完全二叉树相关性质的补充证明

完全二叉树相关性质的补充证明
完全二叉树相关性质的补充证明

二叉树习题及答案

1.设一棵完全二叉树共有699 个结点,则在该二叉树中的叶子结点数? 1根据二叉树的第i层至多有2A(i - 1)个结点;深度为k的二叉树至多有2A k - 1 个结点(根结点的深度为1)”这个性质: 因为2A9-1 < 699 < 2A10-1 , 所以这个完全二叉树的深度是10,前9 层是一个满二叉树, 这样的话,前九层的结点就有2A9-1=511 个;而第九层的结点数是2A(9-1)=256 所以第十层的叶子结点数是699-511=188 个;现在来算第九层的叶子结点个数。由于第十层的叶子结点是从第九层延伸的,所以应该去掉第九层中还有子树的结点。因为第十层有188 个,所以应该去掉第九层中的188/2=94 个;所以,第九层的叶子结点个数是256-94=162,加上第十层有188 个,最后结果是350 个 2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点 (叶结点) 都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。 比如图:完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699 是奇数,叶结点层以上的所有结点数为保证是奇数,则叶结点数必是偶数,这样我们可以立即选出答案为B!如果完全二叉树的叶结点都排满了,则是满二叉树,易得满二叉树的叶结点数是其以上所有层结点数+1 比如图: 此题的其实是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。 3完全二叉树中,只存在度为2 的结点和度为0 的结点,而二叉树的性质中有一条是: nO=n2+1 ; nO指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349 ; n0=350 2.在一棵二叉树上第 5 层的结点数最多是多少一棵二叉树,如果每个结点都是是满的,那么会满足2A(k-1)1 。所以第5 层至多有2A(5-1)=16 个结点! 3.在深度为5 的满二叉树中,叶子结点的个数为答案是16 ~ 叶子结点就是没有后件的结点~ 说白了~ 就是二叉树的最后一层~ 深度为K 的二叉树~ 最多有2Ak-1 个结点~ 最多有2A(k-1) 个结点~ 所以此题~ 最多有2A5-1=31 个结点~ 最多有2A(5-1)=16 个叶子结点~ 4.某二叉树中度为2 的结点有18 个,则该二叉树中有几个叶子结点?结点的度是指树中每个结点具有的子树个数或者说是后继结点数。 题中的度为2 是说具有的2 个子树的结点;二叉树有个性质:二叉树上叶子结点数等于度为2 的结点数加1。 5.在深度为7 的满二叉树中,度为2 的结点个数为多少,就是第一层只有一个节点,他有两个子节点,第二层有两个节点,他们也都有两个子节点以此类推,所以到第6 层,就有2的5次方个节点,他们都有两个子节点最后第7 层都没有子节点了。因为是深度为7 的。 所以就是1+2+4+8+16+32 了 2深度为1的时候有0个 深度为2的时候有1个 深度为3的时候有3个 深度为4的时候有7个 深度为n的时候有(2的n-1次方减1 )个 6?—棵二叉树中共有70个叶子结点与80个度为1的结点,则该二叉树中的总结点数为?

二叉树的4个普遍性质和2个特殊性质的完善推导过程

二叉树的5个性质 1、在二叉树的第k 层上,最多有2k-1(k ≥1)个结点 证明:在二叉树的第i 层上最多有2 i-1 个节点 1层 1个 20 2层 2个 21 3层 4个 22 ..... i 层 2 i-1个 2、二叉树中如果深度为k,那么最多有2k -1个节点 证明:在具有相同深度的二叉树中,仅当每一层都含有最大结点数时,其树中结点数最多。因此利用性质1可得,深度为k 的二叉树的结点数至多为: 20+21+…+2k-1=2k -1 故命题正确。 3、在任意一棵二叉树中,若终端结点的个数为n 0,度为2的结点数为n 2,则n o =n 2+1。 . 证明:n 0=n 2+1 n 0表示度数为0的节点 n 2表示度数为2的节点 推导过程 根据两个公式 1). n=n 0+n 1+n 2 n 表示二叉树中的节点总个数,n 1表示度数为1的节点个数 2). n-1=2n 2+n 1 通过观察二叉树我们可知,除了根节点之外,其余的任何节点都有一个入口分支(或其他节点都有一个入口分支),那么节点的总分支数等于节点个数减一,度数为2的节点有2个出口分支,度数为一的有1个出口分支,度数为0的节点没有出口分支 所以总的分支个数为 2n 2+n 1,因此有n=2n 2+n 1+1, 3).比较n=n 0+n 1+n 2和n=2n 2+n 1+1两式,可得n 0=n 2+1。 5.在完全二叉树中,具有n 个节点的完全二叉树的深度为[log2n]+1,其中[log2n]+1是向下取整。 证明: 根据性质 2: 假设深度为k 的满二叉树的节点个数一定为2k -1,那么n=2k -1推得满二叉树的深度数为k=log 2(n+1);——深度为m 的二叉树最多有2k -1个节点,即是满二叉树的情形。 设完全二叉树是具有n 个节点的二叉树,若按层序编号那么其编号与同样深度的满二叉() 11122111n m m n a q S q --===---() 11111220n k k n a a q k ---==?=≥

