教科版高中物理选修3-4第4节 相对论的速度变换定律 质量和能量的关系.docx

教科版高中物理选修3-4第4节 相对论的速度变换定律 质量和能量的关系.docx
教科版高中物理选修3-4第4节 相对论的速度变换定律 质量和能量的关系.docx

高中物理学习材料

(灿若寒星**整理制作)

第4节相对论的速度变换定律质量和能量的关系

第5节广义相对论点滴

1.相对论的速度变换公式:以速度u相对于参考系S运动的参考系S′中,一物体沿与u相同方向以速率v′运动时,在参考系S中,它的速率为________________.2.物体的质量m与其蕴含的能量E之间的关系是:________.由此可见,物体质量________,其蕴含的能量________.质量与能量成________,所以质能方程又可写成________.3.相对论质量:物体以速度v运动时的质量m和它静止时的质量m0之间有如下的关系________________.

4.广义相对论的两个基本原理

(1)广义相对性原理:在任何参考系中物理规律都是____________.

(2)等效原理:一个不受引力作用的加速度系统跟一个受引力作用的惯性系统是等效的.

5.广义相对论的几个结论:

(1)光在引力场中传播时,将会发生________,而不再是直线传播.

(2)引力场使光波发生________.

(3)引力场中时间会__________,引力越强,时钟走得越慢.

(4)有质量的物质存在加速度时,会向外辐射出____________.

6.在高速运动的火车上,设车对地面的速度为v,车上的人以速度u′沿着火车前进的方向相对火车运动,那么他相对地面的速度u与u′+v的关系是()

A.u=u′+v B.u

C.u>u′+v D.以上均不正确

7.以下说法中错误的是()

A.矮星表面的引力很强

B.在引力场弱的地方比引力场强的地方,时钟走得快些

C.引力场越弱的地方,物体的长度越短

D.在引力场强的地方,光谱线向绿端偏移

概念规律练

知识点一相对论速度变换公式的应用

1.若一宇宙飞船对地以速度v运动,宇航员在飞船内沿同方向测得光速为c,问在地上观察者看来,光速应为v+c吗?

2.一粒子以0.05c的速率相对实验室参考系运动.此粒子衰变时发射一个电子,电子相对于粒子的速度为0.8c,电子的衰变方向与粒子运动方向相同.求电子相对于实验室参考系的速度.

知识点二相对论质量

3.人造卫星以第一宇宙速度(约8 km/s)运动,问它的质量和静质量的比值是多少?

4.一观察者测出电子质量为2m0,求电子的速度是多少?(m0为电子静止时的质量)

知识点三质能方程

5.一个运动物体的总能量为E,E中是否考虑了物体的动能?

6.一个电子被电压为106 V的电场加速后,其质量为多少?速率为多大?

知识点四了解广义相对论的原理

7.假如宇宙飞船是全封闭的,航天员与外界没有任何联系.但是航天员观察到,飞船内

没有支撑的物体都以某一加速度落向舱底.请分析这些物体运动的原因及由此得到的结论.

8.在外层空间的宇宙飞船上,如果你正在一个以加速度g=9.8 m/s2向头顶方向运动的电梯中,这时,你举起一个小球自由地丢下,请说明小球是做自由落体运动.

方法技巧练

巧用ΔE=Δmc2求质量的变化量

9.现在有一个静止的电子,被电压为107 V的电场加速后,质量增大了多少?其质量为多少?(m0=9.1×10-31 kg,c=3.0×108 m/s)

10.已知太阳内部进行激烈的热核反应,每秒钟辐射的能量为3.8×1026 J,则可算出() A.太阳的质量约为4.2×106 t

B.太阳的质量约为8.4×106 t

C.太阳的质量每秒钟减小约为4.2×106 t

D.太阳的质量每秒钟减小约为8.4×106 t

1.关于广义相对论和狭义相对论之间的关系.下列说法正确的是()

A.它们之间没有任何联系

B.有了广义相对论,狭义相对论就没有存在的必要了

C.狭义相对论能够解决时空弯曲问题

D.为了解决狭义相对论中的参考系问题提出了广义相对论

2.下面的说法中正确的是()

A.在不同的参考系中观察,真空中的光速都是相同的

B.真空中的光速是速度的极限

C.空间和时间与物质的运动状态有关

D.牛顿力学是相对论力学在v?c时的特例

3.根据爱因斯坦的质能方程,可以说明( )

A .任何核反应,只要伴随能量的产生,则反应前后各物质的质量和一定不相等

B .太阳不断地向外辐射能量,因而太阳的总质量一定不断减小

C .虽然太阳不断地向外辐射能量,但它的总质量是不会改变的

D .若地球从太阳获得的能量大于地球向外辐射的能量,则地球的质量将不断增大

4.下列说法中,正确的是( )

A .由于太阳引力场的影响,我们有可能看到太阳后面的恒星

B .强引力作用可使光谱线向红端偏移

C .引力场越强的位置,时间进程越慢

D .由于物质的存在,实际的空间是弯曲的

5.黑洞是质量非常大的天体,由于质量很大,引起了其周围的时空弯曲,从地球上观察,我们看到漆黑一片,那么关于黑洞,你认为正确的是( )

A .内部也是漆黑一片,没有任何光

B .内部光由于引力的作用发生弯曲,不能从黑洞中射出

C .内部应该是很亮的

D .如果有一个小的星体经过黑洞,将会被吸引进去

6.在引力可以忽略的空间有一艘宇宙飞船在做匀加速直线运动,一束光垂直于运动方向在飞船内传播,下列说法中正确的是( )

A .船外静止的观察者看到这束光是沿直线传播的

B .船外静止的观察者看到这束光是沿曲线传播的

C .航天员以飞船为参考系看到这束光是沿直线传播的

D .航天员以飞船为参考系看到这束光是沿曲线传播的

7.下列说法中正确的是( )

A .物质的引力使光线弯曲

B .光线弯曲的原因是由于介质不均匀而非引力作用

C .在强引力的星球附近,时间进程会变慢

D .广义相对论可以解释引力红移现象

8.地球上一观察者,看见一飞船A 以速度2.5×108 m/s 从他身边飞过,另一飞船B 以速度2.0×108 m/s 跟随A 飞行.求:

(1)A 上的乘客看到B 的相对速度;

(2)B 上的乘客看到A 的相对速度.

9.一物体静止时质量为m ,当分别以v 1=7.8 km/s 和v 2=0.8c 的速度飞行时,质量分别是多少?

10.你能否根据质能方程推导动能的表达式E k =12

m v 2?

11.广义相对论得出了哪些重要的结论?

