传感器的信号路径

传感器的信号路径
传感器的信号路径

传感器的信号路径

理解了一个模拟信号路径后,数字系统开发者就可以从各种应用中,更精确地捕捉传感器数据。要点即使同一家制造商的类似传感器也可能有不同的输出,而这些差异会给系统设计者带来麻烦。噪声来自于多种原因,包括电路板布局、射频、热元件,甚至传感器自身。要使用传感器滤波后的信号,必须用ADC,将模拟信号量化为数字信号。可以选择采用外接ADC,也可以采用内置ADC的微控制器。外接ADC有较高的精度,在速度与分辨率方面有更好的性能。传感器越来越多地应用于嵌入式系统中。虽然长期以来工业产品一直将其用于制造控制系统,但消费设备现在也开始采用传感器。制造商们正在消费产品中集成传感器,以创造出更好的用户体验,如在手机中增加加速度计,以及在微波炉中加入蒸汽传感器等。以前仅在数字域中工作的系统设计者现在发现,自己必须要与模拟传感器打交道了。

图1,一只传感器的模拟信号路径可以分为几级:放大、滤波和数字化。

传感器的模拟信号必须经过数字化才能供系统使用,并且信号要经过放大、滤波和数字化(图1)。每一级通常都涉及一只围绕着一些无源元件的器件,以正确地实现一个应用。一旦对信号做了数字化,就可以将其送给微处理器上的控制系统,或整理数据后通过一个通信协议送至一只主处理器。协议可以根据需要使用传感器数据。每个传感器有不同的输出信号和范围。输出的信号可以是电压、电流、电阻、电容或频率,但几乎不存在什么标准,只有专用的工业系统在使用它们。即使同一制造商的类似传感器也可以有不同的输出,而这些差异会给系统设计者带来一些麻烦。设计者选择传感器时必须满足系统的需求。然而,如果在设计期间这种需求出现变化,则传感器也要做出修改。另外,一款输出略有不同的新传感器必须对放大级和滤波级作出改动。大多数传感器都输出一个低电平的电流或电压信号,因此一个简单的电阻网络就能将任何电流信号变为一个电压。本文简单描述了一些概念和元件选择过程。幅度一只传感器的输出可以低至数毫伏,也可以高达数伏特。为做到正确的数字化,对ADC来说信号必须足够大,才能有效地读出。大多数情况下,传感器信号都需要放大。例如,一个典型的K型热电偶输出为41μV/°C,如果你的设计需要1°C 的粒度,就需要做相当的放大。因此,必须考虑到ADC的分辨率,以确保能将信号放大到能满足所需粒度。对放大器的选择主要取决于需要的类型,例如是仪表放大器、差分放大器、运算放大器,还是PGA(可编程增益放大器)。另外还必须确定放大器需要的增益大小。放大器周围的电阻网络(带反馈)决定了放大器的增益。理想情况下,标准放大器的最大增益是无限的。给器件的数字信号通常就设定了PGA的增益。这个信号改变了内部电阻网络。一只PGA的最大可能增益为传统放大器的千分之一至二分之一,但大多数情况下这个区间是可以接受的。对于放大器还必须考虑另外一个重要规格:偏移电压。偏移电压是一个信号通过放大器时改变的电压量。例如,如果将一个500 mV信号送给一个单位增益(即增益为1)的放大器,偏移电压为10 mV,则得到的输出就是510 mV。如果传感器的输出范围为0至900 mV,而系统不需要非常精密的传感器读数,那么这个偏移就可以忽略不计。如果传感器的范围为450 mV至550 mV,这个偏移可能就不可接受了。偏移电压越小,放大器就越贵。所有放大器都有偏移,但你需要知道系统是否能容忍它。可以用相关双采样方法来降低或消除偏移电压。滤波所有系统都会在传感器信号上叠加一些噪声。噪声来源有各个方面,包括电路板布局、射频、热元件,甚至传感器自身。信号噪声会使ADC的读数不精确和不稳定,噪声电平在放大器中会得到增强,因为放大器能放大信号中的误差。信号噪声可以分为低频、高频或某个已知频率。通常最需要解决的是高频噪声问题。