全国计算机等级考试二级公共基础之树与二叉树1

全国计算机等级考试二级公共基础之树与二叉树 1.6 树与二叉树 1.6.1 树的基本概念 树是一种简单的非线性结构。在树这种结构中,所有元素之间的关系具有明显的层次关系。用图形表示树这种数据结构时,就象自然界中的倒长的树,这种结构就用“树”来命名。如图: 在树结构中,每个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称为树的根(如R)。 在树结构中,每一个结点可以有多个后件,它们都称为该结点的子结点。没有后件的结点称为叶子结点(如W,Z,A ,L,B,N,O,T,H,X)。 在树结构中,一个结点拥有的后件个数称为结点的度(如R的度为4,KPQDEC 结点度均为2)。 树的结点是层次结构,一般按如下原则分层:根结点在第1层;同一个层所有结点的所有子结点都在下一层。树的最大层次称为树的深度。如上图中的树深度为4。R结点有4棵子树,KPQDEC结占各有两棵子树;叶子没有子树。 在计算机中,可以用树结构表示算术运算。在算术运算中,一个运算符可以有若干个运算对象。如取正(+)与取负(-)运算符只有一个运算对象,称为单目运算符;加(+)、减(-)、乘(*)、除(/)、乘幂(**)有两个运算对象,称为双目运算符;三元函数f(x,y,z)为 f函数运算符,有三个运算对象,称为三目运算符。多元函数有多个运算对象称多目运算符。 用树表示算术表达式原则是: (1)表达式中的每一个运算符在树中对应一个结点,称为运算符结点

(2)运算符的每一个运算对象在树中为该运算结点的子树(在树中的顺序从 左到右) (3)运算对象中的单变量均为叶子结点 根据上面原则,可将表达式:a*(b+c/d)+c*h-g*f表示如下的树。 树在计算机中通常用多重链表表示,多重链表的每个结点描述了树中对应结点的信息,每个结点中的链域(指针域)个数随树中该结点的度而定。 1.6.2 二叉树及其基本性质 1. 什么是二叉树 二叉树是很有用的非线性结构。它与树结构很相似,树结构的所有术语都可用到二叉树这种结构上。 二叉树具有以下两个特点: (1)非空两叉树只有一个根结点 (2)每个结点最多有两棵子树,且分别称该结点的左子树与右子树。 也就是说,在二叉树中,每一个结点的度最大为2,而且所有子树也均为二叉树。二叉树中的每一个结点可以有左子树没有右子树,也可以有右子树没有左子树,甚至左右子树都没有。

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

习题8(二叉树的定义和性质)

