU,SIGMA,M,N,...) or R = NORMRND(MU,SIGMA,[M,N,...]) returns an M-by-N-by-... array. 例:生成正态分布随机数。 >> a=normrnd(0,1) a = -1.4814

matlab产生高斯噪声

%正态分布(normal distribution)又名高斯分布(Gaussian distribution), % MATLAB 命令是normrnd。 %1)R=normrnd(MU,SIGMA):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数。 % 输入的向量或矩阵MU和SIGMA必须形式相同,输出R也和它们形式相同。 %2)R=normrnd(MU,SIGMA,m):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数矩阵, % 矩阵的形式由m定义。m是一个1×2向量,其中的两个元素分别代表返回值R中行与列的维数。 %3) R=normrnd(MU,SIGMA,m,n):生成m*n形式的正态分布的随机数矩阵。 %4)randn()是标准正态分布;MA TLAB命令是normrnd 功能:生成服从指定均数和标准差的正态分布的随机数列, %即高斯随机序列。 例如: %高斯噪声为n(m)=nmr+jnmi,其中实虚部均为独立同分布N(0, a)的高斯随机数,信号x(m)=s(m) + n(m) % SNR = 10 lg[1/(2a)] = – 3 – 10 lg(a) (dB) [之所以是2a不是a是因为实虚部] %若有用信号s(n)的最大幅度am,要求得到的信噪比为p,则p=10log10[(am^2)/b^2],用这个公式反推出高斯 %噪声的方差b^2 snr=10; sqrt(a)=10^(-(snr+3)/10); noise=normrnd(0,sqrt(a),1,1000)+1*i*normrnd(0,sqrt(a),1,1000); %或者 noise=sqrt(a)*randn(1,1000)+1*i*sqrt(a)*randn(1,1000);

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一 姓名:张英伟学号:8036 班级:13级理工部3班 利用matlab完成: ●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦 波信号上,绘出波形。 ●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波 形。 一、白噪声区别及产生方法 1、定义: 均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。 高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。 2、matlab仿真函数: rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式: z2=a+(b-(a))*rand(m,n)............(公式1) randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式: z1=a+b*randn(1,n).................(公式2) 可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。 二、自相关函数与功率谱密度之间的关系 1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。 2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 3、维纳-辛钦定理: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

matlab中产生随机数的程序

1.由U(0,1)分布的随机数产生U(a,b)的随机数 r=rand(1,20); s=a+(b-a)*r; 例: r=rand(1,20); s=2+(10-2)*r s = Columns 1 through 11 7.0589 2.7803 4.2280 6.3751 9.6601 9.7191 3.2609 9.7647 9.6573 5.8830 8.4022 Columns 12 through 20 3.1351 5.3741 9.3259 8.3377 9.6759 7.2459 2.2857 8.7930 9.4719 2.指数分布的抽样 (6.9)n=10的时候 u=rand(1,19); r=1; for i=1:19 r=r*u(i); end s=log(r); m=1; for j=11:19 if(u(j-1)>u(j)) y(m)=u(j) else y(m)=u(j) end m=m+1; end for k=2:9 x(k)=(y(k-1)-y(k))*s end x y = 0.4168

0.4168 0.6569 y = 0.4168 0.6569 0.6280 y = 0.4168 0.6569 0.6280 0.2920 y = 0.4168 0.6569 0.6280 0.2920 0.4317 y = 0.4168 0.6569 0.6280 0.2920 0.4317 0.0155 y = 0.4168 0.6569 0.6280 0.2920 0.4317 0.0155 0.9841 y = 0.4168 0.6569 0.6280 0.2920 0.4317 0.0155 0.9841 0.1672

基于MATLAB的高斯白噪声信道分析报告

基于matlab高斯白噪声信道分析系统的设计 ×× (陕西理工学院物理与电信工程学院通信工程专业1202班,陕西汉中 723003) 指导教师:吴燕 [摘要] MATLAB 是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。本文在matlab的环境下构建了BFSK在高斯白噪声信道中传输的系统模型,通过simulink程序仿真,研究系统的误码率与信道质量的关系,找到在高斯白噪声信道上传输的最大信噪比及所需发射功率和调制频率,从而得出该系统在高斯白噪声信道中的最佳传输性能。 [关键词] MATLAB;高斯白噪声;信道分析;simulink仿真