图2,传感器的信号路径中包括放大器、滤波器和ADC。滤波器的设计用于去除信号中的噪声,限制带宽。

用无源模拟滤波器、滤波器IC和数字滤波器都可以滤除噪声(图2)。最常见的方法是无源滤波,这要用电阻、电容和电感建立一个无源网络。不过,你必须设计无源的滤波器,并且无法简单地改变它们。滤波器设计的复杂度可能与你所需滤波器等级一样大;一个一阶Chebyshev滤波器的设计工作量要比一个八阶Bessel滤波器小得多。因此你应确定需要的滤波器阶数,然后再选择自己采用的滤波方法。某些IC允许你用数字编程方法,确定需要的滤波器类型。这些IC用内部的模拟电路建立滤波器,并可能有与之相关的偏移电压。它们也可以让你将滤波步骤移到ADC量化的后面。数字滤波器设计可以很复杂,但有很多能帮助做出高阶滤波器的简便设计。数字滤波是去除噪声的一个理想方式,但是,它通常需要很多CPU周期,增加了功耗。系统通常会引起高频噪声,因此需要采用低通滤波器。这种滤波器可衰减高于所设定截止频率的信号部分。有些传感器信号要求采用相互串联的多种类型滤波器。大多数传感器数据表中都指定了一个基本的接口电路,但并未提及所需要的滤波形式。系统设计者必须在彻底了解需要的滤波形式以后,再建立系统。数字转换为了使用传感器滤波后的信号,必须用一只ADC对模拟信号作量化,使之进入数字域。ADC的选择主要是考虑系统对采样速度和分辨率的要求。所需采样速度与传感器的带宽以及系统需要刷新的速度有关。分辨率的决定因素是需要ADC响应传感器信息的间隔时间。系统的使用模型决定了这个速度以及分辨率要求。例如,一个普通陀螺仪会以0.67mV/(°)测量360°的旋转,获得241mV的输出量程。为保持垂直,一个直升机爱好者需要以1°的粒度获得陀螺仪信息,但吞吐量只有10k采样/秒。这个需求就要用一个10bit ADC,提供0.35°/bit。不过要注意,信号上仍然有噪声,±1 bit是可接受的。反之,一款防抖数码相机可能需要0.02°的粒度,但吞吐量为5k采样/秒,从而在相机振动时调整图像传感器。这种要求可能需要采用16位ADC,提供0.005°/位。

图3,将INL误差 (a)、DNL误差 (b)、增益误差 (c)、偏移误差 (d) 以及总误差相结合,就能了解一个理想ADC (f) 与实用ADC。

制造商以INL(整体非线性)、DNL(差分非线性)、偏移误差、增益误差和SNR(信噪比)等指标来量度ADC的精度。当把这些术语联合起来时,就提供了对ADC总误差的一个了解(图3)。对于多数应用,没有必要细究这些ADC的规格,但工程师应充分理解这些值对所用ADC 的意义。你可以选择使用外接ADC,或一款内置ADC的微处理器。外接ADC有较高的精度,在速度和分辨率方面都有较高的性能。不过,大多数传感器的应用要求都能很好地适合于微控制器内置的ADC。另外一种选择是采用可配置ADC,它是微控制器中包含的可编程逻辑块。集成的数字与模拟可编程块可以为每种传感器应用动态地定义可配置外设。这些块包括计数器、PWM(脉冲宽度调制器)、UART、SPI(串行外设接口)、放大器、滤波器、ADC和DAC。开发者还可以在一只器件内实现放大与滤波级,从而集成整个模拟信号链(图4)。采用可配置ADC可以得到比无源元件方法更干净的设计。另外,可以动态地重新配置这些块,这些就可以选择将这些系统资源重新利用于其它功能。

图4,开发者可以在一只器件内实现放大级与滤波级,集成整个模拟信号链。

传感器在继续向很多市场渗透,为人们带来更多的控制与更大的灵活性。传感器通过对环境的管理例如温度监控提高了可靠性,通过反馈机制改进了性能,并实现了新型用户接口。对于很多这些设计来说,微控制器中集成的ADC提供了足够的粒度和精度。不熟悉模拟设计的开发人员可能会在传感器与微处理器之间的模拟信号链上遇到麻烦。多级模拟信号路径的实现似乎很复杂,尤其是对那些主要在数字域做设计的工程师们。不过,将模拟信号域分隔为多个放大、滤波和ADC级后,数字系统开发者就可以更容易和更精确地捕捉一系列工业与消费应用中的传感器数据。另外,不断涌现的IC、可配置ADC和滤波器设计工具等都可以大大简化传感器的设计。

热电偶温度传感器信号调理电路设计与仿真介绍

目录 第1章绪论 (1) 1.1 课题背景与意义 (1) 1.2 设计目的与要求 (1) 1.2.1 设计目的 (1) 1.2.2 设计要求 (1) 第2章设计原理与内容 (2) 2.1 热电偶的种类及工作原理 (3) 2.1.1热电偶的种类 (3) 2.1.2工作原理分析 (4) 2.2 设计内容 (4) 2.2.1 总体设计 (4) 2.2.2 原理图设计 (5) 2.2.3 可靠性和抗干扰设计 (7) 第3章器件选型与电路仿真 (8) 3.1 器件选型说明 (8) 3.2 电路仿真 (8) 第4章设计心得与体会 (9) 参考文献 (10) 附录1:电路原理图 (11) 附录2:PCB图 (11) 附录3:PCB效果图 (11)

第1章绪论 1.1 课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。 同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 1.2 设计目的与要求 1.2.1 设计目的 (1) 了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路); (2) 了解印刷电路板的设计和制作过程; (3) 掌握电子元器件选型的基本原理和方法; (4) 了解电路焊接的基本知识和掌握电路焊接的基本技巧; (5) 掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。 1.2.2 设计要求 选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求: (1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号; (2)对信号调理电路中采用的具体元器件应有器件选型依据; (3)电路的设计应当考虑可靠性和抗干扰设计内容; (4)电路的基本工作原理应有一定说明; (5)电路应当在相应的仿真软件上进行仿真以验证电路可行性