习题8(二叉树的定义和性质) 一、选择题 1、除个别结点外,其余结点只能有1个前驱结点,可有任意多个后继结点,这样的结构为( B )。 A)线性结构 B)树形结构 C)图形结构 D)拓扑结构 2、在下述结论中,正确的是( D )。 ①只有一个结点的二叉树的度为0 ②二叉树的度为2 ③二叉树的左右子树可任意交换 ④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树 A)①②③ B)②③④ C)②④ D)①④ 3、下列有关树的概念错误的是( B )。 A)一颗树中只有一个无前驱的结点 B)一颗树的度为树中各个结点的度数之和 C)一颗树中,每个结点的度数之和等于结点的总数减1 D)一颗树中每个结点的度数之和与边的条数相等4、对任一颗树,设它有n个结点,这n个结点的度数之和为d,下列关系式正确的是( D )。 A)d=n B)d=n-2 C)d=n+1 D)d=n-1 5、下列说法中正确的是( D )。 A)二叉树中任何一个结点的度都为2 B)二叉树的度为2 C)任何一棵二叉树中至少有一个结点的度为2 D)一棵二叉树的度可以小于2 6、以二叉链表作为二叉树的存储结构,在具有n个结点的二叉链表中(n>0),空链域的个数为( C )。 A)2n-1 B)n-1 C)n+1 D)2n+1 7、树最适合用来表示( C )。 A)有序数据元素 B)无序数据元素 C)元素之间具有分支层次关系的数据 D)元素之间无联系的数据8、由4个结点可以构造出多少种不同的二叉树( C )。 A)4 B)5 C)14 D)15 9、一个二叉树具有( A )种基本形态。 A)5 B)4 C)3 D)2 10、二叉树的第I层上最多含有结点数为( C )。 A)2I B)2I-1-1 C)2I-1 D)2I -1 11、深度为5的二叉树至多有( C )个结点. A)16 B)32 C)31 D)10 12、一个满二叉树,共有n个结点,其中m个为树叶,则( B )。 A)n= m+1 B)m=( n +1)/2 C)n =2 m D)n =2 m 13、深度为h的满m叉树的第k层有( A )个结点。(1=

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

归纳法基本步骤

归纳法基本步骤 (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤nn0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 (1)确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。 (2)数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。 (3)证明数列前n项和与通项公式的成立。 (4)证明和自然数有关的不等式。 数学归纳法的变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。

用数学归纳法证明不等式

人教版选修4—5不等式选讲 课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512,…… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n< b n,即 n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

二叉树

第六章树 第一部分:知识点 知识脉络: 重点:二叉树的性质、:I树的各种遍历方法及它g1所确定的序列问的关系、 二又树上的基本运算算法 的实现、二又树的线索化方法,构造赂夫曼树的方法。 难点:二叉树上各种算法,特别是遍历的非递归算法的设计。 一、二叉树的遍历的非递归算法 1.先序遍历 先将根结点入栈,然后只要栈不空,先出栈,然后沿着左子针依次访问沿途经过的子树根结点,同时将右指针进栈(以便递归访问左子树后访问右子树),如此重复,直至栈为空。 void PreOrderBiTree(BitTree T) { SqStack S; BitTree p; InitStack(&S); /* 初始化一个空栈*/ Push(&S,T); /* 根结点指针进栈*/ while(!EmptyStack(S)) /* 栈为空时算法结束*/ { Pop(S,&p); /* 弹栈,p指向(子树)根结点*/ while(p) { printf("%d ",p->data); /* 访问根结点*/ if(p->rchild) Push(S,p->rchild); /* 非空的右指针进栈*/ p=p->lchild; /* 沿着左指针访问,直到左指针为空*/ }

} 2.中序遍历 先沿着左指针走到最左下的结点同时将沿途经过的(子树)根结点指针进栈。当走到空指针时,出栈得到一个结点并访问,然后跳到右子树上。如此重复,直到指针为空并且栈为空为止。 void InOrderBitree(BitTree T) { SqStack S; BitTree p; InitStack(&S); /* 初始化一个栈*/ p=T; /* p指向根结点*/ while(p||!EmptyStack(S)) /* 当p为空且栈为空时算法结束*/ { while(p) { Push(S,p); p=p->lchild; /* 沿左指针走,沿途经过的(子树)根结点指针进栈*/ } Pop(S,&p); printf("%d ",p->data); /*当左指针为空时弹栈并访问该结点(子树根结点) */ p=p->rchild; /* 向右跳一步到右子树上继续进行遍历过程*/ } } 3.后序遍历 void PostOrderBiTree(BitTree T) { SqStack S; BitTree p,q; InitStack(S); p=T;q=NULL; while(p||!EmptyStack(S)) { if(p!=q) { while(p) { Push(S,p); if(p->lchild) p=p->lchild; else p=p->rchild; } } if(S->top==S->base) break; GetTop(S,&q); if(q->rchild==p) { p=Pop(S); printf("%d ",p->data); } else p=q->rchild; }