第4节 相对论的速度变换定律

质量和能量的关系

第5节 广义相对论点滴

课前预习练

1.v =u +v ′1+uv ′c 2 2.E =mc 2 越大 越多 正比 ΔE =Δmc 2 3.m =m 0

1-v 2c 2

4.(1)一样的

5.(1)偏折 (2)频移 (3)延缓 (4)引力波

6.B [由相对论速度变换公式可知B 正确.]

7.CD [由引力红移可知C 、D 错误.]

课堂探究练

1.在地面的观察者看来,光速是c 不是v +c.

解析 由相对论速度变换公式u =u ′+v 1+u ′v c 2,求得光对地速度u =v +c 1+vc c 2=c v +c v +c =c. 点评 若仍然利用经典相对性原理解答此类题目,会导致错误结论.在物体的运动速度与光速可比拟时,要用相对论速度变换公式进行计算.

2.0.817c

解析 已知v =0.05c ,u x ′=0.8c.

由相对论速度叠加公式得

u x =u x ′+v 1+u x ′v c

2=(u x ′+v )c 2

c 2+u x ′v u x =(0.8c +0.05c )c 2

c 2+0.8c ×0.05c

≈0.817c. 点评 对于微观、高速运动的物体,其速度的叠加不再按照宏观运动规律,而是遵守相

对论速度变换公式.

3.1.000 000 000 35

解析 c =3×108 m/s ,v c =8×103

3×108,v 2

c 2≈7.1×10-10. 由m =m 0

1-????v c 2,得

m m 0

=1.000 000 000 35. 点评 根据m =m 01-(v c

)2直接计算m m 0不需先算m. 4.0.866c 解析 m =2m 0,代入公式m =m 01-(v c )2,可得2m 0=m 0

1-(v c )2,解得v =

32c =0.866c. 点评 在v c 时,可以认为质量是不变的,但当v 接近光速时,m 的变化一定要考虑.

5.总能量E 中已经计入了物体的动能.

解析 总能量E =E 0+Ek ,E 0为静质能,实际上包括分子的动能和势能、化学能、电磁能、结合能等.

E 0=m 0c 2,Ek 为动能,Ek =m 0c 2????????1 1-v 2c 2 -1,E =E 0+Ek =mc 2.

点评 有人根据E =mc 2得出结论说“质量可以转化为能量、能量可以转化为质量”这是对相对论的曲解,事实上质量决不会变成能量,能量也决不会变成质量.一个系统能量减少时,其质量也相应减少,另一个系统因接受而增加能量时,其质量也相应增加.对一个封闭的系统,质量是守恒的,能量也是守恒的.

6.2.69×10-30 kg 0.94c

解析 Ek =eU =(1.6×10-19×106) J =1.6×10-13 J

对高速运动的电子,由Ek =mc 2-m 0c 2得

m =Ek c 2+m 0=1.6×10-13(3×108)

2 kg +9.1×10-31 kg ≈2.69×10

-30 kg. 由m =m 01-v 2

c 2得,v =c

1-m 20m 2=2.82×108 m·s -1≈0.94c 点评 当v c 时,宏观运动规律仍然适用,物体的动能仍然根据Ek =12

mv 2来计算.但当v 接近光速时,其动能由Ek =mc 2-m 0c 2来计算.

7.见解析

解析 飞船内没有支撑的物体都以某一加速度落向舱底的原因可能是飞船正在向远离任意天体的空间加速飞行,也可能是由于飞船处于某个星球的引力场中.实际上飞船内部的任何物理过程都不能告诉我们飞船到底是加速运动还是停泊在一个行星的表面.

这个事实使我们想到:一个均匀的引力场与一个做匀加速运动的参考系等价.

点评 把一个做匀加速运动的参考系等效为一个均匀的引力场,从而使物理规律在非惯性系中也成立.

8.见解析

解析 由广义相对论中的等效原理知,一个均匀的引力场与一个做加速运动的参考系等价.当电梯向头顶方向加速运动时,自由丢下的小球相对于电梯的加速度为g =9.8 m/s 2,与在地球引力场中做自由落体运动相同.

9.1.78×10-29 kg 1.871×10-29 kg

解析 由动能定理,加速后电子增加的动能

ΔEk =eU =1.6×10-19×107 J =1.6×10-12 J

由ΔE =Δmc 2得电子增加的质量

Δm =ΔEk c 2=1.6×10-12

(3×108)2kg ≈1.78×10-29 kg ,此时电子的质量m =m 0+Δm =1.871×10-29 kg

方法总结 物体的能量变化ΔE 与质量变化Δm 的对应关系为ΔE =Δmc 2,即当物体的能量增加时,物体对应的质量也增大;当物体的能量减少时,物体对应的质量也减小.

10.C [由质能方程知太阳每秒钟因辐射能量而失去的质量为Δm =ΔE c 2=4.2×109 kg =4.2×106 t ,故C 正确.]

课后巩固练

1.D [狭义相对论之所以称为狭义相对论,就是只能是对于惯性参考系来讲的,时空弯曲问题是有引力存在的问题,需要用广义相对论进行解决.]

2.ABCD

3.ABD [据ΔE =Δmc 2,当能量变化时,核反应中,物体的质量发生变化,故A 正确;太阳在发生聚变反应,释放出大量能量,质量减小,故B 正确,C 错误;由质能关系知,D 正确.]

4.ABCD [由广义相对论我们可知道:物质的引力使光线弯曲,因此选项A 、D 是正确的.在引力场中时间进程变慢,而且引力越强,时间进程越慢,因此我们能观察到引力红移现象,所以选项B 、C 正确.]

5.BCD

6.AD [由广义相对论基本原理可知A 、D 正确.]

7.ACD [由广义相对论的几个结论可知A 、C 、D 正确.]

8.(1)-1.125×108 m/s (2)1.125×108 m/s

解析 (1)A 上的乘客看地以-2.5×108 m/s 向后.

B 在地面看以2.0×108 m/s 向前,则A 上乘客看B 的速度为u =u ′+v 1+u ′·v c 2=-2.5+2.01+-2.5×232

×108 m/s ≈-1.125×108 m/s.

(2)B 看A 则相反为1.125×108 m/s.

9.见解析

解析 速度为7.8 km/s 时,质量为

m 1=m 01-(v c )2=m 01-(7.8×103

3×108

)2≈m 0=m 速度为0.8c 时,质量设为m 2,有

m 2=m 01-(0.8)2=m 00.6=53

m 0=53m. 10.见解析

解析 质能方程E =mc 2表示的是物体质量和能量之间的关系,所以物体运动时的能量和静止时的能量之差就是物体的动能Ek

即Ek =E -E 0

又因为E =mc 2=m 0

1-(v c

)2c 2,E 0=m 0c 2 所以Ek =m 0c 2[11-(v c

)2-1] 当v 很小时,即v c

1时,根据数学公式有 [1-(v c )2]-12≈1+12(v c )2 所以Ek =E -E 0≈12

m 0v 2 11.广义相对论得出的结论:(1)物质的引力使光线弯曲.时空几乎在每一点都是弯曲的.只有在没有质量的情况下,时空才没有弯曲,如质量越大,时空弯曲的程度也越大.在引力场存在的条件下,光线是沿弯曲的路径传播的.(2)引力场的存在使得空间不同位置的时间进程出现差别.例如在强引力的星球附近,时钟要走得慢些.按照广义相对论光在强引力场中传播时,它的频率或波长会发生变化,出现引力红移现象.