酒精浓度传感器信号调理电路设计与仿真报告

目录 第一章绪论 ............................................................................................................................................ - 1 -1.1 设计背景.................................................................................................................................................. - 1 -1.2 设计目的.................................................................................................................................................. - 1 -1.3 设计内容和要求(包括原始数据、技术参数、条件、设计要求等)................................................... - 1 -1.4 设计工作任务及工作量的要求................................................................................................................ - 2 -第二章酒精浓度传感器的设计.................................................................................................................... - 3 -2.1 传感器的概述 ........................................................................................................................................ - 3 -2.2 传感器的选择 .......................................................................................................................................... - 4 -2.2.1MQ-3酒精浓度传感器的特点 .. (4) 2.2.2MQ-3工作原理简介 (5) 2.3 可靠性与抗干扰设计............................................................................................................................... - 6 -第三章酒精传感器信号调理电路的设计..................................................................................................... - 7 - 3.1 设计思路综述 .......................................................................................................................................... - 7 -3.2 电压跟随器 .............................................................................................................................................. - 7 -3.3 减法器...................................................................................................................................................... - 8 -3.4 比例放大电路 .......................................................................................................................................... - 9 -3.5 器件选型表 .............................................................................................................................................. - 9 -3.6 设计心得体会 .........................................................................................................................................- 10 -第四章仿真与PCB设计..............................................................................................................................- 11 - 4.1 信号调理电路仿真..................................................................................................................................- 11 -4.2 PCB图 .....................................................................................................................................................- 11 -4.3 PROTUES图3D效果图 ...........................................................................................................................- 12 -参考文献 .........................................................................................................................................................- 13 -

压电传感器的信号调节

压电传感器的信号调节 作者:Eduardo Bartolome,德州仪器(TI) 医疗事业部系统工程师 压电传感器 用于感应和激励的压电传感器应用延伸到了许多领域。本文主要介绍对一些物理强度的感应,即加速度、振动、振荡和压力,从传感器及其要求信号调节的角度来看其可以被认为是类似的。1就加速度而言,传感器灵敏度通常被表示为一个与外力即加速度(大多数时候称作重力加速度g)成比例关系的电荷。然而,从严格物理意义上来讲,传感器输出一个实际由其变形/偏斜情况决定的电荷。 例如,图 1 显示了安装于顶部位置的一个传感器,与此同时底部正受到一个外力的拉拽,即F ext。在使用加速计的情况下,固定端(顶部)会粘附在要测量加速度的物体上,同时外力为粘附于另一端(底部)的质量的惯性,而这一端不断想要保持静止。就固定于顶端的参考坐标系而言(假设传感器充当的是一个弹簧,其具有很高的弹簧系数K),偏斜x 会形成一种反作用力: F int = Kx (1) 最终,质量(传感器偏斜)将会在下列情况下停止移动/改变: F int = F ext = Kx (2) 图 1 加速度力作用下的传感器 由于电荷Q 与偏斜成比例关系(一阶),而偏斜与力成比例关系,因此Q 与力也成比例关系。施加一个F max最大值的正弦力,会形成一个Q max 最大值的正

弦电荷。换句话说,当正弦力为最大值时,对来自传感器的电流求积分可得到Q max。增加正弦波的频率,同时会增加电流;但是会更快地达到峰值,即保持积分(Q max) 恒定。厂商会以传感器可用频率范围内Q max与F max的比率,来说明灵敏度规范。但是,由于传感器的机械性质,传感器实际上有谐振频率(可用频率范围以上),其中一个即使很小的振荡力都会产生相对较大的偏转,从而得到较大的输出振幅。 如果忽略谐振的影响,则我们可以将压电传感器一阶建模为一个与传感器寄生电容(此处称作C d)并联的电流源,或者也可以将其建模为一个与C d串联的电压源。该电压为存储电荷时在传感器阳极上看到的等效电压。但是,我们需要注意的是,就许多应用的仿真而言,第二种方法要更加简单一些。如前所述,电流与偏斜变化的速率成比例关系;例如,拿恒幅加速度的正弦AC 曲线来说,电流生成器的振幅必须根据频率来改变。 最后,如果这种生成器需要代表实际物理信号,则可以使用变压器,如图 2 所示。本例中,我们建模了一个具有0.5 pC/g 灵敏度和500 pF 寄生电容的生成器。正弦波生成器每单位g 输出1V,以实现仿真。变压器在其次级线圈将它向下调节至1mV。施加给C1(500 pF)的1-mV 摆动,将会如我们预计的那样在下一级注入Q = VC = 0.5 pC。 图 2 压电传感器模型 电荷放大器分析 图 3 显示了经典电荷放大器的基本原理,其可以用作一个信号调节电路。这种情况下,我们选择电流源模型,表明传感器主要为一种带高输出阻抗的器件。 输入阻抗 信号调节电路必须具有非低的输入阻抗,以收集传感器的大部分电荷输出。因此,电荷放大器是理想的解决方案,因为只要放大器在这些信号频率下保持高增益,其输入便会让传感器信号出现虚拟接地。换句话说,如果传感器的任何电荷想要在传感器阳极(C d) 或者放大器输入寄生电容(C a) 上增大,在放大器输入端就

