PSK调制解调实验报告范文

 PSK调制解调实验报告范文
 PSK调制解调实验报告范文

PSK调制解调实验报告范文

一、实验目的

1. 掌握二相绝对码与相对码的码变换方法;

2. 掌握二相相位键控调制解调的工作原理及性能测试;

3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器

1.时钟与基带数据发生模块,位号:G

2.PSK 调制模块,位号A

3.PSK 解调模块,位号C

4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I

6.20M 双踪示波器1 台

7.小平口螺丝刀1 只

8.频率计1 台(选用)

9.信号连接线4 根

三、实验原理

相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。

(一)PSK 调制电路工作原理

二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。

1.载波倒相器

模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。

2.模拟开关相乘器

对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关

A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关

B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

出π相载波,两个模拟开关输出通过载波输出开关37K02 合路叠加后输出为二相PSK 调制信号。另外,DPSK 调制是采用码型变换加绝对调相来实现,即把数据信息源(伪随机码序列)作为绝对码序列{an},通过码型变换器变成相对码序列{bn},然后再用相对码序列{bn},进行绝

对移相键控,此时该调制的输出就是DPSK 已调信号。本模块对应的操作是这样的(详细见图6-1),37P01 为PSK 调制模块的基带信号输入铆孔,可以送入4P01 点的绝对码信(PSK),也可以送入相对码基带信号(相对4P01 点的数字信号来说,此调制即为DPSK 调制)。

(二)相位键控解调电路工作原理

二相PSK(DPSK) 解调器的总电路方框图如图6-2 所示。

该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形电路。载波恢复和位定时提取,是数字载波传输系统必不可少的重要组成部分。载波恢复的具体实现方案是和发送端的调制方式有关的,以相移键控为例,有:N 次方环、科斯塔斯环(Constas 环)、逆调制环和判决反馈环等。近几年来由于数字电路技术和集成电路的迅速发展,又出现了基带数字处理载波跟踪环,并且已在实际应用领域得到了广泛的使用。但是,为了加强学生基础知识的学习及对基本理论的理解,我们从实际出发,选择科斯塔斯环解调电路作为基本实验。

1.二相(PSK,DPSK)信号输入电路

由整形电路,对发送端送来的二相(PSK、DPSK)信号进行前后级隔离、放大后送至鉴相器1 与鉴相器2分别进行鉴相。

图6-2 解调器原理方框图

2.科斯塔斯环提取载波原理

经整形电路放大后的信号分两路输出至两鉴相器的输入端,鉴相器1 与鉴相器2 的控制信号输入端的控制信号分别为0 相载波信号与π/2 相载波信号。这样经过两鉴相器输出的鉴相信号再通过有源低通滤波器滤掉其高频分量,再由两比较判决器完成判决解调出数字基带信码,由相乘器电路,去掉数字基带信号中的数字信息。得到反映恢复载波与输入载波相位

之差的误差电压Ud, Ud 经过环路低通滤波器滤波后,输出了一个平滑的误差控制电压,去控制VCO 压控振荡器74S124。它的中心振荡输出频率范围从1Hz 到60MHz,工作环境温度在0~70℃,当电源电压工作在+5V、频率控制电压与范围控制电压都为+2V 时,74S124 的输出频率表达式为:f0 = 5×10-4/Cext,在实验电路中,调节精密电位器38W01(10KΩ)的阻值,使频率控制输入电压(74LS124 的2 脚)与范围控制输入电压(74LS124 的3 脚)基本相等,此时,当电源电压为+5V 时,才符合:f0 = 5×10-4/Cext,再改变4、5 脚间电容,使74S124 的7 脚输出为2.048NHZ 方波信号。74S124 的6 脚为使能端,低电平有效,它开启压控振荡器工作;当74S124 的第7 脚输出的中心振荡频率偏离2.048MHz时,此时可调节38W01,用频率计监视测量点38TP02 上的频率值,使其准确而稳定地输出2.048MHz

的同步时钟信号。该2.048MHz 的载波信号经过分频(÷2)电路:一次分频变成1.024MHz 载波信号,并完成π/2 相移相。这样就完成了载波恢复的功能。

从图中可看出该解调环路的优点是:

①该解调环在载波恢复的同时,即可解调出数字信息。

②该解调环电路结构简单,整个载波恢复环路可用模拟和数字集成电路实现。

但该解调环路的缺点是:存在相位模糊,即解调的数字基带信号容易出现反向问题。DPSK 调制解调就可以解决这个问题,相绝码转换在“复接/解复接、同步技术模块”上完成。

四、各测量点及可调元件的作用

1.PSK 调制模块

37K02:两调制信号叠加。1-2 脚连,输出“1”的调制信号;2-3 脚连,输出“0”的调制信号。

37W01:调节0 相载波幅度大小,使37TP02 峰峰值2~4V。

37W02:调节π相载波幅度大小,使37TP03 峰峰值2~4V。

37P01:外加数字基带信号输入铆孔。

37TP01:频率为1.024MHz 方波信号,由4U01 芯片(EPM240)编程产生。

37TP02:0 相1.024MHZ 载波正弦波信号,调节电位器37W01 改变幅度(2~4V 左右)。37TP03:π相1.024MHZ 载波正弦波信号,调节电位器37W02 改变幅度(2~4V 左右)。37P02:PSK 调制信

号输出铆孔。由开关37K02 决定。

1-2 相连3-4 断开时,37P02 为0 相载波输出;

1-2 断开3-4 相连时,37P02 为π相载波输出;

1-2 和3-4 相连时,37P02 为PSK 调制信号叠加输出。注意两相位载波幅度需调整相同,否则调制信号在相位跳变处易失真。

2.PSK 解调模块

38W01:载波提取电路中压控振荡器调节电位器。

38P01:PSK 解调信号输入铆孔。

38TP01:压控振荡器输出2.048MHz 的载波信号,建议用频率计监视测量该点上的频率值有偏差时,此时可调节38W01,使其准确而稳定地输出2.048MHz 的载波信号,即可解调输出数字基带信号。

38TP02:频率为1.024MHz 的0 相载波输出信号。

38TP03:频率为 1.024MHz 的π/2 相载波输出信号,对比38TP02。

38P02:PSK 解调输出铆孔。PSK 方式的科斯塔斯环解调时存在相位模糊问题,解调出的基带信号可能会出现倒相情况;DPSK 方式解调后基带信号为相对码,相绝转换由下面的“复接/解复接、同步技术模块”完成。

3.复接/解复接、同步技术模块

39SW01:功能设置开关。设置“0010”,为32K 相对码、绝对码转换。

39P01:外加基带信号输入铆孔。

39P07:相绝码转换输出铆孔。

五、实验内容及步骤

1.插入有关实验模块:

在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PSK 调制模块”、“噪声模块”、“PSK解调模块”、“同步提取模块”,插到底板“G、A、B、C、I”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.PSK、DPSK 信号线连接:

绝对码调制时的连接(PSK):用专用导线将4P01、37P01;37P02、3P01;3P02、38P01 连接。相对码调制时的连接(DPSK):用专用导线将4P03、37P01;37P02、3P01;3P02、38P01;38P02、39P01连接。

注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔。

3.加电:

打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.基带输入信号码型设置:

拨码器4SW02 设置为“00001 “,4P01 产生32K 的15 位m 序列输出;4P03 输出为4P01 波形的相对码。

5. 跳线开关设置:

跳线开关37K02 1-2、3-4 相连。

6.载波幅度调节:

37W01:调节0 相载波幅度大小,使37TP02 峰峰值2~4V。(用示波器观测37TP02 的幅度,载波幅度不宜过大,否则会引起波形失真)

37W02:调节π相载波幅度大小,使37TP03 峰峰值2~4V。(用示波器观测37TP03 的幅度)。

7.相位调制信号观察:

(1)PSK 调制信号观察:双踪示波器,触发测量探头测试4P01 点,另一测量探头测试37P02,调节示波器使两波形同步,观察BPSK 调制输出波形,记录实验数据。

(2)DPSK 调制信号观察:双踪示波器,触发测量探头测试4P03 点,另一测量探头测试37P02,调节示波器使两波形同步,观察DPSK 调制输出波形,记录实验数据。

8.噪声模块调节:

调节3W01,将3TP01 噪声电平调为0;调节3W02,使3P02 信号峰峰值2~4V。

9.PSK 解调参数调节:

调节38W01 电位器,使压控振荡器工作在2048KHZ,同时可用频率计鉴测38TP01 点。注意观察38TP02和38TP03 两测量点波形的相位关系。

10.相位解调信号观测:

(1)PSK 调制方式

观察38P02 点PSK 解调输出波形,并作记录,并同时观察PSK 调制端37P01 的基带信号,比较两者波形相近为准(可能反向,如果波形不一致,可微调38W01)。

(2)DPSK 调制方式

“同步提取模块”的拨码器39SW01 设置为“0010”。观察38P02 和37P01 的两测试点,比较两相对码波形,观察是否存在反向问题;观察39P07 和4P01 的两测试点,比较两绝对码波形,观察是否还存在反向问题。作记录。

11.加入噪声相位解调信号观测:

调节3W01 逐步增加调制信号的噪声电平大小,看是否还能正确解调出基带信号。

12. 关机拆线:

实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

六、实验数据

1.基带输入信号码型设置:

拨码器4SW02 设置为“00001 “,4P01 产生32K 的15 位m 序列输出;4P03 输出为4P01 波形的相对码。

2.基带信号与调制信号(绝对码)

3.基带信号与调制信号(相对码)

4.基准电平

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

二进制相移键控(2PSK)调制电路课程设计

前言 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。传统的2PSK (二进制相位键控)调制可采用直接调相法即双极性数字基带信号与载波直接相乘的方法,也可以采用相位选择法即由振荡器和反相器电路来实现调制的方法。对数字信息进行调制可以便于信号的传输;实现信道复用;改变信号占据的带宽;改善系统的性能。 相移键控在数据传输中,尤其是在中速和中高速的数传机中得到了广泛的应用。相移键控有很好的抗干扰性,在有衰落的信道中也能获得很好的效果。二进制移相键控(2P SK)方式是载波相位按基带脉冲序列的规律而改变的一种数字调制方式,和模拟调制不同的是,由于数字基带信号具有离散取值的特点,所以调制后的载波参量只有有限的几个数值,因而数字调制在实现的过程中常采用键控的方法,就像用数字信息去控制开关一样,根据数字基带信号的两个电平,使载波相位在两个不同的数值之间切换的一种相位调制方式。当两个载波相位相差180度时,此时称为反向键控,也称为绝对相移方式。 本次设计实验旨在将理论和实践地结合。依据所学知识,利用Multisim软件进行实验电路设计和仿真。

目录 一、设计实验目的 (1) 1.掌握二进制相移键控调制的概念。 (1) 二、设计指标 (1) 三、原理框图介绍 (1) 四、单元电路设计 (2) 1.载波发生器模块—555脉冲发生电路 (2) 2.载波倒相器 (5) 3.信码反相器 (5) 4.模拟开关CD4066 (5) 五、整体电路图设计与仿真 (6) 1.整体电路图设计说明 (6) 2.总电路图及仿真结果 (6) 六、设计总结 (8) 参考文献 (8) 附件二:元器件清单 (9)

实验四 2PSK调制与解调实验

实验四 2PSK 调制与解调实验 1、 实验箱中2PSK 调制器用的调制方法是什么? 答:移相键控调制的直接调相法。 2、 2PSK 调制能否用非相干解调方法? 答:不能。 3、 相位模糊产生的原因和解决方法? 答:①原因:在调制过程中采用了分频,而二分频器的输出电压有相差180度的两种可能相位,即其输出电压的相位决定了分频器的初始状态,这就是会导致分频出的载波存在相位模糊(2PSK 采用的是相移方式) ②解决办法:使用2DPSK 二相相对移相键控 4、 绝/相、相/绝变换的框图? 答: 5、 绝/相、相/绝变换电路是怎么实现的。 答:绝/相变换电路是把数据信息源输出的绝对码变相对码,2DPSK 信号由相对码进行绝对调相得到。它由模二加10A U (74LS86)和D 触发器9A U (74LS74)组成,其逻辑关系为:i a ⊕i-1b =i b ,其中i a 是绝对码,i-1b 是延迟一个码元的相对码,i b 是相对码。 相/绝变换电路由14B U (74LS74)和15B U (74LS86)组成,其逻辑关系可表示为i-1b ⊕i b =i a ,其中i b 为相对码,i-1b 为延迟一个码元的相对码,i a 为绝对码。 6、 画出实验板中2PSK 、2DPSK 调制与解调器的原理框图; 答:

7、本实验中,2PSK 信号带宽是多少?用数字示波器如何测量? 答:B=2 f=2/Ts。先按MATH按钮,再选择FFT选项。 s 8、测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测? 示波器的触发源该选哪一种信号?为什么? 答:绝对码波形。原始信号。触发源信号应该选择频率较低、稳定度高的信号。 9、解调电路各点信号的时延是怎么产生的? 答:由滤波与抽样产生。 10、码再生的目的是什么? 答:①防止噪声干扰的累加,恢复出基带信号。②把码元展宽。 11、用D触发器做时钟判决的最佳判决时间应该如何选择? 答:眼图中眼睛张开最大时刻,即码元能量最大时刻,把各个信号叠加在一起。 12、解调出的信码和调制器的绝对码之间的时延是怎么产生的? 答:由滤波与抽样产生。 13、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的 带宽设计多大比较合适? 答:符号切换造成了旁瓣的产生,0、1跳变使得高频成份丰富。π→0→π转换点导致的频谱扩展特别大,通过滤波器会缩小。带宽设计为2/Ts。

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

2PSK系统课程设计

《通信原理》课程设计说明书基于 Matlab 的 2PSK 系统设计学院:电气与信息工程学院 学生姓名: 指导教师:职称副教授 专业:通信工程 班级:通信1302 班 学号: 完成时间:2016年 5 月

指导教师学生姓名 课题名称基于MATLAB的 2PSK 系统设计 一、设计任务 利用 MATLAB设计一个2PSK 系统。 二、设计内容 2PSK 系统中包括调制、加噪滤噪与解调部分,具体内容如下: 内 ( 1)产生基带信号; 容 ( 2)产生已调信号; 及 ( 3)已调信号通过高斯白噪声信道; 任 ( 4)对信号输出端的混合信号中的噪声进行滤除; 务 (5)信号的解调; (6)抽样判决码元再生。 三、设计要求 设计出一个 2PSK 系统,对 2PSK 系统进行仿真分析,并编写设计说明书。 主 [1] 樊昌信 ,曹丽娜 .通信原理 [M]. 北京 :国防工业出版社 ,2015. 要 [2] 刘晓东 ,董辰辉 .MA TLAB从入门到精通[M]. 北京 :人民邮电出版社,2010. 参 考[3] 常华 ,袁刚 ,常敏嘉 .仿真软件教程 .北京 : 清华大学出版社 ,2006. 资[4] https://www.360docs.net/doc/47735502.html,/view/17338d1733687e21af45a9c8?Pcf=2#6,2015-12-14料[5] 朱阳燕 .基于 MATLAB的2PSK系统仿真[J].科技信息,2008(17):82. 教 研 室 意 见 教研室主任: 年月日

摘要 现代通信系统是一个十分复杂的工程系统,通信系统设计研究也是一项十分复杂的 技术。由于技术的复杂性,在现代通信技术中,越来越重视采用计算机仿真技术来进行系 统分析和设计。随着电子信息技术的发展,已经从仿真研究和设计辅助工具,发展成为今 天的软件无线电技术,这就使通信系统的仿真研究具有更重要和更实用的意义。 课程设计首先介绍了课题的研究背景及意义和课题的研究内容,其次描写了2PSK 系统的相关知识理论,着重讲解了2PSK 系统的两种调制方式:模拟调制法和键控法, 和它的解调方式,相干解调。然后在掌握了2PSK 系统原理的基础上利用 MATLAB 软件对数字调制方式 2PSK 进行了编程仿真实现, MATLAB 是一个用于电路与通信系统设计、仿真的动态系统分析工具,可用于信号处理、滤波器设计及复杂的通信系统数学模 型的建立等。在 MATLAB 平台上建立 2PSK 调制和解调技术的仿真模型,并在建立模 型过程中加入一个加噪滤噪的过程。构思好2PSK 系统设计的流程后即可在 MATLAB 仿真平台上进行2PSK 系统的调制与解调,加噪和滤噪,并对仿真模型进行分析,得出 仿真系统的波形图,能够更直观的了解其系统的工作流程,得出更好的结论。通过 2PSK 系统的仿真过程进一步学习了 MATLAB 编程软件,将 MATLAB 与通信系统中数字调制解调知识联系起来,从理论学习的轨道逐步引向实际应用,为以后在通信领域学习和研究打下基础。 关键词:数字调制和解调; MATLAB ;2PSK