Design and production of the Gauss white noise channel analysis system based on MATLAB ×× (Grade 2012,Class 2,Major of Communication Engineering,School of Physics and Telecommunication Engineering of Shaanxi University of Technology,Hanzhong 723003,Shaanxi) Tutor: Wu Yan Abstract: MATLAB is a high-level technical computing language and interactive environment for the development of algorithms, data visualization, data analysis and numerical calculation. This article in the matlab environment build BFSK in AWGN channel model simulation,by running simulation the program on the system of quality of error rate and channel relationships,found in AWGN channel transport of maximum signal-to-noise ratio and the desired transmitter power. Key words:MA TLAB; Gauss white noise; channel analysis; Simulink simulation

MATLAB随机数生成

2009年03月20日星期五 03:25 P.M. rand(n):生成0到1之间的n阶随机数方阵 rand(m,n):生成0到1之间的m×n 的随机数矩阵 (现成的函数) 另外: Matlab随机数生成函数 betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布的随机数生成器 frnd f分布的随机数生成器 gamrnd 伽玛分布的随机数生成器 geornd 几何分布的随机数生成器 hygernd 超几何分布的随机数生成器 lognrnd 对数正态分布的随机数生成器 nbinrnd 负二项分布的随机数生成器 ncfrnd 非中心f分布的随机数生成器 nctrnd 非中心t分布的随机数生成器 ncx2rnd 非中心卡方分布的随机数生成器 normrnd 正态(高斯)分布的随机数生成器 poissrnd 泊松分布的随机数生成器 raylrnd 瑞利分布的随机数生成器 trnd 学生氏t分布的随机数生成器 unidrnd 离散均匀分布的随机数生成器 unifrnd 连续均匀分布的随机数生成器 weibrnd 威布尔分布的随机数生成器 (From:https://www.360docs.net/doc/472590167.html,/question/30033707.html) matlab生成随机数据 matlab本身提供很多的函数来生成各种各样的随机数据: normrnd 可以生成一定均值和标准差的正态分布 gamrnd 可以生成gamma分布的伪随机数矩阵 chi2rnd 可以生成卡方分布的伪随机数矩阵 trnd 可以生成t分布的伪随机数矩阵 frnd 可以生成f分布的伪随机数矩阵 raylrnd 可以生成rayleigh分布的伪随机数矩阵

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一 姓名:张英伟学号:133320085208036 班级:13级理工部3班 利用matlab完成: ●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦 波信号上,绘出波形。 ●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波 形。 一、白噪声区别及产生方法 1、定义: 均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。 高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。 2、matlab仿真函数: rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式: z2=a+(b-(a))*rand(m,n)............(公式1) randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式: z1=a+b*randn(1,n).................(公式2) 可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。 二、自相关函数与功率谱密度之间的关系 1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。 2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 3、维纳-辛钦定理: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

MATLAB环境下的正弦信号及高斯白噪声仿真程序说明

姓名:朱奇峰 专业:电子与通信工程 方向:数字广播电视技术 学号:103320430109033 MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明 一、信号的产生及时域观察 1、设定正选信号的频率为10HZ ,抽样频率为100HZ ; 2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ; 3、最后将噪声叠加到正弦信号上,观察其三者时域波形。 二、信号频谱及白噪声功率谱的求解与观察 1、对原正弦信号直接进行FFT ,得出其频谱; 2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为: 1 ^ 01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^ ()()xx xx r m r m =- 01m N <<- 对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。 三、仿真结果:

附源程序代码: fs=100; fc=10; x=(0:1/fs:2); n=201; y1=sin(2*pi*fc*x); %原正弦信号,频率为10 a=0;b=0.5; %均值为a,方差为b^2 subplot(3,2,1); plot(x,y1,'r'); title('y=sin(20pi*x)'); ylabel('y'); xlabel('x/20pi'); grid; y2=a+b*randn(1,n); %高斯白噪声 subplot(3,2,2); plot(x,y2,'r'); title('N(0,0.25)的高斯白噪声'); ylabel('y'); xlabel('x/20pi'); grid; y=y1+y2; %加入噪声之后的信号 subplot(3,2,3); plot(x,y,'r'); title('叠加了高斯白噪声的sinx'); ylabel('y'); xlabel('x/20pi'); grid; FY=fft(y); %傅里叶变换得出频谱函数 FY1=fftshift(FY); %频谱校正 f=(0:200)*fs/n-fs/2; subplot(3,2,4); plot(f,abs(FY1),'r'); title('函数频谱图'); ylabel('F(jw)'); xlabel('w'); grid; %求高斯白噪声的自相关函数 m=50; i=-0.49:1/fs:0.49;