传感器信号调理电路

传感器信号调理电路 传感器信号调理电路 信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。然后,设计人员必须选择ADC。ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。 传感器 传感器根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。传感器可进一步分类为有源或无源。有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标: ·源阻抗 ——高的源阻抗大于100KΩ ——低的源阻抗小于100Ω ·输出信号电平 ——高信号电平大于500mV满标 ——低信号电平大于100mV满标 ·动态范围 在传感器的激励范围产生一个可测量的输出信号。它取决于所用传感器类型。 放大器功用 放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。放大器有两个关键职责。一个是根据传感器特性为传感器提供合适的接口。另一个职责是根据所呈现的负载接口ADC。关键因素包括放大器和ADC之间的连接距离,电容负载效应和ADC的输入阻抗。 选择放大器与传感器正确接口时,设计人员必须使放大器与传感器特性匹配。可靠的放大器特性对于传感器——放大器组合的工作是关键性的。例如,PH电极是一个高阻抗传感器,所以,放大器的输入偏置电流是优先考虑的。PH传感器所提供的信号不允许产生任何相当大的电流,所以,放大器必须是在工作时不需要高输入偏置电流的型号。具有低输入偏置电流的高阻抗MOS输入放大器是符合这种要求的最好选择。另外,对于应用增益带宽乘积(GBP)是低优先考虑,这是因为传感器工作在低频,而放大器的频率响应不应该妨碍传感器信号波形的真正再生。

第二章PSD传感器与信号处理电路

a 第二章 PSD 传感器与信号处理电路 为了将电机轴的位置信号转换为相应的电信号,本文的传感器使用光电位置敏感器件PSD (Position Sensitive Detector )。 本章介绍PSD 及其信号处理电路的工作原理及选型。 2.1 PSD 传感器的工作原理及选型 传感器是一种以一定的精确度将被测量(如位置、力、加速度等)转换成与之有确定对应关系的、易于精确处理和测量的某种物理量(如电量)的测量部件或装置。 传感器在检测系统中是一个非常重要的环节,其性能直接影响到整个系统的测量精度和灵敏度。如果传感器的误差很大,后面的测量电路、放大器等的精度再高也将难以提高整个系统的精度。所以在系统设计时慎重选择传感器是十分必要的。 光电位置敏感器件PSD (Position Sensitive Detector )是一种对其感光面上入射光斑重心位置敏感的光电器件。即当入射光斑落在器件感光面的不同位置时,PSD 将对应输出不同的电信号。通过对此输出电信号的处理,即可确定入射光斑在PSD 的位置。入射光的强度和尺寸大小对PSD 的位置输出信号均无关。PSD 的位置输出只与入射光的“重心”位置有关。 PSD 可分为一维PSD 和二维PSD 。一维PSD 可以测定光点的一维位置坐标,二维PSD 可测光点的平面位置坐标。由于PSD 是分割型元件,对光斑的形状无严格的要求,光敏面上无象限分隔线,所以对光斑位置可进行连续测量从而获得连续的坐标信号。 实用的一维PSD 为PIN 三层结构,其截面如图2.1.1所示。表面P 层为感光面,两边各有一信号输出电极。底层的公共电极是用来加反偏电压的。当入射光点照射到PSD 光敏面上某一点时,假设产生的总的光生电流为I 0。由于在入射光点到信号电极间存在横向电势,若在两个信号电极上接上负载电阻,光电流将分别流向两个信号电极,从而从信号电极上分别得到光电流I 1和I 2。显然,I 1和I 2之和等于光生电流I 0,而I 1和I 2的分流关系取决于入射光点位置到两个信号电极间的等效电阻R 1和R 2。如果PSD 表面层的电阻是均匀的,则PSD 的等效电路为图2.1.1〔b 〕所示的电路。由于R sh 很大,而C j 很小,故等效电路可简化成图2.1.1 (c) 的形式,其中R 1和R 2的值取决于入射光点的位置。 假设负载电阻R L 阻值相对于R 1和R 2可以忽略,则有: (2.1.1)I I R R L x L x 1221==-+式中,L 为PSD 中点到信号电极的距离,x 为入射光点距PSD 中点的距离。式(2.1.1)表明,两个信号电极的输出光电流之比为入射光点到该电极间距离之比的倒数。将I 0= I 1+I 2与式(2.1.1)联立得:

ABS轮速传感器及其信号处理

ABS轮速传感器及其信号处理 车轮防抱死制动系统简称ABS 是基于汽车轮胎与路面之间的附着特性而开发的高技术制动系统。ABS由信号传感器、逻辑控制器和执行调节器组成。其控制目标是:当汽车在应急制动时,使车轮能够获得最佳制动效率,同时又能实现车轮不被抱死、侧滑,使汽车在整个制动过程中保持良好的行驶稳 定性和方向可操作性。 在ABS系统中,几乎都离不开对车轮转动角速度的测定,因为只要有了车轮转动角速度,其它参数(如车轮转动角和加速度)均可通过计算机计算获得。ABS的工作原理就是在汽车制动过程中不断检测车轮速度的变化,按一定的控制方法,通过电磁阀调节轮缸制动压力,以获得最高的纵向附着系数和较高的侧向附着系数,使车轮始终处于较好的制动状态。因此精确检测车轮速度是ABS系统正常工作的先决条件。 1 ABS轮速传感器及特性分析 通常,用来检测车轮转速信号的传感器有磁电式、电涡流式和霍尔元件式。由于磁电式轮速传感器工作可靠,几乎不受温度、灰尘等环境因素影响,所以在ABS系统中得到 广泛应用。 1.1 磁电式轮速传感器的工作原理 磁电式传感器的基本原理是电磁感应原理。根据电磁感应定律,当N匝线圈在均恒 磁场内运动时,设穿过线圈的磁通为φ,则线圈内的感应电势ε与磁通变化率有 如下关系: 若线圈在恒定磁场中作直线运动并切割磁力线时,则线圈两端的感应电势ε为:

式中,N为线圈匝数;B为磁感应强度;L为每匝线圈的平均长度:为线圈相对磁场运动的速度;θ为线圈运动方向与磁场方向的夹角。

若线圈相对磁场作旋转运动并切割磁力线时,则线圈两端的感应电势ε为: 式中,ω为旋转运动的相对角速度;A为每匝线圈的截面积;φ为线圈平面的法线 方向与磁场方向间的夹角。 根据上述基本原理,磁电传感器可以分为两种类型:变磁通式(变磁阻式)和恒定磁通式。由于变磁通式磁电传感器结构简单、牢固、工作可靠、价格便宜,被广泛用于车辆上作为检测车轮转速的轮速传感器。图1为变磁通式磁电传感器的结构原理。其中传感器线圈、磁铁和外壳均固定不动,齿轮安装在被测的旋转体上。 当齿轮与被测的车轮轴一起转动时,齿轮与铁芯之间的气隙随之变化,从而导致气隙磁阻和穿过气隙的主磁通发生变化。结果在感应线圈中感应出交变的电动势,其频率等 于齿轮的齿数Z和车轮轴转速n的乘积,即: f=Zh (4) 感应电动势的幅值与车轮轴的转速和气隙有关,当气隙一定时,转速越大,其幅值越大;当转速一定时,气隙越小,其幅值越大。 1.2 轮速传感器特性试验研究 目前,测量车轮转动速度的一般方法是将变磁阻式磁电传感器安装在车轮总成的非旋转部分上,与随车轮一起转动的由导磁材料制成的齿圈相对。当齿圈随车轮一起转动时,由于齿圈与传感器之间气隙的的交替变化,导致两者间磁阻的变化,从而在传感器内的线 圈上感生出交变的电压信号。

信号调理电路的原理、功能

什么是信号调理?信号调理电路的原理,信号调理模块的功能 [导读] 信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。 信号调理电路原理 信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。 模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。 调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。 信号调理电路技术

1.放大 放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度和灵敏度。此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。 2.衰减 衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时是十分必要的。这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。衰减对于测量高电压是十分必要的。 3.隔离 隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。 4.多路复用 通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。多路复用对于任何高通道数的应用是十分必要的。 5.过滤

(完整版)第二章PSD传感器与信号处理电路

第二章 PSD传感器与信号处理电路 为了将电机轴的位置信号转换为相应的电信号,本文的传感器使用光电位置敏感器件PSD(Position Sensitive Detector)。 本章介绍PSD及其信号处理电路的工作原理及选型。 2.1 PSD传感器的工作原理及选型 传感器是一种以一定的精确度将被测量(如位置、力、加速度等)转换成与之有确定对应关系的、易于精确处理和测量的某种物理量(如电量)的测量部件或装置。 传感器在检测系统中是一个非常重要的环节,其性能直接影响到整个系统的测量精度和灵敏度。如果传感器的误差很大,后面的测量电路、放大器等的精度再高也将难以提高整个系统的精度。所以在系统设计时慎重选择传感器是十分必要的。 光电位置敏感器件PSD(Position Sensitive Detector)是一种对其感光面上入射光斑重心位置敏感的光电器件。即当入射光斑落在器件感光面的不同位置时,PSD将对应输出不同的电信号。通过对此输出电信号的处理,即可确定入射光斑在PSD的位置。入射光的强度和尺寸大小对PSD的位置输出信号均无关。PSD的位置输出只与入射光的“重心”位置有关。 PSD可分为一维PSD和二维PSD。一维PSD可以测定光点的一维位置坐标,二维PSD可测光点的平面位置坐标。由于PSD是分割型元件,对光斑的形状无严格的要求,光敏面上无象限分隔线,所以对光斑位置可进行连续测量从而获得连续的坐标信号。 实用的一维PSD为PIN三层结构,其截面如图2.1.1所示。表面P层为感光面,两边各有一信号输出电极。底层的公共电极是用来加反偏电压的。当入射光点照射到PSD光敏面上某一点时,假设产生的总的光生电流为I0。由于在入射光点到信号电极间存在横向电势,若在两个信号电极上接上负载电阻,光电流将分别流向两个信号电极,从而从信号电极上分别得到光电流I1和I2。显然,I1和I2之和等于光生电流I0,而I1和I2的分流关系取决于入射光点位置到两个信号电极间的等效电阻R1和R2。如果PSD表面层的电阻是均匀的,则PSD的等效电路为图2.1.1〔b〕所示的电路。由于R sh很大,而C j很小,故等效电路可简化成图2.1.1 (c) 的形式,其中R1和R2的值取决于入射光点的位置。 假设负载电阻R L阻值相对于R1和R2可以忽略,则有: I I R R L x L x 1 2 2 1 == - + (2.1.1) 式中,L为PSD中点到信号电极的距离,x为入射光点距PSD中点的距离。式(2.1.1)表明,两个信号电极的输出光电流之比为入射光点到该电极间距离之比的倒数。将I0= I1+I2与式(2.1.1)联立得:

传感器脉冲信号处理电路设计

传感器脉冲信号处理电路设计 摘要 介绍了一种基于单片机平台,采用霍尔传感器实施电机转速测量的方法,硬件系统包括脉冲信号产生,脉冲信号处理和显示模块,重点分析,脉冲信号处理电路,采用c 语言编程,通过实验检测电路信号。 关键词:霍尔传感器;转速测量;单片机

目录 1 绪论 (1) 1.1 课题描述 (1) 1.2 基本工作原理及框图 (1) 2 相关芯片及硬件电路设计 (1) 2.1系统的主控电路 (1) 2.2 STC89C52单片机介绍 (2) 2.2.1 STC89C52芯片管脚介绍 (3) 2.2.2 时钟电路 (4) 2.3 单片机复位电路 (5) 2.4 霍尔传感器电机采样电路 (5) 2.4.1 A3144霍尔开关的工作原理及应用说明 (6) 2.4.2 霍尔传感器测量原理 (7) 2.5 电机驱动电路 (8) 2.6 显示电路 (8) 3 软件系统设计 (9) 3.1 软件流程图 (9) 3.2 系统初始化 (10) 3.3 定时获取脉冲数据 (11) 3.4 数据处理及显示 (12) 3.5 C语言程序 (13) 总结 (16) 致谢 (17) 参考文献 (18)

1 绪论 1.1 课题描述 在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。本课题,是要利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 1.2 基本工作原理及框图 本课程设计的电机采用直流电机,然后利用霍尔传感A3144对电机的转速进行采样从而输出脉冲信号。主控芯片采用STC89C52单片机,对脉冲个数进行计数并经过数据处理以后得到单位时间内电机转过的转数机电机的转速,再通过显示电路将电机转速显示出来。基本工作原理框图如图1所示。 图1基本工作原理框图 2 相关芯片及硬件电路设计 2.1系统的主控电路 图2是该系统的主控单元的电路图。J2、J3、J4、J5是单片机的I/O端口的扩展,预留接口用于调试等。主控芯片采用STC89C52单片机,该系统中采用定时器0作为定时器,定时器的时间为1S。定时器1作为计数器,对P35引脚采集到的脉冲信号进行计数操作,单片机然后对数据进行处理,计算出1S内计数脉冲的个数,即电机转速。然后通过显示电路将电机转速显示出来,从而实现整个系统的功能。

如何设计液位传感器的信号调理电路

如何设计液位传感器的信号调理电路 来源:大比特商务网 摘要:在变送器的开发应用中,常常会遇到所需的变送器的输出与已有的变送器的输出不同,或用户已有的变送器的输出不能满足新的需求,这就需要改变变送器原来的输出。为了满足多种客户的需求,就需有多种输出的变送器。例如:作为二型表,标准输出多为0~10mA,或0~10V,而目前应用的三型表,却是4~20mA或1~5V的,它们之间如何变换,是我们必须解决的问题。 关键字:传感器,电阻,线性化电路 在变送器的开发应用中,常常会遇到所需的变送器的输出与已有的变送器的输出不同,或用户已有的变送器的输出不能满足新的需求,这就需要改变变送器原来的输出。为了满足多种客户的需求,就需有多种输出的变送器。例如:作为二型表,标准输出多为0~10mA,或0~10V,而目前应用的三型表,却是4~20mA或1~5V的,它们之间如何变换,是我们必须解决的问题。 1变送器信号调理电路的设计 1.1温度漂移的处理 ---传感器的温度漂移可分为零点温度漂移和灵敏度温度漂移。零点温漂即传感器不受压时的输出由温度变化引起的漂移,在传感器的应用中,经常用恒流供电,零点及其温漂的补偿方法可用电阻串并联法,采用图1所示的电路可有效的解决零点温漂问题。 ---恒流供电桥路的传感器,其灵敏度温度补偿通常采用的电路如图2所示。其中R的网路中Rt为温度系数与灵敏度温漂同向的热敏电阻,Rs、Rp、Rz为温度系数可忽略的电阻,用来调整Rt的温度系数。经上述零点和灵敏度的温度补偿的传感器的输出信号即可视为在一定的温度范围内与温度变化无关。 1.2放大及非线性的处理