通信原理实验——2PSK调制与解调

贵州大学实验报告 学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩 实验项目名称实验二2PSK调制与解调 实 验目的1、掌握2PSK调制的原理及实现方法。 2、掌握2PSK解调的原理及实现方法。 实验原理 1、2PSK调制 2PSK信号产生的方法有两种:模拟调制法和数字调制法。 码型变换乘法器 NRZ输入双极性NRZ调制输出 载波输入 图16-1 2PSK调制模拟相乘法原理框图 上图16-1是2PSK调制模拟相乘法原理框图。信号源模块提供码速率96K的NRZ 码和384K正弦载波。在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。乘法器的调制深度可由“调制深度调节”旋转电位器调节。 载波1 384K 开关电路2 调制输出 NRZ输入 开关电路1 反相器 图16-2 2PSK调制数字键控法原理框图 上图16-2是2PSK调制数字键控法原理框图。为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。 实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来

控制门的通/断。当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。门的输出即为2FSK 调制信号,如下图16-3所示。 NRZ输入 调制信号 1 1 00 1 PSK 图16-3 2PSK 调制信号波形 2、2PSK 解调 2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。 LPF 相乘器电压判决 抽样判决 调制输入 BS输入 PSK/DPSK 判决电压调节 载波输入相乘输出 滤波输出 解调输出 判压输出 图16-4 2PSK 解调相干解调法原理框图 设已调信号表达式为1()cos(())s t A t t ω?=?+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得 0121 ()[cos(2())cos ()]2 e t A A t t t ω??= ++ 可知,相乘后包括二倍频分量121 cos(2())2 A A t t ω?+和cos ()t ?分量(()t ?为时 间的函数)。因此,需经低通滤波器除去高频成分cos(2())t t ω?+,得到包含基带信号的低频信号。 然后再进行电压判决和抽样判决。此时,“解调类型选择”拨位开关拨到“PSK ”一端。 解调过程中各测试点波形如下图16-5所示。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

2PSK数字信号的调制与解调

中南民族大学 软件课程设计报告 电信学院级通信工程专业 题目2PSK数字信号的调制与解调学生学号 42 指导教师 2012年4月21日

基于MATLAB数字信号2PSK的调制与解调 摘要:为了使数字信号在信道中有效地传播,必须使用数字基带信号的调制与解调,以使得信号与信道的特性相匹配。基于matlab实验平台实现对数字信号的2psk的调制与解调的模拟。本文详细的介绍了PSK波形的产生和仿真过程加深了我们对数字信号调制与解调的认知程度。 关键字:2PSK;调制与解调;MATLAB 引言 当今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。因此,数字信号的调制就显得非常重要。 调制分为基带调制和带通调制。不过一般狭义的理解调制为带通调制。带通调制通常需要一个正弦波作为载波,把基带信号调制到这个载波上,使这个载波的一个或者几个参量上载有基带数字信号的信息,并且还要使已调信号的频谱倒置适合在给定的带通信道中传输。特别是在无线电通信中,调制是必不可少的,因为要使信号能以电磁波的方式发送出去,信号所占用的频带位置必须足够高,并且信号所占用的频带宽度不能超过天线的的通频带,所以基带信号的频谱必须用一个频率很高的载波调制,使期带信号搬移到足够高的频率上,才能够通过天线发送出去。 主要通过对它们的三个参数进行调制,振幅,角频率,和相位。使这三个参量都按时间变化。所以基带的数字信号调制主要有三种方式:FSK,PSK,ASK。在这三种调制的基础上为了得到更高的效果也出现了很多其它的调制方式,如:DPSK,MASK,MFSK,MPSK,APK。它们其中有的一些是将基本的调制方式用在多进制上或者引入了一些新的方式来解决基本调制的一些问题如相位模糊和无法提取位定时信号,另外一些由是组合多种基本的调制方式来达到更好的效果。 基带信号的调制主要分为线性调制和非线性调制,线性调制是指已调信号的频谱结构与原基带信号的频谱结构基本相同,只是占用的频率位置搬移了。而非线性调制则是指它们的结构完全不同不仅仅是频谱搬移,在接收方会出现很多新的频谱分量。在三种基本的调制中,ASK 属于线性调制,而FSK和PSK属于非线性调制。已调信号会在接收方通过各种方式通过解调得到,但是由于噪声和码间串扰,总会有一定的失真。所以人们总是在寻找不同的接收方式来降低误码率,其中的接收方式主要有相干接收和非相干接收。在接收方通过载波的相位信号去检测信号的方法称为相干检测,反之若不利用就称为非相干检测,而对于一些特别的调制有特别的解调方式,如过零检测法。 系统的性能好坏取决于传输信号的误码率,而误码率不仅仅与信道、接收方法有关还和发送端采用的调制方式有很大的关系。我们研究的ASK,FSK,PSK等就主要是发送方的调制方式。