高三物理《能量守恒定律》公式总结

高三物理《能量守恒定律》公式总结 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律w+Q=ΔU{,w:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出〔见第二册P44〕} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温

度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功w<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

(完整word版)高中物理能量守恒定律【高中物理能量守恒定律公式

高中物理能量守恒定律【高中物理能量守恒定律公式 在高中物理学习过程中,能量守恒属于一项极为重要的知识点,熟练掌握这一内容对于提高学生的物理知识分析能力有很大帮助,下面是小编给大家带来的高中物理能量守恒定律公式,希望对你有帮助。高中物理能量守恒定律公式 1.阿伏加德罗常数NA=×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{,W:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-摄氏度} 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功W0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。高中物理能量守恒知识点 功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。 功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v 将改变,这时的运动一定是变加速运动。2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止。 能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能……。动能:物体由于有机械运动速度而具有的能量Ek=mv2/2 能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

化学三大守恒定律

化学三大守恒定律 This manuscript was revised on November 28, 2020

对于溶液中微粒浓度(或数目)的比较,要遵循两条: 一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带总数; 二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。(物料守恒实际属于个数守恒和。) ★电荷守恒 1.化合物中元素正负代数和为零 2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数 3.除六大,四大外都,部分水解。产物中有部分水解时产物 4.这个离子所带的电荷数是多少,离子前写几。 例如:NaHCO 3:c(Na + )+c(H + )=c(OH -)+c(HCO 3-)+2c(CO 32- ) ★物料守恒 物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中相等的原子,就是)和数量分别保持不变”。 ⒈含特定元素的微粒(离子或分子)守恒 ⒉不同元素间形成的特定微粒比守恒 ⒊特定微粒的来源关系守恒 【例1】在0.1mol/LNa3PO4溶液中: 根据P 元素形成微粒总量守恒有: c[PO 4 3-]+c[HPO 42-]+c[H 2PO 4-]+c[H 3PO 4]=0.1mol/L 根据Na 与P 形成微粒的关系有: c[Na + ]=3c[PO 43-]+3c[HPO 42-]+3c[H 2PO 4- ]+3c[H 3PO 4] 根据H2O 电离出的H+与OH-守恒有:c[OH -]=c[HPO 42-]+2c[H 2PO 4-]+3c[H 3PO 4]+c[H + ] 【例2】以NaHCO 3溶液为例 若HCO 3-没有和水解,则c (Na +)=c (HCO 3- ) 现在HCO 3-会水解成为H 2CO 3,电离为CO 32-(都是1:1反应,也就是消耗一个HCO 3- ,就产生一个H 2CO 3或者CO 32-),那么守恒式中把Na + 浓度和HCO 3- 及其产物的浓度和画 等号(或直接看作钠与碳的守恒): 即c(Na + )==c(HCO 3-)+c(CO 32- )+c(H 2CO 3) 【例3】在0.1mol/L 的H 2S 溶液中存在如下过程:(均为) H 2S=(H + )+(HS -) (HS -)=(H + )+(S 2-) H 2O=(H + )+(OH -) 可得物料守恒式c(S 2-)+c(HS - )+c(H 2S)==0.1mol/L,(在这里物料守恒就是S--描述出有S 元素的和分子即可) 【例4】Na 2CO 3溶液的电荷守恒、物料守恒、质子守恒 ·电荷守恒 c(Na+)+c(H+)=2c(CO 32-)+c(HCO 3-)+c(OH-) 上式中,阴阳总要相等,由于1mol 电荷量是2mol 负电荷,所以碳酸根所带电荷量是其的2倍。 ·物料守恒 c(Na+)是离子物质的量的2倍,电离水解后,碳酸根以三种形式存在所以 c(Na+)=2[c(CO 32-)+c(HCO 3-)+c(H 2CO 3)] ·质子守恒 水电离出的c(H+)=c(OH-)

高一物理能量守恒定律测试题

2.3 能量守恒定律第一课时 【素能综合检测】 1.(5分)在利用重物做自由落体运动探索动能与重力势能的转化和守恒的实验中,下列说法中正确的是() A.选重锤时稍重一些的比轻的好 B.选重锤时体积大一些的比小的好 C.实验时要用秒表计时,以便计算速度 D.打点计时器选用电磁打点计时器比电火花计时器要好 【解析】选A.选用的重锤宜重一些,可以使重力远远大于阻力,阻力可忽略不计,从而减小实验误差,故A正确;重锤的体积越大,下落时受空气阻力越大,实验误差就越大,故B 错误;不需用秒表计时,打点计时器就是计时仪器,比秒表计时更为精准,故C错误;电磁打点计时器的振针与纸带间有摩擦,电火花计时器对纸带的阻力较小,故应选电火花计时器,D错误. 3.(5分)如图1是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n点来验证机械能守恒定律.下面举一些计算n点速度的方法,其中正确的是()

4.(4分)在“验证机械能守恒定律”的实验中 (1)将下列主要的实验步骤,按照实验的合理顺序把步骤前的序号填在题后横线上: A.用手提着纸带使重物静止在靠近打点计时器处; B.将纸带固定在重物上,让纸带穿过打点计时器的限位孔; C.取下纸带,在纸带上任选几点,测出它们与第一个点的距离,并算出重物在打下这几个点时的瞬时速度; D.接通电源,松开纸带,让重物自由下落; E.查出当地的重力加速度g的值,算出打下各计数点时的动能和相应的减少的重力势能,比较它们是否相等; F.把测量和计算得到的数据填入自己设计的表格里. 答:_____________. (2)动能值和相应重力势能的减少值相比,实际上哪个值应偏小些? 答:____________. 【解析】(1)实验的合理顺序应该是:BADCFE (2)由于重物和纸带都受阻力作用,即都要克服阻力做功,所以有机械能损失,即重物的动能值要小于相应重力势能的减少值. 答案:(1)BADCFE(2)动能值