---任何力敏传感器的非线性都有大小、正负之分,信号的处理和传输时要进行线性化处理,使最后得到的信号与液位成线性关系。线性化电路就是根据非线性的大小和正负来设计的,线性化可以在信号处理的不同阶段来进行,有的在模拟信号阶段进行,有的在数字信号阶段进行。 ---在图3的电路中,12脚与6脚连接后调整电阻R8,可以调节正非线性;12脚与1脚连接后调整电阻R8,可以调节负非线性。 ---对于一般应用要求的精度(±0.5%FS0),在适当的量程范围内,使用简单的正负反馈的修正就足够了;小量程的传感器应用到大量程中,非线性会增大,有时用简单的正负反馈修正进行线性化比较困难,最好使用数字线性化方法,也可以采用多点修正方法。 ---对于输出信号很小,甚至只有几mV的传感器在制作4~20mA液位变送器时,可以使用性能优良的仪表放大器,如INA118,对温度补偿、线性化、放大以及输出全面考虑,设计出满足需求的液位变送器电路。

传感器和信号调理

传感器与信号调理模拟题1 1 为了测量某一电阻器两端的压降,我们考虑两种可供选择的方法:利用精确度为0.1%读数的电压表;利用精确度为0.1%读数的电流表。若电阻器的公差为0.1%,试问哪一种方法更精确? 1答: dV=RdI+IdR 对于微小变化,可用增量近似代表微分,△V/V=△I/I+△R/R9 利用精确度为0.1%读数的电压表,不确定性为0.1% 利用精确度为0.1%读数的电流表,不确定性为电流测量的不确定性与电阻本身的不确定性的迭加,为0.2% 2 (1) 一个K=2.1的350欧姆应变片被粘贴到铝支柱(E=73GPa )上。支柱的外径为50mm ,内径为47.5mm 。试计算当支柱承受1000Kg 负荷时电阻的变化。 (2)阐述在单端固支悬臂梁上采用单应变片、双应变片、4应变片的贴法。 2答: (1)△R=RK ε=RKF/AE,代入给定数据,结果为0.52欧姆 (2)在单端固支悬臂梁上粘贴单应变片时,可在梁的合适位置的上表面或下表面粘贴;在单端固支悬臂梁上粘贴双应变片时,可在梁的合适位置的上表面与下表面对称粘贴,形成差动半桥;在单端固支悬臂梁上粘贴四应变片时,可在梁的两个合适位置的上表面和下表面对称粘贴,形成差动全桥; 3 第3题图变极距型电容传感器示意图,试推导其输出特性。采用差动技术带来了哪些优势? 第3题图 变极距型电容传感器示意图 3答:单一式 初始时 00/d s c ε= 动极板上移d ? 000 001)1(d d c d d d s d d s c ?- = ?- = ?-= εε 差动式 )1/(01ds d c c ?- =

) 1/( 2d d c c ? + = r d d d c c c c ε/ 2 1 1 2 1 2 1 + ? = + - 采用差动技术,提高灵敏度、降低非线性、提高抗共模干扰的能力。 4第4题图是变气隙型自感传感器示意图,推倒其传感特性表达式 第4题图变气隙型自感传感器示意图 4答:自感表达式I N L φ = 其中m R NI = φ δ R R R F m + = F F F F A l R μ = A R 2 μ δ δ = 因为0 μ μ>> F 所以δ R R F << ,δ R R m ≈ 所以传感器电感 δ μ δ 2 2 2 2A N R N R N L m = ≈ = 当铁心向下位移△δ时,传感器电感为 2 2 1 ) 1( 2 ) (2 δ δ δ δ δ μ δ δ μ ? + = ? + = ? + = L A N A N L 5下图分别是压电传感器与电荷放大器连接的示意图和压电传感器与电压放大器连接的示意图,分别推导其输出电压与传感器受力之间的关系式;如果测量准静态量,应选用哪种接口电路形式?

传感器信号调理

信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理(见图1)。此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。然后,设计人员必须选择ADC。ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。 传感器 根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。传感器可进一步分类为有源或无源。有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标: ·源阻抗 ——高的源阻抗大于100KΩ ——低的源阻抗小于100Ω ·输出信号电平 ——高信号电平大于500mV满标 ——低信号电平大于100mV满标 ·动态范围 在传感器的激励范围产生一个可测量的输出信号。它取决于所用传感器类型。 放大器功用 放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。放大器有两个关键职责。一个是根据传感器特性为传感器提供合适的接口。另一个职责是根据所呈现的负载接口ADC。

电涡流位移传感器信号调理与位移显示电路的设计[设计+开题+综述]