PSK系统设计课程设计报告

华南理工大学 通信原理课程设计报告 题目:2PSK系统仿真 专业: 班级: 姓名: 学号: 日期:20XX年XX月 一、实验需要材料 MATLAB软件 二、实验要求 完成规定系统的MATLAB编程以及simulink的仿真,基本内容包括:输入信号,系统中各个关键模块的输出情况。并调整仿真的参数得到不同的仿真结果。 三、设计原理 2PSK汉语全称:二进制相移键控。2PSK是的最简单的一种形式,它用两个相隔为180的来传递信息。所以也被称为BPSK。 Simulink简介:Simulink是Mathworks公司推出的基于Matlab平台的着名仿真环境Simulin 作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法: ①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理。 ②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图1 相应的信号波形的示例 1 0 1 调制原理:

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移 相键控(2PSK)信号。2PSK信号调制有两种方法,即模拟调制法和键控法。通常用已调信号载波的 0° 和 180°分别表示二进制数字基带信号的 1 和 0,模拟调制法用两个反相的载波信号进行调制。 2PSK以载波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0°,当基带信 号为1时相对于初始相位为180°。 键控法,是用载波的相位来携带二进制信息的调制方式。通常用0°和180°来分别代表0和 1。其时域表达式为: 其中,2PSK的调制中an必须为双极性码。两种方法原理图分别如图1-1和图1-2所示。 图1-1 模拟调制法原理图 图1-2 键控法原理图 在 所示)。 为2PSK方式的“倒π”现象或“反相工作”。但在本次仿真中是直接给其同频同相的载波信号, 所以不存在此问题。 图2-2 相干解调中各点波形图 相关公式: 2PSK信号在一个码元的持续时间Ts内可以表示为 u1T(t) 发送“1”时 S T(t)= u oT(t)=- u1T(t) 发送“0”时 其中 Acosωc t , 0< t < Ts u1T(t)= 0 ,其他 设发送端发出的信号如上式所示,则接收端带通滤波器输出波形y(t)为 [a+n c(t)]cosωc t-n s(t)sinωc t ,发送“1”时 y(t)= [-a+n c(t)]cosωc t-n s(t)sinωc t ,发送“0”时 y(t)经过想干解调(相乘—低通)后,送入抽样判决器的输入波形为 a+n c(t) ,发送“1”时 x(t)= -a+n c(t) ,发送“0”时 由最佳判决门限分析可知,在发送“1”和“0”概率相等时,即P(1)=P(0)时,最佳门限b*=0. 此时,发“1”而错判为“0”的概率为 P(0/1)=P(x≦0)=∫0-∞f1(x)dx=1/2erfc(r)

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

2PSK系统课程设计

《通信原理》课程设计说明书 基于Matlab的2PSK系统设计 学院:电气与信息工程学院 学生姓名: 指导教师:职称副教授 专业:通信工程 班级:通信1302班 学号: 完成时间:2016年5月 学院:电气与信息工程学院专业:通信工程