高中物理分子动理论、能量守恒定律公式总结

高中物理分子动理论、能量守恒定律公式总结 1、阿伏加德罗常数A N =6.02×1023/mol ;分子直径数量级10-10 米 2、油膜法测分子直径S V d = {V :单分子油膜的体积(m 3),S :油膜表面积(m 2)} 3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4、分子间的引力和斥力(1)0r r <,斥引f f <,分子力F 表现为斥力;(2) 0r r >,斥引f f >, 分子力F 表现为引力;(3) 0r r =,斥引f f =; (4) 010r r >,0≈=斥引f f ,0≈分子力F ,0≈分子势能E 5、热力学第一定律U Q W ?=+{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q :物体吸收的热量(J),U ?:增加的内能(J),涉及到第一类永动机不可造出 6、热力学第二定 律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出} 7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)、布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)、温度是分子平均动能的标志; (3)、分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)、分子力做正功,分子势能减小,在0r 处斥引f f =且分子势能最小; (5)、气体膨胀,外界对气体做负功W<0;温度升高,内能增大0>?U ;吸收热量,0>Q (6)、物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)、0r 为分子处于平衡状态时,分子间的距离; (8)、其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。

高三物理能量守恒定律详尽讲义

高三物理能量守恒定律详尽讲义 考纲解读1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 1.[功能关系的理解]用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是() A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 答案 C 2.[能的转化与守恒定律的理解]如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中() 图1 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 答案AD 解析在X-37B由较低轨道飞到较高轨道的过程中,必须启动助推器,对X-37B做正功,X-37B的机械能增大,A对,B错.根据能量守恒定律,

C错.X-37B在确定轨道上绕地球做圆周运动,其动能和重力势能都不会发生变化,所以机械能不变,D对. 3.[能量守恒定律的应用]如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停 下来,则停下的位置到B的距离为() 图2 A.0.5 m B.0.25 m C.0.1 m D.0 答案 D 解析由mgh=μmgx,得x=3 m,而x d= 3 m 0.5 m=6,即3个来回后,小物块 恰停在B点,选项D正确. 一、几种常见的功能关系 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增.

高中物理《能量守恒定律》教案

能量守恒定律 本节课的设计,教材继续沿用了前几节的课程模式,先由生活中的实例引出研究问题,然后用实验加以证实,让学生接受这个物理事实.接着再从理论上推导、证明,从而得出结论. 这节课教材是从生活中骑自行车上坡的实例入手,引出动能和重力势能在此过程中是在相互转化的.接着通过实验来证实这个转化过程中的守恒结论.最后提出了自然界中最普遍、最基本的规律之一能量转化和守恒定律. 机械能守恒定律是能量守恒定律的一个特例,要使学生对定律的得出、含义、适用条件有一个明确的认识,这是能够用该定律解决力学问题的基础. 各种不同形式的能相互转化和守恒的规律,贯穿在整个物理学中,是物理学的基本规律之一.能量守恒定律是学习各种不同形式的能量转化规律的起点,也是运动学和动力学知识的进一步综合和展开的重要基础.所以这一节知识是本章重要的一节. 机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能. 分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一.在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的.在讨论物体系统的机械能时,应先确定参考平面. 教学重点1.理解机械能守恒定律的内容; 2.在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式; 3.理解能量转化和守恒定律. 教学难点1.从能的转化和功能关系出发理解机械能守恒的条件; 2.能正确判断研究对象在所经历的过程中机械能是否守恒. 教具准备自制投影片、CAI课件、重物、电磁打点计时器以及纸带、复写纸片、低压电源及两根导线、铁架台和铁夹、刻度尺、小夹子. 课时安排1课时 三维目标 一、知识与技能 1.知道什么是机械能,知道物体的动能和势能可以相互转化; 2.理解机械能守恒定律的内容; 3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式; 4.理解能量守恒定律,能列举、分析生活中能量转化和守恒的例子. 二、过程与方法 1.初步学会从能量转化和守恒的观点解释现象、分析问题; 2.通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法. 三、情感态度与价值观 1.通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题; 2.通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观.培养学生的观察和实践能力,培养学生实事求是的科学态度. 教学过程 导入新课 [实验演示] 动能与势能的相互转化 教师活动:演示实验1:如下图,用细线、小球、带有标尺的铁架台等做实验.

水溶液中三大守恒定理

溶液中三大守恒 一、电荷守恒 电解质溶液中所有阳离子所带的正电荷数与所有的阴离子所带的负电荷数相等。 例:写出碳酸钠(Na2CO3)溶液中的电荷守恒关系式 (1)找出溶液中的离子:Na+ H+ CO32- HCO3- OH- (2)根据电荷的物质的量: n(Na+)+n(H+)=2n(CO32-)+n(HCO3-)+n(OH-) (3)根据电荷离子浓度关系: c(Na+)+c(H+)=2c(CO32-)+c(HCO3-)+c(OH-) 注意: A、准确判断溶液中的离子种类。 B、弄清离子浓度与电荷的关系。即R n+的电荷浓度nC(R n+) 练:1、NH4HCO3溶液的电荷守恒试 2、Na2S溶液的电荷守恒试 二、物料守恒 电解质溶液中由于电离或水解因素,离子会发生变化,变成其它离子或分子等,但离子或分子中某种特定元素的原子总数是不会改变的。 某些特征性的原子是守恒的 例:NaHCO3溶液中C(Na+)的物料守恒关系式

C(Na+)=C(HCO3-)+C(CO32-)+C(H2CO3) 练:1、Na2CO3溶液中的物料守恒关系式、 2、H2S溶液中的电荷守恒关系式 三、质子守恒 电解质溶液中分子或离子得到质子的物质的量应相等失去质子的物质的量 (由水电离出来的c(H+)、 c(OH-)相等) 例:NaHCO3溶液中的质子守恒关系式 1、先找出溶液电离出的阴离子HCO3- 2、列下列式子 练:1、Na2 CO3溶液中的质子守恒关系式 2、Na HS溶液中的质子守恒关系式

综合练习: 1、CH3COONa溶液中三大守恒关系式 电荷守恒: 物料守恒: 质子守恒: 2、Na2 CO3溶液中三大守恒关系式 电荷守恒: 物料守恒: 质子守恒: [规律总结]正确的思路: 一、溶质单一型※※关注三个守恒 1.弱酸溶液: 【例1】在0.1mol/L的H2S溶液中,下列关系错误的是() A.c(H+)=c(HS-)+c(S2-)+c(OH-) B.c(H+)=c(HS-)+2c(S2-)+c(OH-) C.c(H+)>[c(HS-)+c(S2-)+c(OH-)] D.c(H2S)+c(HS-)+c(S2-)=0.1mol/L