开题报告 机械设计制造及其自动化 电涡流位移传感器信号调理与位移显示电路的设计 一、选题的背景与意义 在基础学科研究和现代工业生产中,传感器具有不可或缺的作用。传感器是将被测量(通常为非电量)转换成电信号的信号转换元件,然而由于传感器的电气特性,其所产生的电信号必须进行调理才能被数据采集设备精确、可靠地采集。 电涡流位移传感器是一种据电涡流效应制成的常用物理传感器,其输出振荡电压随被测体(必须是金属导体)与探头之间的距离变化而变化,因此能测量被测体发生的静态和动态的相对位移变化。 目前国内研制的多数电涡流位移传感器测量物体位移变化时输出都是电压信号的绝对值,由于被测体位移相对变化很小,而传感器输出的电压信号初始值太大,以致变化量很小,所以不能很好地反映被测体位移的变化。本课题即是对电涡流位移传感器进行信号调理,通过减法放大电路使传感器输出电压减去初始值后再进行放大,从而保证被放大的电压只对应位移变化部分,且从零点开始。然后基于单片机设计传感器的工作电源和输出位移的显示电路,使输入输出信号都能清楚、直观地显示。这些新的设计将推动现有电涡流传感器测量技术的发展。 二、研究的基本内容与拟解决的主要问题: 研究的基本内容: 设计并调试高精度运算放大器OP07、AT89S52单片机的工作电源电路,再基于高精度运算放大器OP07,设计并调试电涡流位移传感器的信号调理电路,最后基于AT89S52单片机,编程设计并调试电涡流位移传感器的工作电源电压与输出位移的显示电路。 拟解决的主要问题: 1、设计并调试高精度运算放大器OP07、AT89S52单片机的工作电源电路,包括变压、整流、滤波、稳压电路; 2、基于高精度运算放大器OP07设计并调试电涡流位移传感器的信号调理电路,包括减法放大、滤波电路;

酒精浓度传感器信号调理电路设计与仿真报告

. 目录 第一章绪论...................................................................... - 1 -1.1 设计背景........................................................................ - 1 -1.2 设计目的........................................................................ - 1 -1.3 设计内容和要求(包括原始数据、技术参数、条件、设计要求等) ....................... - 1 -1.4 设计工作任务及工作量的要求....................................................... - 2 -第二章酒精浓度传感器的设计......................................................... - 3 -2.1 传感器的概述 ................................................................... - 3 -2.2 传感器的选择.................................................................... - 4 - 2.2.1MQ-3酒精浓度传感器的特点 (4) 2.2.2MQ-3工作原理简介 (5) 2.3 可靠性与抗干扰设计 .............................................................. - 6 -第三章酒精传感器信号调理电路的设计 ................................................. - 7 - 3.1 设计思路综述.................................................................... - 7 -3.2 电压跟随器...................................................................... - 7 -3.3 减法器.......................................................................... - 8 -3.4 比例放大电路.................................................................... - 9 -3.5 器件选型表...................................................................... - 9 -3.6 设计心得体会................................................................... - 10 -第四章仿真与PCB设计.............................................................. - 11 - 4.1 信号调理电路仿真 ............................................................... - 11 -4.2 PCB图.......................................................................... - 11 -4.3 PROTUES图3D效果图............................................................. - 12 -参考文献............................................................................ - 13 -

电涡流位移传感器信号调理与位移显示电路的设计【开题报告】

毕业论文开题报告 机械设计制造及其自动化 电涡流位移传感器信号调理与位移显示电路的设计 一、选题的背景与意义 在基础学科研究和现代工业生产中,传感器具有不可或缺的作用。传感器是将被测量(通常为非电量)转换成电信号的信号转换元件,然而由于传感器的电气特性,其所产生的电信号必须进行调理才能被数据采集设备精确、可靠地采集。 电涡流位移传感器是一种据电涡流效应制成的常用物理传感器,其输出振荡电压随被测体(必须是金属导体)与探头之间的距离变化而变化,因此能测量被测体发生的静态和动态的相对位移变化。 目前国内研制的多数电涡流位移传感器测量物体位移变化时输出都是电压信号的绝对值,由于被测体位移相对变化很小,而传感器输出的电压信号初始值太大,以致变化量很小,所以不能很好地反映被测体位移的变化。本课题即是对电涡流位移传感器进行信号调理,通过减法放大电路使传感器输出电压减去初始值后再进行放大,从而保证被放大的电压只对应位移变化部分,且从零点开始。然后基于单片机设计传感器的工作电源和输出位移的显示电路,使输入输出信号都能清楚、直观地显示。这些新的设计将推动现有电涡流传感器测量技术的发展。 二、研究的基本内容与拟解决的主要问题: 研究的基本内容: 设计并调试高精度运算放大器OP07、AT89S52单片机的工作电源电路,再基于高精度运算放大器OP07,设计并调试电涡流位移传感器的信号调理电路,最后基于AT89S52单片机,编程设计并调试电涡流位移传感器的工作电源电压与输出位移的显示电路。拟解决的主要问题: 1、设计并调试高精度运算放大器OP07、AT89S52单片机的工作电源电路,包括变压、整流、滤波、稳压电路; 2、基于高精度运算放大器OP07设计并调试电涡流位移传感器的信号调理电路,包括减法放大、滤波电路; 3、基于AT89S52单片机设计位移显示电路,将传感器检测到的被测体位移变化最终以数字形式直观地显示在七段LED显示器上。

相关文档
最新文档