树和二叉树的基本知识

树和二叉树的基本知识 树是一种非线性的数据结构,用它能很好地描述有分支和层次特性的数据集合。树型结构在现实世界中广泛存在,如把一个家族看作为一棵树,树中的结点为家族成员的姓名及相关信息,树中的关系为父子关系,即父亲是儿子的前驱,儿子是父亲的后继;把一个国家或一个地区的各级行政区划分看作为一棵树,树中的结点为行政区的名称及相关信息,树中的关系为上下级关系,如一个城市包含有若干个区,每个区又包含有若干个街道,每个街道又包含有若干个居委会;把一本书的结构看作是一棵树,树中的结点为书、章、节的名称及相关信息,树中的关系为包含关系。树在计算机领域中也有广泛应用,如在编译系统中,用树表示源程序的语法结构;在数据库系统中,树型结构是数据库层次模型的基础,也是各种索引和目录的主要组织形式。在许多算法中,常用树型结构描述问题的求解过程、所有解的状态和求解的对策等。 在树型结构中,二叉树是最常用的结构,它的分支个数确定,又可以为空,具有良好的递归特性,特别适宜于程序设计,因此我们常常将一般树型结构转换成二叉树进行处理。 第一节树 一、树的定义 一棵树(tree)是由n(n>0)个元素组成的有限集合,其中: 1.每个元素称为结点(node); 2.有一个特定的结点,称为根结点或树根(root); 3.除根结点外,其余结点被分成m(m>=0)个互不相交的有限集合T0,T1,T2,……T m-1,而每一个子集T i又都是一棵树(称为原树的子树subtree)。 图1 图1就是一棵典型的树结构。从树的定义可以看出: 1.树是递归定义的,这就决定了树的操作和应用大都是采用递归思想来解决; 2.一棵树中至少有1个结点,这个结点就是根结点,如上图中的结点1; 3.只有根结点没有前趋结点,其余每个结点都有唯一的一个前趋结点; 4.所有结点都可以有0或多个后继结点;

高中数学归纳法证明题

高中数学归纳法证明题 高中数学归纳法证明题 1/2+2/2^2+3/2^3+......+n/2^n=2-n+2/2^n. 1/2+2/2^2+3/2^3+......+n/2^n=2-(n+2)/2^n. 1、当n=1时候, 左边=1/2; 右边=2-3/2=1/2 左边=右边,成立。 2、设n=k时候,有: 1/2+2/2^2+3/2^3+......+k/2^k=2-(k+2)/2^k成立, 则当n=k+1时候:有: 1/2+2/2^2+3/2^3+.....+k/2^k+(k+1)/2^(k+1) =2-(k+2)/2^k+(k+1)/2^(k+1) =2-[2(k+2)-(k+1)]/2^(k+1) =2-(k+3)/2^(k+1) =2-[(k+1)+2]/2^(k+1) 我觉得不是所有的猜想都非要用数学归纳法. 比如a1=2,a(n+1)/an=2,这显然是个等比数列 如果我直接猜想an=2^n,代入检验正确,而且对所有的n都成立,这时候干嘛还用数学归纳法啊.可是考试如果直接这样猜想是不得分的,必须要用数学归纳法证明.

结果带入递推公式验证是对n属于正整数成立. 用数学归纳法,无论n=1,还是n=k的假设,n=k+1都需要带入递推公式验证,不是多此一举吗.我又不是一个一个验证,是对n这个变量 进行验证,已经对n属于正整数成立了.怎么说就是错误的. 这说明你一眼能看出答案,是个本领。 然而,考试是要有过程的,这个本领属于你自己,不属于其他人,比如你是股票牛人,直接看出哪支会涨哪支会跌,但是不说出为什么,恐怕也不会令人信服。 比如你的问题,你猜想之后,代入检验,验证成功说明假设正确,这是个极端错误的数学问题,请记住:不是验证了一组答案通过, 就说明答案是唯一的!比如x+y=2.我们都知道这是由无数组解的方程。但是我猜想x=y=1,验证成功,于是得到答案,你觉得对吗?所 以你的证明方法是严格错误的! 说说你的这道题,最简单的一道数列题,当然可以一下看出答案,而且你的答案是正确的。但是证明起来就不是那么容易了,答案不 是看出来的,是算出来的。你的解法就是告诉大家,所有的答案都 是看出来,然后代入证明的。假设看不出来怎么办?那就无所适从, 永远也解不出来了!这就是你的做法带来的.答案,你想想呢?你的这 种做法有什么值得推广的? OK,了解! 数学归纳法使被证明了的,证明数学猜想的严密方法,这是毋庸置疑的。在n=1时成立;假设n=k成立,则n=k+1成立。这两个结论 确保了n属于N时成立,这是严密的。 你的例题太简单,直接用等比数列的定义就可以得到答案(首项 和公比均已知),不能说明你的证明方法有误。我的本意是:任何一 种证明方法,其本身是需要严格证明的,数学归纳法是经过严格证 明的;而你的证明方法:猜想带入条件,满足条件即得到猜想正确的 结论。未经证明,(即使它很严密,我说即使)它不被别人认可。事 实上,你的证明方法(猜想带入所有条件均成立)只能得到“必要”