高中物理考试热力学定律与能量守恒定律

选修3-3 第3讲 一、选择题 1.有关“温度”的概念,下列说法中正确的是( ) A.温度反映了每个分子热运动的剧烈程度 B.温度是分子平均动能的标志 C.一定质量的某种物质,内能增加,温度一定升高 D.温度较高的物体,每个分子的动能一定比温度较低的物体分子的动能大 [答案] B [解析] 温度是分子平均动能的标志,但不能反映每个分子的运动情况,所以A、D错误,由ΔU=Q+W可知C错,故选项B正确. 2.第二类永动机不可能制成,这是因为( ) A.违背了能量守恒定律 B.热量总是从高温物体传递到低温物体 C.机械能不能全部转变为内能 D.内能不能全部转化为机械能,同时不引起其他变化 [答案] D [解析] 第二类永动机的设想虽然符合能量守恒定律,但是违背了能量转化中有些过程是不可逆的规律,所以不可能制成,选项D正确. 3.(2010·重庆)给旱区送水的消防车停于水平地面.在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体( ) A.从外界吸热B.对外界做负功 C.分子平均动能减小D.内能增加 [答案] A [解析] 该题考查了热力学定律,由于车胎内温度保持不变,故分子的平均动能不变,内能不变,放水过程中体积增大对外做功,由热力学第一定律可知,胎内气体吸热.A选项正确. 4.如图所示,两相同的容器装同体积的水和水银,A、B两球完全 相同,分别浸没在水和水银的同一深度,A、B两球用同一种特殊的材料 制成,当温度稍升高时,球的体积会明显变大.如果开始时水和水银的 温度相同,且两液体同时缓慢地升高同一值,两球膨胀后,体积相等, 则( ) A.A球吸收的热量较多 B.B球吸收的热量较多

高考物理动量守恒定律解题技巧及练习题

高考物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

高中物理的能量守恒定律知识点

高中物理的能量守恒定律知识点 能量守恒定律也称能的转化与守恒定律。 其内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体;在转化或转移的过程中,能量的总量不变。 高中物理都研究了哪些形式的能量? 研究能量守恒定律,要搞明白咱们主要研究哪些能量呢? 从解高中物理题的角度来分析,我们主要分析的是这五种形式的能量: 动能、弹性势能、重力势能、内能、电势能。 注:内能包括摩擦生热与焦耳热两种形式,高中不考磁能。动能、弹性势能、重力势能这三种形式能量之和称之为机械能。 当然,上述五种形式的能量,是力学与电磁学常考到的。 选修内容中的机械振动也是具有能量的,还有光子能量,核能等等,这些都不在本文讨论范围内,不过同学们需要知道,光电效应方程与波尔能级方程也

都是能量守恒定律的推导。 能量守恒定律的公式 E1=E2 即,初始态的总能量,等于末态的总能量。 或者说,能量守恒定律,就是说上文提到的五种形式的能量之和是恒定的。 机械能守恒定律与能量守恒定律关系 机械能守恒定律是能的转化与守恒定律的特殊形式。两者大多都是针对系统进行分析的。 (1)在只有重力、弹力做功时,系统对应的只有动能、弹簧弹性势能、重力势能三种形式能量之间的变化。 (2)在有重力、弹簧弹力、静电场力、摩擦力、安培力等等,众多形式的力做功时,系统对应的有动能、弹簧弹性势能、重力势能、电势能、摩擦热、焦耳热等等众多形式的能量变化,而这些能量也是守恒的。 从上述对比中不难看出,机械能守恒是能量守恒的一种特例。 因此,在熟练掌握能的转化与守恒定律内容的基础上,我们可以使用能量守恒来解决机械能守恒的问题。 或者说,能量守恒掌握的非常棒了,我们就可以

三大守恒定律与不变性的关系

三大守恒定律与不变性的关系 班级机械1202 姓名:皮立泽物理学中存在着许多理论上的“不变性”,存在着诸多的守恒定律。对称性是自然界最普遍、最重要的特性。近代科学表明,自然界的所有重要的规律均与某种不变性有关,甚至所有自然界中的相互作用,都具有某种特殊的不变性。下面将讨论动量守恒、角动量守恒和能量守恒与不变性的关系。 1.空间平移不变性与动量守恒 动量守恒定律:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。一个物理系统沿空间某方向平移一个任意大小的距离后,他的物理规律完全相同,这个事实叫做空间平移的对称性或空间平移不变性,也叫做空间的均匀性。动量守恒则是表现在空间平移的基础上进行研究的,可以说,动量守恒正反映空间对称性。 2.空间旋转不变性与角动量守恒 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。例如,当考虑到太阳系中的行星受到太阳的万有引力这一有心力时,由于万有引力对太阳这个参考点力矩为零,所以他们以太阳为参考点的角动量守恒,这也说明了行星绕太阳公转单位时间内与太阳连线扫过的面积大小总是恒定值的原因。 3.时间平移不变性与能量守恒 能量守恒是对应时间上的守恒,只要在某个时间段内没有对物体做功、加热等,那么在这段时间始末时刻,能量是守恒的。在讨论力在空间上的积累的时候,实际上

你做的是力的方向乘以空间的方向,所以积累出的是一个随时间增大的面积,面积这个东西同样也是不具有方向性的,表达面积只需要大小就行了,而这个面积的大小变化具有时间平移不变性。 从上面的讨论我们可以看到,三个守恒定律都是由于体系的时空不变性引起的,这说明物质运动与时间空间的不变性有着密切的联系,并且这三个守恒定律的确立为后来认识普遍运动规律提供了线索和启示,曾加了我们对不变性和守恒定律的认识。

化学 三大守恒定律

对于溶液中微粒浓度(或数目)的比较,要遵循两 条 原 则 : 一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带负电荷总数; 二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。(物料守恒实际属于原子个数守恒和质量守恒。) ★电荷守恒 1. 化合物中元素正负化合价代数和为零 2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数 3.除六大强酸,四大强碱外都水解,多元弱酸部分水解。产物中有部分水解时产物 4.这个离子所带的电荷数是多少,离子前写几。 例 如 :NaHCO 3: c(Na + )+c(H + )=c(OH - )+c(HCO 3-)+2c(CO 32-) ★物料守恒 物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中质子数相等的原子,就是元素守恒)和数量分别保持不变”。 ⒈ 含特定元素的微粒(离子或分子)守恒 ⒉ 不同元素间形成的特定微粒比守恒 ⒊ 特定微粒的来源关系守恒 【例1】在0.1mol/LNa3PO4溶液中: 根据P 元素形成微粒总量守恒有: c[PO 43-]+c[HPO 42-]+c[H 2PO 4- ]+c[H 3PO 4]=0.1mol /L 根据Na 与P 形成微粒的关系有: c[Na +]=3c[PO 43-]+3c[HPO 42-]+3c[H 2PO 4- ]+3c[H 3PO 4] 根据H2O 电离出的H+与OH-守恒有: c[OH -]=c[HPO 42-]+2c[H 2PO 4-]+3c[H 3PO 4]+c[H + ] 【例2】以NaHCO 3溶液为例 若HCO 3-没有电离和水解,则c (Na + )=c (HCO 3- ) 现在HCO 3-会水解成为H 2CO 3,电离为CO 32-(都是1:1反应,也就是消耗一个HCO 3-,就产生一个H 2CO 3或者CO 32-),那么守恒式中把Na +浓度和HCO 3-及其产物的浓度和画等号(或直接看作钠与碳的守恒): 即c(Na + ) == c(HCO 3-) + c(CO 32-) + c(H 2CO 3) 【例3】在0.1mol/L 的H 2S 溶液中存在如下电离过程:(均为可逆反应) H 2S=(H + ) +(HS -) (HS -)=(H + )+(S 2-) H 2O=(H + )+(OH -) 可 得 物料守恒式 c(S 2-)+c(HS - )+c(H 2S)==0.1mol/L, (在这里物料守恒就是S 元素守恒--描述出有S 元素的离子和分子即可) 【例4】Na 2CO 3溶液的电荷守恒、物料守恒、质子守恒 ·电荷守恒 c(Na+)+c(H+)=2c(CO 32-)+c(HCO 3-)+c(OH-) 上式中,阴阳离子总电荷量要相等,由于1mol 碳酸根电荷量是2mol 负电荷,所以碳酸根所带电