现代通信系统是一个十分复杂的工程系统,通信系统设计研究也是一项十分复杂的技术。由于技术的复杂性,在现代通信技术中,越来越重视采用计算机仿真技术来进行系统分析和设计。随着电子信息技术的发展,已经从仿真研究和设计辅助工具,发展成为今天的软件无线电技术,这就使通信系统的仿真研究具有更重要和更实用的意义。 课程设计首先介绍了课题的研究背景及意义和课题的研究内容,其次描写了2PSK 系统的相关知识理论,着重讲解了2PSK系统的两种调制方式:模拟调制法和键控法,和它的解调方式,相干解调。然后在掌握了2PSK系统原理的基础上利用MATLAB软件对数字调制方式2PSK进行了编程仿真实现,MATLAB是一个用于电路与通信系统设计、仿真的动态系统分析工具,可用于信号处理、滤波器设计及复杂的通信系统数学模型的建立等。在MATLAB平台上建立2PSK调制和解调技术的仿真模型,并在建立模型过程中加入一个加噪滤噪的过程。构思好2PSK系统设计的流程后即可在MATLAB 仿真平台上进行2PSK系统的调制与解调,加噪和滤噪,并对仿真模型进行分析,得出仿真系统的波形图,能够更直观的了解其系统的工作流程,得出更好的结论。通过2PSK 系统的仿真过程进一步学习了MATLAB编程软件,将MATLAB与通信系统中数字调制解调知识联系起来,从理论学习的轨道逐步引向实际应用,为以后在通信领域学习和研究打下基础。 关键词:数字调制和解调;MATLAB;2PSK

PSK(DPSK)及QPSK-调制解调实验报告

实验4 PSK(DPSK)及QPSK 调制解调实验 配置一:PSK(DPSK)模块 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一) PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输出π相载波,两个模拟开关输出通过载波输出开关37K02 合路叠加后输出为二相PSK 调制信号。另外,DPSK 调制是采用码型变换加绝对调相来实现,即把数据信息源(伪随机码序列)作为绝对码序列{a n},通过码型变换器变成相对码序列{b n},然后再用相对码序列{b n},进行绝

用matlab实现16PSK通信课程设计

目录 1 课程设计目的 (1) 2 课程设计要求 (1) 3 相关知识 (1) 4 课程设计分析 (4) 5 仿真 (7) 6结果分析 (12) 7 参考文献 (14)

16PSK系统设计 1.课程设计目的 (1)根据题目,查阅有关资料,掌握16进制相移键控的基本原理。 (2)学习MATLAB软件,掌握MATLAB中元器件使用及参数的设置。 (3)锻炼我们分析问题和解决问题的能力 同时对我们进行良好的独立工作习惯和科学素质的培养 为今后参加科学工作打下良好的基础 2.课程设计要求 (1)掌握相移键控的相关知识、概念清晰。 (2)掌握MATLAB使用方法,利用软件绘制图像。 (3)程序设计合理、能够正确运行。 3.相关知识 3.1数字通信系统简介 通信系统是为了有效可靠的传输信息,信息由信源发出,以语言、图像数据为媒体,通过电(光)信号将信息传输,由信宿接收。通信系统又可分为数字通信与模拟通信。实现数字通信,必须使发送端发出的模拟信号变为数字信号,这个过程称为“模数变换”。模拟信号数字化最基本的方法有三个过程,第一步是“抽样”,就是对连续的模拟信号进行离散化处理,通常是以相等的时间间隔来抽取模拟信号的样值。第二步是“量化”,将模拟信号样值变换到最接近的数字值。因抽样后的样值在时间上虽是离散的,但在幅度上仍是连续的,

量化过程就是把幅度上连续的抽样也变为离散的。第三步是“编码”,就是把量化后的样值信号用一组二进制数字代码来表示,最终完成模拟信号的数字化。数字信号送入数字网进行传输。接收端则是一个还原过程,把收到的数字信号变为模拟信号,即“数据摸变换”,从而再现声音或图像。 数字通信系统模型图为: 信源→信源编码→信道编码→调制→信道→解调→信道解码→信源解码→信宿 ↑ 噪声 3.2 MATLAB 简介 3.2.1 基本功能 MATLAB是很实用的数学软件它在数学类科技应用软件中在数值运算方面首屈一指。MATLAB可以进行运算、绘制函数和数据、实现算法、创建用户界面、连接接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLA B成为一个强大的数学软件。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。 3.2.2 MATLAB 产品应用 MATLAB 产品族可以用来进行以下各种工作: ●数值分析 ●数值和符号计算

PSK调制解调实验报告标准范本

报告编号:LX-FS-A22577 PSK调制解调实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

PSK调制解调实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控

PSK调制解调实验报告范文

PSK调制解调实验报告范文 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一)PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关 A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关 B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