matlab产生随机数的方法

matlab 产生随机数的方法 第一种方法是用 random 语句,其一般形式为 y = random (' 分布的英文名 ',A1,A2,A3,m,n ) , 表示生成m 行n 列的m x n 个参数为(A1 , A2 , A3 ) 的该分 布的随机数。 例如: (1) R = random ('Normal',0,1,2,4): 生成期 望为 0, 标准差为 1 的(2 行 4 列)2 x 4个正态随机数 (2) R = random ('Poisson',1:6,1,6): 依次 生成参数为 1 到 6 的(1 行 6 列 )6 个 Poisson 随机数 第二种方法是针对特殊的分布的语句: 一. 几何分布随机数 R = geornd(P) R = geornd(P,m) (下面的 P , m 都可以是矩阵) (生成参数为 P 的几何随机数) (生成参数为 P 的 x m 个几何随机数) 1 R = geornd (P,m,n ) (生成参数为 P 的 m 行 n 列的 m x n 个几何随 机数) 例如 ⑴ R = geornd (1./ 2八(1:6))(生成参数依次为 1/2,1/2A 2,至U 1/2A 6 的 6 个几 何随机数 ) ⑵ R = geornd (0.01,[1 5])( 生成参数为0.01的(1行5列)5个几何随 机数). 二. Beta 分布随机数 R = betarnd(A,B) R = betarnd(A,B,m) 生成 m 行 n 列的 m x n 个数为 A,B 的 Beta 随 三.正态随机数 R = normrnd (MU, SIGMA ) (生成均值为 MU,标准差为SIGMA 的正态随机数) R = normrnd (MU , SIGMA,m ) (生成 1x m 个正态随机数) R = normrnd(MU , SIGMA,m,n) (生成 m 行 n 列的 m x n 个正态随机数) 例如 (1) R = normrnd(0,1,[1 5]) 生成 5 个正态 (0,1) 随机数 (2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为 [1,2,3;4,5,6], 方 差为 0.1 的 2x 3 个正态随机数. 生成参数为 A,B 的 Beta (生成 x m 个数为 A,B 随机数) 的 Beta 随机数) R = betarnd(A,B,m,n) 机数) .

matlab随机数生成(全部函数)

matlab 全部的随机数函数 (一)Matlab内部函数 a.基本随机数 Matlab中有两个最基本生成随机数的函数。 1.rand() 生成(0,1)区间上均匀分布的随机变量。基本语法: rand([M,N,P ...]) 生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: rand(5,1) %生成5个随机数排列的列向量,一般用这种格式 rand(5) %生成5行5列的随机数矩阵 rand([5,4]) %生成一个5行4列的随机数矩阵 生成的随机数大致的分布。 x=rand(100000,1); hist(x,30); 由此可以看到生成的随机数很符合均匀分布。(视频教程会略提及hist()函数的作用) 2.randn() 生成服从标准正态分布(均值为0,方差为1)的随机数。基本语法和rand()类似。 randn([M,N,P ...]) 生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: randn(5,1) %生成5个随机数排列的列向量,一般用这种格式 randn(5) %生成5行5列的随机数矩阵 randn([5,4]) %生成一个5行4列的随机数矩阵 生成的随机数大致的分布。 x=randn(100000,1); hist(x,50); 由图可以看到生成的随机数很符合标准正态分布。 b.连续型分布随机数 如果你安装了统计工具箱(Statistic Toolbox),除了这两种基本分布外,还可以用Matlab内部函数生成符合下面这些分布的随机数。 3.unifrnd() 和rand()类似,这个函数生成某个区间内均匀分布的随机数。基本语法 unifrnd(a,b,[M,N,P,...]) 生成的随机数区间在(a,b)内,排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

M序列的matlab产生方法

M序列是工程中常用的输入信号,它的性质类似于白噪声,而白噪声是理论上最好的输入信号,可见M序列的价值。下面介绍M序列的matlab产生方法。 idinput函数 产生系统辨识常用的典型信号。 格式 u = idinput(N,type,band,levels) [u,freqs] = idinput(N,'sine',band,levels,sinedata) N 产生的序列的长度,如果N=[N nu],则nu为输入的通道数,如果N=[P nu M],则nu 指定通道数,P为周期,M*P为信号长度。默认情况下,nu=1,M=1,即一个通道,一个周期。 Type 指定产生信号的类型,可选类型如下 Band 指定信号的频率成分。对于’rgs’、’rbs’、’sine’,band = [wlow, whigh]指定通带的范围,如果是白噪声信号,则band=[0, 1],这也是默认值。指定非默认值时,相当于有色噪声。对于’prbs’,band=[0, B],B表示信号在一个间隔1/B(时钟周期)内为恒值,默认为[0, 1]。Levels 指定输入的水平。Levels=[minu, maxu],在type=’rbs’、’prbs’、’sine’时,表示信号u 的值总是在minu和maxu之间。对于type=’rgs’,minu指定信号的均值减标准差,maxu 指定信号的均值加标准差,对于0均值、标准差为1的高斯白噪声信号,则levels=[-1, 1],这也是默认值。 说明 对于PRBS信号,如果M>1,则序列的长度和PRBS周期会做调整,使PRBS的周期为对应一定阶数的最大值(即2^n-1,n为阶数);如果M=1,PRBS的周期是大于N的相应阶数的值。在多输入的情形时,信号被最大平移,即P/nu为此信号能被估计的模型阶次的上界。 上面的意思可如下理解:对于M=1时, ms = idinput(12, 'prbs', [0 1], [0 1]); figure stairs(ms) title('M序列') ylim([-0.5 1.5])