化学 三大守恒定律

对于溶液中微粒浓度(或数目)的比较,要遵循两条原则: 一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带负电荷总数; 二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。(物料守恒实际属于原子个数守恒和质量守恒。) ★电荷守恒 1. 化合物中元素正负化合价代数和为零 2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数 3.除六大强酸,四大强碱外都水解,多元弱酸部分水解。产物中有部分水解时产物 4.这个离子所带的电荷数是多少,离子前写几。 例如:NaHCO 3:c(Na + )+c(H + )=c(OH -)+c(HCO 3-)+2c(CO 32-) ★物料守恒 物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中质子数相等的原子,就是元素守恒)和数量分别保持不变”。 ⒈ 含特定元素的微粒(离子或分子)守恒 ⒉ 不同元素间形成的特定微粒比守恒 ⒊ 特定微粒的来源关系守恒 【例1】在0.1mol/LNa3PO4溶液中: 根据P 元素形成微粒总量守恒有: c[PO 43-]+c[HPO 42-]+c[H 2PO 4- ]+c[H 3PO 4]=0.1mol/L 根据Na 与P 形成微粒的关系有: c[Na + ]=3c[PO 43-]+3c[HPO 42-]+3c[H 2PO 4-]+3c[H 3PO 4] 根据H2O 电离出的H+与OH-守恒有:c[OH -]=c[HPO 42-]+2c[H 2PO 4-]+3c[H 3PO 4]+c[H + ] 【例2】以NaHCO 3溶液为例 若HCO 3 -没有电离和水解,则c (Na +)=c (HCO 3- ) 现在HCO 3-会水解成为H 2CO 3,电离为CO 32-(都是1:1反应,也就是消耗一个HCO 3- ,就产生一个H 2CO 3或者CO 32-),那么守恒式中把Na + 浓度和HCO 3- 及其产物的浓度和画等号(或直接看作钠与碳的守恒): 即c(Na + ) == c(HCO 3-) + c(CO 32-) + c(H 2CO 3) 【例3】在0.1mol/L 的H 2S 溶液中存在如下电离过程:(均为可逆反应) H 2S=(H + ) +(HS -) (HS -)=(H + )+(S 2-) H 2O=(H + )+(OH -) 可得物料守恒式c(S 2-)+c(HS -)+c(H 2S)==0.1mol/L, (在这里物料守恒就是S 元素守恒--描述出有S 元素的离子和分子即可) 【例4】Na 2CO 3溶液的电荷守恒、物料守恒、质子守恒 ·电荷守恒 c(Na+)+c(H+)=2c(CO 32-)+c(HCO 3-)+c(OH-) 上式中,阴阳离子总电荷量要相等,由于1mol 碳酸根电荷量是2mol 负电荷,所以碳酸根所带电荷量是其物质的量的2倍。 ·物料守恒 c(Na+)是碳酸根离子物质的量的2倍,电离水解后,碳酸根以三种形式存在所以 c(Na+)=2[c(CO 32-)+c(HCO 3-)+c(H 2CO 3)] ·质子守恒 水电离出的c(H+)=c(OH-) 在碳酸钠水溶液中水电离出的氢离子以(H+,HCO 3-,H 2CO 3)三种形式存在,其中1mol

高二物理能量守恒定律的典型例题

能量守恒定律的典型例题 [例1]试分析子弹从枪膛中飞出过程中能的转化. [分析]发射子弹的过程是:火药爆炸产生高温高压气体,气体推动子弹从枪口飞出. [答]火药的化学能→通过燃烧转化为燃气的内能→子弹的动能. [例2]核电站利用原子能发电,试说明从燃料铀在核反应堆中到发电机发出电的过程中的能的转化. [分析]所谓原子能发电,是利用原子反应堆产生大量的热,通过热交换器加热水,形成高温高压的蒸汽,然后推动蒸汽轮机,带动发电机发电. [答]能的转化过程是:核能→水的内能→汽轮机的机械能→发电机的电能. [说明] 在能的转化过程中,任何热机都不可避免要被废气带走一些热量,所以结合量守恒定律可得到结论:

不消耗能量,对外做功的机器(称为第一类永动机)是不可能的; 把工作物质(蒸汽或燃气)的能量全部转化为机械能(称第二类永动机)也是不可能的. 【例3】将一个金属球加热到某一温度,问在下列两种情况下,哪一种需要的热量多些?(1)将金属球用一根金属丝挂着(2)将金属球放在水平支承面上(假设金属丝和支承物都不吸收热量)A.情况(1)中球吸收的热量多些 B.情况(2)中球吸收的热量多些 C.两情况中球吸收的热量一样多 D.无法确定 [误解]选(C)。 [正确解答]选(B)。 [错因分析与解题指导]小球由于受热体积要膨胀。由于小球体积的膨胀,球的重心位置也会变化。如图所示,在情况(1)中,球受热后重心降低,重力对球做功,小球重力势能减小。而在情况(2)中,

球受热后重心升高。球克服重力做功,重力势能增大。可见,情况( 1)中球所需的热量较少。 造成[误解]的根本原因,是忽略了球的内能与机械能的转变过程。这是因为内能的变化是明确告诉的,而重力势能的变化则是隐蔽的。在解题时必须注意某些隐蔽条件及其变化。 [例4]用质量M=0.5kg的铁锤,去打击质量m=2kg的铁块。铁锤以v=12m/s的速度与铁块接触,打击以后铁锤的速度立即变为零。设每次打击产生的热量中有η=50%被铁块吸收,共打击n=50次,则铁块温度升高多少?已知铁的比热C=460J/kg℃。 [分析] 铁锤打击过程中能的转换及分配关系为 据此,即可列式算出△t. [解答]铁锤打击n=50次共产生热量:

高一物理能量守恒定律练习题

第3节能量守恒定律测试 1、下列关于机械能守恒的说法中,正确的是() A .做匀速直线运动的物体的机械能一定守恒 B .做匀变速运动的物体的机械能不可能守恒 C .如果没有摩擦力和介质阻力,运动物体的机械能一定守恒 D .物体只发生动能和势能的相互转换时,物体的机械能守恒 2、试以竖直上抛运动为例,证明机械能守恒.设一个 质量为m 的物体,从离地h i 处以初速v i 竖直上抛,上 升至 h 2高处速度为V 2,如图7-7-1所示. 3、在下列情况中,物体的机械能守恒的是(不计空气阻 力)() A .推出的铅球在空中运动的过程中 B .沿着光滑斜面匀加速下滑的物体 C .被起重机匀速吊起的物体 D .细绳的一端系一小球,绳的另一端固定,使小球在竖直平面 内做圆周运动 4、如图7-7-2所示,某人以拉力F 将物体沿斜面拉下,拉力大小等 于摩擦力,则下列说法中正确的是() A .物体做匀速运动 B .合外力对物体做功等于零 C .物体的机械能保持不变 |卽才 陀一 87-7-1

D.物体机械能减小5、下列关于物体机械能守恒的说法中,正确的是() A .运动的物体,若受合外力为零,则其机械能一定守恒 B .运动的物体,若受合外力不为零,则其机械能一定不守恒 C.合外力对物体不做功,物体的机械能一定守恒 D .运动的物体,若受合外力不为零,其机械能有可能守恒 6、当物体克服重力做功时,物体的() A .重力势能一定减少,机械能可能不变 B .重力势能一定增加,机械能一定增加 C.重力势能一定增加,动能可能不变 D .重力势能一定减少,动能可能减少 7、物体在空中以9. 8m/s2的加速度加速下降,则运动过程中物体 的机械能() A .增大 B .减小C.不变D .上述均有可能 &如图7-7-3所示,物体沿光滑半圆形凹面从A 点滑至B点的过程中,物体受力和力的作用,其中只 有力做功,重力势能,动能,但两者之和. 9、竖直向上将子弹射出,子弹在上升过程中,子弹的动能,重力势能.在最高点时子弹的动能为,重力势能达。由于空气阻力的存在, 最高点时的重力势能于射击时的初动能,子弹的机械能。 10、一质量为m的皮球,从不同高度自由落下时反弹起来后能上升的最大高度是原来的,现将该球从高为h处竖直向下抛出,要使它反弹到h

三大守恒原理的确立

三大守恒原理的确立 经典力学最常用的是对质点进行矢量分析和建立运动微分方程的方法。这两种办法在解决单质点,以及有限约束的问题时,得心应手。但是,当面对的是多质点、多约束的情况时,直接运用这两种方法也就显得太过困难了。为了解决这个问题,十七、十八世纪的科学家们逐渐发展了动量定理、动量矩定理和活力定理——三大运动定理以及它们在封闭系统环境下的三个积分形式的守恒定律。 经典力学最常用的是对质点进行矢量分析和建立运动微分方程的方法。这两种办法在解决单质点,以及有限约束的问题时,得心应手。但是,当面对的是多质点、多约束的情况时,直接运用这两种方法也就显得太过困难了。为了解决这个问题,十七、十八世纪的科学家们逐渐发展了动量定理、动量矩定理和活力定理——三大运动定理以及它们在封闭系统环境下的三个积分形式的守恒定律。 质心运动守恒定律 最早提出运动量守恒定律基本思想的是笛卡儿。后来荷兰的惠更斯从碰撞问题的研究中也得出了碰撞前后,系统的共同质心运动速度为常数的结论。最终系统得出这一定律的是牛顿,他在《原理》一书运动的基本定律之后的推论中明确提出了“质心运动守恒定律”,他写道:“两个或两个以上的物体的共同重心,不会因物体本身之间的作用而改变其运动或静止的状态;因此,所有相互作用着的物体如无外来作用和阻碍,其共同重心将或者静止,或者在等速沿一直线运动。” 如果有外力作用,质心的运动就好象一个质点一样,它的质量等于系统中所有物体的总质量,它所受的力即系统所受的所有外力的矢量和,这就是质心运动定理。而所谓的质心运动守恒定律事实上是这个定理的特殊情况。 动量矩守恒定律 由开普勒的第二定律(面积定律),实际上已经具有了动量矩守恒定律的意义。牛顿在《原理》中把它推广到有心力运动的一切场合,指出一个质点在指向一固定点的力作用下,其半径(由中心点出发)在相等的时间内扫过的面积相等。这个原理的普遍表述形式为:一个系统只在内力作用下运动时,各点对某中心的动量矩之和才为常数。1745年,D·伯努利和欧拉分别以不同的方式提出了这一原理。这个定律实际是动量矩定理的特殊情况。动量矩定理指出:系统总动量矩的时间变化率等于所受的作用力的力矩之和。 活力守恒定律 伽利略、惠更斯曾经分别指出,落体、斜面运动和钟摆的速度,其数值都与一定的高度相联系;在理想情况下,下落的物体依靠所得到的速度可以回到原来的高度但是不能再高了。 惠更斯在完全弹性碰撞的研究中得到了系统的“动能”守恒的结论。莱布尼茨把“动能”称为“活力”,认为宇宙中“活力守恒”。他还发现,力和路程的乘积与活力的变化成正比。但直到科里奥利用提出动能概念以后,莱布尼茨的发现才得到准确的表述:对物体所作的功等于动能的增加。 1738年,D.伯努利在他的《流体动力学》中,提出了实际的下降和位势的升高彼此等同的原理。他说,用“位势提高”来代替“活力”的说法对某些科学家“更容易接受”。他把这一思想应用于理想流体的运动,得出了著名的伯努利方程。 惠更新的发现和伯努利的思想,已经突破了“活力守恒”的范围而非常接近于后来所说的机械能守恒原理。D.伯努利引入了“势函数”这一概念,并认识到可以从势函数导出力。后来,“势函数”概念经过欧拉、拉格朗日等人的发展,应用到超出力学的范围之外。由于“势函数”是一个标量函数,用它可以描述出一个保守力场的分布状态,而不必用一个矢量