数字调制与解调 实验报告材料

计算机与信息工程学院实验报告 一、实验目的 1.掌握绝对码、相对码概念及它们之间的变换关系。 2.掌握用键控法产生2FSK信号的方法。 3.掌握2FSK过零检测解调原理。 4.了解2FSK信号的频谱与数字基带信号频谱之间的关系。 二、实验仪器或设备 1.通信原理教学实验系统 TX-6(武汉华科胜达电子有限公司 2011.10) 2.LDS20410示波器(江苏绿扬电子仪器集团有限公司 2011.4.1) 三、总体设计 3.1数字调制 3.1.1实验内容: 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2FSK信号波形。 3、用频谱仪观察数字基带信号频谱及2FSK信号的频谱。 3.1.2基本原理: 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2FSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图1-1所示。 图1-1 数字调制方框图 本单元有以下测试点及输入输出点:

? CAR 2DPSK 信号载波测试点 ? BK 相对码测试点 ? 2FSK 2FSK 信号测试点/输出点,V P-P >0.5V 用1-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对 应关系如下: ? ÷2(A ) U8:双D 触发器74LS74 ? ÷2(B ) U9:双D 触发器74LS74 ? 滤波器A V6:三极管9013,调谐回路 ? 滤波器B V1:三极管9013,调谐回路 ? 码变换 U18:双D 触发器74LS74;U19:异或门74LS86 ? 2FSK 调制 U22:三路二选一模拟开关4053 ? 放大器 V5:三极管9013 ? 射随器 V3:三极管9013 2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,通过分频和滤波得到。 2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。时域表达式为 t t m t t m t S c c 21cos )(cos )()(ωω+= 式中m(t)为NRZ 码。 2FSK 信号功率谱 设码元宽度为T S ,f S =1/T S 在数值上等于码速率, 2FSK 的功率谱密度如图所示。多进制的MFSK 信号的功率谱与二进制信号功率谱类似。 本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2FSK 也具有离散谱。 3.2 数字解调 3.2.1 实验内容 1、 用示波器观察2FSK 过零检测解调器各点波形。 3.2.2 基本原理 2FSK 信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

实验九 QPSK调制与解调实验报告

实验九QPSK/OQPSK 调制与解调实验 一、实验目的 1、了解用CPLD 进行电路设计的基本方法。 2、掌握QPSK 调制与解调的原理。 3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。 二、实验内容 1、观察QPSK 调制的各种波形。 2、观察QPSK 解调的各种波形。 三、实验器材 1、信号源模块 一块 2、⑤号模块 一块 3、20M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)QPSK 调制解调原理 1、QPSK 调制 QPSK 信号的产生方法可分为调相法和相位选择法。 用调相法产生QPSK 信号的组成方框图如图12-1(a )所示。图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。设两个序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b )中虚线矢量。将两路输出叠加,即得如图12-1(b )中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。 (a ) a(0)b(0) b(1) a(1) (b ) 图12-1 QPSK 调制 /并变换。串/并变换器将输入的二进制序列分为两个并行的双极性序列110010*********和

111101*********。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。 2、QPSK 解调 图12-2 QPSK 相干解调器 由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图12-2所示。图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。 (二)OQPSK 调制解调原理 OQPSK 又叫偏移四相相移键控,它是基于QPSK 的改进型,为了克服QPSK 中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。若将QPSK 中并行的I ,Q 两路码元错开时间(如半个码元),称这类QPSK 为偏移QPSK 或OQPSK 。通过I ,Q 路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。 下面通过一个具体的例子说明某个带宽波形序列的I 路,Q 路波形,以及经载波调制以后相位变化情况。 若给定基带信号序列为1 -1 -1 1 1 1 1 -1 -1 1 1 -1 对应的QPSK 与OQPSK 发送波形如图12-3所示。 1-1-11111-1-111-1111-11-111-11-1-111-11-1 基基基基I 基基Q P S K ,O Q P S K Q 基基 Q P S K Q 基基O Q P S K -1 图12-3 QPSK,OQPSK 发送信号波形 图12-3中,I 信道为U (t )的奇数数据单元,Q 信道为U (t )的偶数数据单元,而OQPSK 的Q 信道与其I 信道错开(延时)半个码元。 QPSK ,OQPSK 载波相位变化公式为 {}()33arctan ,,,()44 44j i j i Q t I t ππ?ππ? ????? =--???? ?????? ?@ QPSK 数据码元对应的相位变化如图12-4所示,OQPSK 数据码元对应相位变化如图 12-5所示

相关文档
最新文档