matlab随机数生成方法

Matlab(https://www.360docs.net/doc/472590167.html,) 随机数生成方法 第一种方法是用random 语句,其一般形式为 y = random('分布的英文名',A1,A2,A3,m,n), 表示生成m 行n 列的m × n 个参数为( A1 , A2 , A3 ) 的该分布的随机数。例如: (1) R = random('Normal',0,1,2,4): 生成期望为0,标准差为1 的(2 行4 列)2× 4 个正态随机数 (2) R = random('Poisson',1:6,1,6):依次生成参数为1 到6 的(1 行6 列)6 个Poisson 随机数 第二种方法是针对特殊的分布的语句: 一.几何分布随机数(下面的P,m 都可以是矩阵) R = geornd(P) (生成参数为P 的几何随机数) R = geornd(P,m)(生成参数为P 的× m 个几何随机数) R = geornd(P,m,n)(生成参数为P 的m 行n 列的m × n 个几何随机数) 例如 (1)R = geornd(1./ 2.^(1:6)) ( 生成参数依次为1/2,1/2^2,到1/2^6 的6 个几何随机数) (2)R = geornd(0.01,[1 5]) (生成参数为0.01 的(1行5列)5 个几何随机数). 二.Beta 分布随机数 R = betarnd(A,B)(生成参数为A,B 的Beta 随机数) R = betarnd(A,B,m)(生成× m 个数为A,B 的Beta 随机数) R = betarnd(A,B,m,n)(生成m 行n 列的m × n 个数为A,B 的Beta 随机数). 三.正态随机数 R = normrnd(MU,SIGMA)(生成均值为MU,标准差为SIGMA 的正态随机数) R = normrnd(MU,SIGMA,m)(生成1× m 个正态随机数) R = normrnd(MU,SIGMA,m,n) (生成m 行n 列的m × n 个正态随机数) 例如

MATLAB 生成高斯噪声wgn函数

function y = wgn(varargin) %WGN Generate white Gaussian noise. % Y = WGN(M,N,P) generates an M-by-N matrix of white Gaussian noise. % P specifies the power of the output noise in dBW. % % Y = WGN(M,N,P,IMP) specifies the load impedance in Ohms. % % Y = WGN(M,N,P,IMP,STATE) resets the state of RANDN to STATE. % % Additional flags that can follow the numeric arguments are: % % Y = WGN(..., POWERTYPE) specifies the units of P. POWERTYPE can % be 'dBW', 'dBm' or 'linear'. Linear power is in Watts. % % Y = WGN(..., OUTPUTTYPE); Specifies the output type. OUTPUTTYPE can % be 'real' or 'complex'. If the output type is complex, then P % is divided equally between the real and imaginary components. % % Example 1: % % To generate a 1024-by-1 vector of complex noise with power % % of 5 dBm across a 50 Ohm load, use: % Y = wgn(1024, 1, 5, 50, 'dBm', 'complex') % % Example 2: % % To generate a 256-by-5 matrix of real noise with power % % of 10 dBW across a 1 Ohm load, use: % Y = wgn(256, 5, 10, 'real') % % Example 3: % % To generate a 1-by-10 vector of complex noise with power % % of 3 Watts across a 75 Ohm load, use: % Y = wgn(1, 10, 3, 75, 'linear', 'complex') % % See also RANDN, AWGN. % Copyright 1996-2008 The MathWorks, Inc. % $Revision: 1.11.4.5 $ $Date: 2008/08/01 12:17:45 $ % --- Initial checks error(nargchk(3,7,nargin,'struct')); % --- Value set indicators (used for the strings) pModeSet = 0; cplxModeSet = 0; % --- Set default values p = []; row = []; col = []; pMode = 'dbw'; imp = 1; cplxMode = 'real'; seed = []; % --- Placeholders for the numeric and string index values numArg = [];

相关文档
最新文档