各类型二叉树例题说明

5.1树的概念 树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树 1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为3;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。 2.树的深度——组成该树各结点的最大层次,如上图,其深度为4; 3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林; 4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。 5.树的表示 树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如上图可写成如下形式: (A(B(E(K,L),F),C(G),D(H(M),I,J))) 5. 2 二叉树 1.二叉树的基本形态: 二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态: (1)空二叉树——(a); (2)只有一个根结点的二叉树——(b); (3)右子树为空的二叉树——(c); (4)左子树为空的二叉树——(d); (5)完全二叉树——(e) 注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。 2.两个重要的概念: (1)完全二叉树——只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树; (2)满二叉树——除了叶结点外每一个结点都有左右子女且叶结点都处在最底层的二叉树,。 如下图: 完全二叉树 1页

树和二叉树

树和二叉树 树形结构(非线性结构):1)节点之间有分支;2)具有层次关系。 应用:自然界的树;人类社会的家谱和行政组织机构;计算机中的编译(用树表示源程序的语法结构)、数据库系统(用树组织信息)、算法分析(用树描述执行过程)。 定义:是n(n>=0)个节点的有限集。 若n=0,称为空树; 若n>0,则它满足如下两个条件; 1)有且仅有一个特定的称为根的节点; 2)其余节点可分为m(m>=0)个互不相交的有限集T1,T2,T3.....Tm,其中每一个集合本身又是一棵树,并称为根的子树。 树的其他表示方式: 还可以用广义表的形式表示(A(B(D))(C(E)(F)))。 树的基本术语: 根节点:非空树中无前驱节点的节点。 节点的度:节点拥有的子树数。 树的度:树内各节点的度的最大值。 叶子(终端节点):度为0的节点 分支节点(非终端节点):根节点以外的分支节点称为内部节点。 孩子、双亲:节点的子树的根称为该节点的孩子,该节点称为孩子的双亲。

兄弟节点: 节点的祖先:从根节点所经分支上的所有节点。 节点的子孙:以某节点为根的子树中的任一节点。 树的深度(高度):树中最大层次(根节点为第一层)。 有序树:树中节点的各子树从左至右有次序() 无序树:树中的节点没有次序。 森林:是m (m>=0)棵互不相交的树的集合。一棵树可以看成是一个特殊的森林。给森林中的各子树加上一个双亲节点,森林就变成了树(树一定是森林,森林不一定是树)。 二叉树的性质和存储结构 性质1、在二叉树的第i 层上至多有2^(i -1)个节点(i>=1)。至少1个 归纳基:当i=1时,只有一个根节点,2^(i -1)=2^0=1,命题成立。 归纳假设:设对所有的j (1<=j=1)。至少有k 个节点 由性质1可见,深度为k 的二叉树的最大节点数为 ∑ =-k i i 1 )1(^2=2^k -1 性质3:对任何一棵二叉树T ,如果其终端节点数为n0,度为2的节点数为n2,则 n0=n2+1。 总边数为B ,B=n -1; B=n2*2+n1*1; n=n2*2+n1*1+1 总节点数为n ,n=n2*2+n1*1+1; 又 n0=n2+1 满二叉树 ·一棵深度为k 且有2^k -1个节点的二叉树称为满二叉树。 ·特点:1)每一层上的节点数都是最大节点数(即每层都满,不能空的);2)叶子节点全部在最底层。 ·对满二叉树节点位置进行编号: ·编号规则:从根节点开始,自上而下,自左而右。 ·每一节点位置都有元素。 ·满二叉树在同样深度的二叉树中节点个数最多;满二叉树在同样深度的二叉树中叶子节点个数最多。