高中物理常见的各种能量及能量守恒定律

高中物理常见的各种能量及能量守恒定律 能量形式功能关系能量守恒 机械能动能:物体因为运动所具有能量。 ①2 2 1 mv E k =;②标量性——只有大小,没有 正负;瞬时性—动能是状态量;相对性——一 般选地面为参考系。 动能定理:力对物体所做的总功,等 于物体动能的增量。① k E W? = 总 ; ②a.要注意各功的正负;b.计算功和动 能要选择同一惯性参考系,如地面。 功能原理:除了重力(弹簧 弹力)之外其他的力所做的 功,等于系统机械能的增 量。① 机 外 E W G ? =; ②a.“除重力之外其他的力” 包括所有除重力之外的系 统内力和系统外力,如系统 内的摩擦力等; b.轻绳弹力、轻杆弹力、光 滑斜面弹力、静摩擦力只传 递机械能。 机械能守恒定律:除重力之外其他力 做功为零,则系统的机械能守恒。① 弹 重 动 弹 重 动 E E E E E E' + ' + ' = + + ②守恒条件一:0 = 外 G W,两种情形: a.只有重力做功,其他力不做功; b.除重力之外其他力做功,但其他力 做功的代数和为零。 ③守恒条件二:系统与外界没有能量 交换,系统内只涉及动能、重力势能、 弹性势能的相互转化。 只有重力做功,动能和重力势能之和保持不变:自由落体运 动,平抛斜抛物体的运动,光滑斜面、曲面上物体的运动, 竖直平面内的圆周运动,单摆运动,带电小球、液滴在重力 场、磁场的复合场中的运动(洛仑兹力不做功)等。 重力势能:物体由于被举高而具有的能量。 ①E p=mgh;②系统性——重力势能属于物体和地 球系统;相对性——数值与所选择的参考平面 (零势面)有关,正负表示大小。 势能定理:保守力所做的功,等于对 应势能的减少量。① p F E W? - =; ②a.重力做功与具体路径无关,而只 与初末位置的高度差有关;b.弹簧弹 力的功用F-x图像求解,或用对位移 的平均力求解; 弹簧问题:水平弹簧问题,竖直、光滑斜面弹簧问题——注 意弹簧的初态分析和整个过程中的重力势能变化,注意弹簧 问题与简谐运动综合的问题。 弹性势能:弹簧由于弹性形变而具有的能量。 ①2 2 1 kx E p =;②大小只与形变量绝对值有关。 连接体问题:轻绳连接,轻杆(板)连接,光滑斜面、曲面连 接——轻绳弹力、轻杆弹力、光滑斜面弹力只传递机械能。 内能分子动能:分子做热运动所具有的动能。 ①2 2 1 mv E k =;②温度是分子热运动平均动能 的标志——T E k ∝。 耗散力做功与内能:一对耗散力做功 的代数和的绝对值,等于系统内能的 增量。①耗散力:滑动摩擦力、空气 阻力、粘滞阻力等;②Q fs= 相对 , 其中s相对是物体间的相对运动路程; ③耗散力做功与物体间相对运动的具 体路径有关。 热力学第一定律:对物体所 做的功与物体吸收的热量 之和,等于物体内能的增 量。①W+Q=⊿U;②理想 气体:体积V↑,W>0;V↓, W<0;吸热,Q>0;放热, Q<0;温度T↑,U↑,⊿U>0; T↓,U↓,⊿U<0。 能量守恒定律:能量既不会凭空产生, 也不会凭空消失,它只能从一种形式 转化为其他的形式,或者从一个物体 转移到其他的物体,在转化或转移的 过程中能量的总量保持不变。 ① 3 2 1 3 2 1 E E E E E E' + ' +' = + + ②a.外界对系统不做功,或系统与外 界无能量交换,能量只在系统内各种 形式之间转化或只在系统内各个物体 间转移,即:0 = 外 W,0 = ?E; b.外界对系统做功,或系统与外界有 能量交换,则系统能量的增量,等于 外界对系统做的功或外界向系统输入 的能量,即:0 ≠ 外 W,E W? = 外 。 理想气体状态变化问题——内能的变化 粗糙水平面、斜面、曲面滑块模型,总路程问题,粗糙水平 面、斜面上的弹簧问题——内能、重力势能、弹性势能、动 能相互转化;传送带问题——内能、动能相互转化。 弹性碰撞——“速度交换”模型;非弹性碰撞——子弹打木 块模型;完全非弹性碰撞——绳子绷紧问题、“速度相等” 类型——滑块冲上平板车、小球冲上圆弧小车、弹簧压缩最 短拉伸最长、磁场导轨上一棒带动一棒等;爆炸模型等。分子势能:分子间的相互作用势能。①系统性: 分子势能属于物体内所有分子整体;②E p—r曲 线;③分子势能与物体的体积有关。 电能电势能:电荷之间的相互作用势能,或电荷在电 场中由相对位置所决定的势能。①E p=q?;②系 统性——电势能属于相互作用的系统;相对性 ——数值与所选择的参考点(零电势点)有关, 正负表示大小。 势能定理:电场力所做的功,等于电势能的减少量。 ① p AB AB E qU W? - = =;②a.电场力做功与具体路径无关,而只 与初末位置的电势差有关;b.电场力做功的正负与q和U AB的正负 都有关。 带电粒子在电场中加速、偏转——电势能、动能相互转化; 带电粒子在复合场中运动——电势能、重力势能、动能、内 能等的相互转化(洛仑兹力不做功)。 电能:电源给电路提供的能量,或电路中消耗的 能量。 电磁感应:安培力做负功,将机械能转化为电能: 电 E W F ? - =; 电流做功:电流做功,将电能转化为其它形式的能量(如机械能、 内能、化学能等): 电 E t R U Rt I UIt W? - = = = =) ( 2 2或EIt W=。 直流电路,感应电路——电源输出功率,各部分消耗功率。 交流电路,变压器、电能的输送——注意有效值、决定关系; 动态电路问题——电源输出功率、各部分消耗功率。 电动机带动传送带传送物体问题——电能、机械能和内能的 相互转化,以及连接体问题。 其他光子能量:ν h E=,其中υ为光波的频率。光电效应:W h mv- =ν 2 2 1 ,光子的发射与吸收: n m E E h- = ν。核能:核反应过程(衰变、裂变、聚变等)中释放出来的能量,2 mc E? = ?,其中m ?是体系反应前后静止质量的差值,释放出来的核能包括光子能量、生成粒子的动能等。LC回路:电场能(电容)和磁场能(电感)的相互转化。其他能:引力势能、光能、电磁辐射能、化学能等。 注意问题:①弹簧问题中要注意弹簧的初状态和重力势能;②连接体问题中要注意物体间的运动关联;③理想气体状态变化问题要判断“问题类型”——等温(⊿U=0)、等容(W=0)、等压、绝热(Q=0),然后综合W+Q=⊿U和PV=nRT分析讨论;④电路问题要注意分清纯电阻电路和非纯电阻电路,注意电功率、热功率公式的选择;⑤直流电路,感应电路,交流电路、电能输送问题必须画等效电路图、理清电路结构;⑥能量守 恒列方程时,建议使用 3 2 1 3 2 1 E E E E E E' + ' +' = + +的原始形式。

相关文档
最新文档