数学归纳法证明及其使用技巧

步骤 第一数学归纳法 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但 也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 第二数学归纳法 对于某个与自然数有关的命题P(n), (1)验证n=n0,n=n1时P(n)成立; (2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 倒推归纳法 又名反向归纳法 (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一 个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; 螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1) 成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。 2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。

3证明数列前n项与与通项公式的成立。 4证明与自然数有关的不等式。 变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由 P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、 跳跃归纳法

二叉树习题及答案

1.设一棵完全二叉树共有699个结点,则在该二叉树中的叶子结点数? 1根据“二叉树的第i层至多有2^(i ? 1)个结点;深度为k的二叉树至多有2^k ? 1个结点(根结点的深度为1)”这个性质: 因为2^9-1 < 699 < 2^10-1 ,所以这个完全二叉树的深度就是10,前9层就是一个满二叉树, 这样的话,前九层的结点就有2^9-1=511个;而第九层的结点数就是2^(9-1)=256 所以第十层的叶子结点数就是699-511=188个; 现在来算第九层的叶子结点个数。 由于第十层的叶子结点就是从第九层延伸的,所以应该去掉第九层中还有子树的结点。因为第十层有188个,所以应该去掉第九层中的188/2=94个; 所以,第九层的叶子结点个数就是256-94=162,加上第十层有188个,最后结果就是350个 2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点(叶结点)都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。 比如图: 完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699就是奇数,叶结点层以上的所有结点数为保证就是奇数,则叶结点数必就是偶数,这样我们可以立即选出答案为B! 如果完全二叉树的叶结点都排满了,则就是满二叉树,易得满二叉树的叶结点数就是其以上所有层结点数+1比如图: 此题的其实就是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。 3完全二叉树中,只存在度为2的结点与度为0的结点,而二叉树的性质中有一条就是:n0=n2+1;n0指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349;n0=350 2.在一棵二叉树上第5层的结点数最多就是多少 一棵二叉树,如果每个结点都就是就是满的,那么会满足2^(k-1)1。 所以第5层至多有2^(5-1)=16个结点! 3、在深度为5的满二叉树中,叶子结点的个数为 答案就是16 ~ 叶子结点就就是没有后件的结点~ 说白了~ 就就是二叉树的最后一层~ 深度为K的二叉树~ 最多有2^k-1个结点~ 最多有2^(k-1)个结点~ 所以此题~ 最多有2^5-1=31个结点~ 最多有2^(5-1)=16个叶子结点~ 4、某二叉树中度为2的结点有18个,则该二叉树中有几个叶子结点? 结点的度就是指树中每个结点具有的子树个数或者说就是后继结点数。 题中的度为2就是说具有的2个子树的结点; 二叉树有个性质:二叉树上叶子结点数等于度为2的结点数加1。 5、在深度为7的满二叉树中,度为2的结点个数为多少, 就就是第一层只有一个节点,她有两个子节点,第二层有两个节点,她们也都有两个子节点以此类推,所以到第6层,就有2的5次方个节点,她们都有两个子节点 最后第7层都没有子节点了。因为就是深度为7的。 所以就就是1+2+4+8+16+32了

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

数学归纳法+直接证明与间接证明

数学归纳法+直接证明与间接证明 题型一:数学归纳法基础 1、已知n 为正偶数,用数学归纳法证明111111112( ) 2 3 4 1 2 4 2n n n n -+-++ =+ ++ -++ 时,若已假设2(≥=k k n 为偶数) 时命题为真,则还需要用归纳假设再证 () A .1+=k n 时等式成立 B .2+= k n 时等式成立 C .2 2+=k n 时等式成立 D .)2(2+=k n 时等式成立 2、已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数) 时命题为真,,则还需证明( ) A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立 3、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+= k n 时命题也成立. 现已知当7 =n 时该命题不成立,那么可推得() A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 4、利用数学归纳法证明 “*),12(312)()2)(1(N n n n n n n n ∈-???????=+???++ ”时,从“k n =”变到 “1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B 1 12++k k C 1 ) 22)(12(+++k k k D 1 32++k k 5、用数学归纳法证明),1(1112 2 * +∈≠--= ++++N n a a a a a a n n ,在验证 n=1时, 左边计算所得的式子是( ) A. 1 B.a +1 C.21a a ++ D. 421a a a +++ 典例分析

相关文档
最新文档