第三节 低压管道灌溉

第三节 低压管道灌溉
第三节 低压管道灌溉

第三节低压管道灌溉

一、低压管道灌溉概述

1.何谓低压管道灌溉

由低压管道输水进行地面灌溉的工程称为低压管道输水灌溉工程,简称为低压管道灌溉。

低压指一般不超过0.3MPa。

2.系统的组成

(1)水源:河流、水库、塘坝、水井等

(2)取水工程:水泵、电机等

(3)输配水管网系统:各级管道、分水设施、保护装置与附属设施等,其中管网由干管、支管组成

(4)田间灌水系统:分水口以下的田间灌水设施,如移动灌水软管、畦田、灌水沟

3.优点

(1)节水比渠道节水30%左右

(2)省地与渠灌相比节水耕地1%-2%

(3)节能与喷灌微灌比,比较节能

(4)增产由于灌水及时,均匀,增产15%

(5)省工省时输水快,供水及时,节水管理用工

(6)投资及运行费用低投资远低于喷灌和微灌

4. 缺点

(1)本质上仍是地面灌溉

(2)单个工程控制范围较小

二、给水栓与出水口

1、给水栓

连接灌水软管的装置

2、出水口

由地下输水管道向田间沟、畦配水的放水装置。

一般情况出水口或给水栓间距为50~100米

每个出水口(包括给水栓)控制面积在4~9亩

三、低压管灌系统的规划设计

(一)规划设计原则

(1)管道系统布置应与排水、道路、林带等规划紧密结合,统筹安排。

(2)合理确定支管间距与出水口间距,适应田间灌水要求。

(3)系统运行可靠,维护管理方便。

(4)节省投资与运行管理费用。因地制宜地选择管材,管线顺直,进行必要的方案比较。(三)管网布置

(1)水源(机井)位于田块一侧

常采用“一”字形、“T”形、“L”形三种形式。

(2)水源(机井)位于田块中心常采用“H”形、环形或一字型。

支管间距50~100m,单向灌取小值,双向灌取大值,畦宽多取0.8-2.5m。

(3)水源位于田块一侧,控制面积较大成近似方形地块,可布置成梳齿形、丰字型两种形式。

(二)计算灌溉制度

1、灌水定额

m=1000Hγ(βmax-βmin) (mm)

式中H:计划湿润层深(m);

γ:土壤干容重(t/m3);

βmax、βmin:土壤适宜含水量上、下限(重量百分比)。2、灌水周期

式中e:作物需水强度(mm/d)。

(三)计算设计流量

1、系统设计流量

式中a:作物种植比例;

A:设计灌溉面积,m2;

:灌溉水利用系统,井灌区不低于0.8;

T:灌水周期,d;

C:每天的灌水时数。

2. 管道的设计流量(树状管网)

式中n:该管道控制范围内同时开启的放水口个数;

N:全系统同时开启的放水口个数。

在井灌区,由于机井出水量的限制,一般同时工作的放水口只有1~2个。(四)管网设计

1、选择管材

管材可采用PVC管,或混凝土管。

2、确定管径

按经济流速来确定

PVC管经济流速取1~1.5m/s,混凝土管采用0.5~1.0m/s。

根据计算结果和管材规格适当取整。

(五)选择水泵与动力

1、选水泵

(1)确定系统流量

Q=q*同时工作放水口数

(2)确定系统扬程

首先选取参考点。

按保守取值:取最难灌处放水口所需的水头。

H=h0 + hw + hw泵 +

式中h0:参考点出水口中心线与地面高差,一般取0.15m。

hw:管网水头失损;

hw泵:水泵进出水管水头损失;

=参考点处地面程-水源设计水位(机井动水位)

按规范方法:计算管网进口处最大和最水工作水头的平均值,再计算水泵扬程。

2、选动力机

根据电源供应情况,确定动力机类型(电动机或柴油机)

根据水泵的配套功率选择动力机型号。

复习思考题:

(1)何为低压管道输水灌溉?适用情况如何?

(2)低压管道输水灌溉有何优缺点?

(3)简述低压管道灌溉系统的组成?

(4)如何布置低压管道灌溉系统?

(5)如何计算低压管灌的灌水定额和灌水周期?

(6)如何计算低压管灌系统的设计流量?

(7)如何确定低压管灌网管管径?

(8)如何确定低压管灌系统的扬程?

管道水力计算

管道水力计算 新大技术研究所:戴颂周 2012 年3 月2 日

目录 第一章单相液体管内流动和管道水力计算 (3) 第一节流体总流的伯努利方程 (3) 一、流体总流的伯努利方程 (3) 二、流体流动的水力损失 (3) 第二节流体运动的两种状态 (6) 一、雷诺实验 (6) 二、雷诺数 (7) 三、圆管中紊流的运动学特征—速度分布 (7) 四、雷诺数算图 (8) 第三节沿程水力损失 (9) 一、计算方法: (9) 第四节局部水力损失 (14) 第五节管道的水力计算 (17) 一、管道流体的允许流速(经济流速供参考) (17) 二、简单管道的水力计算 (19) 第二章玻璃钢管道水力计算 (20) 第一节玻璃钢管道水力计算公式 (20) 一、玻璃钢管道水力计算公式 (20) 二、管道水力压降曲线 (21) 三、常用液体压降的换算 (21) 四、常用管件压降 (23) 第二节油气集输管道压降计算 (24) 第三节玻璃钢输水管线的水力学特性 (25) 一、玻璃钢输水管水流量计算 (25) 二、玻璃钢输水管水击强度计算 (25) 第三章管道水力学计算中应注意的几个问题 (28) 一、热油管道的工艺计算 (28) 二、油水两相液体的工艺计算 (28) 三、地形变化时的水力坡降 (30)

第一章 单相液体管内流动和管道水力计算 第一节 流体总流的伯努利方程 一、流体总流的伯努利方程 1. 流体总流的伯努利方程式(能量方式) =++g c g P Z 22 1111αρw h g c g P Z +++22 2222αρ 2. 方程的分析 (1) 方程的意义 物理意义:不可压缩的实际流体在管道内流动时的能量守恒,或者说,上游机械能=下游机械能+能量的损失。 (2) 各项的意义 -21,z z 单位重量流体所具有的位能,或位置水头,m ,即起点、终点标高。-g p g p ρρ/,/21单位重量流体所具有的压能,或压强水头,m ;即P 1 P 2为起点、 终点液流压力,-g c g c 2/,2/2 22211αα单位重量流体所具有的动能,或速度水头, m ;即C 1 C 2为液流起、终点的流速。 -21,αα单位重量流体的动能修正系数;-w h 单位重量流体流动过程的水力损失,m 。 二、流体流动的水力损失 1. 水力损失的计算 液体所以能在管道中流动,是由于泵或自然位差提供的能量。液体流动过程中与各种管道、阀件、管件发生摩擦或撞击而产生阻力。同时液体质点间的互相摩擦和撞击也要产生阻力。为了使液体继续流动,就必须供给能量,以克服这些阻力。用于克服液流阻力的能量,就是管路摩阻损失。水力损失一般包括两项,即沿程损失 f h 与局部损失 m h 。因此,流体流动时上、下游截面间的总水力损失 w h 应等于两截面间的所有沿程损失与局部损失之和,即

电工术语低压电器国标

电工术语-低压电器GB/T 2900.18-92 GB/T 2900.18-92代替GB 2900.18-82 本标准等效采用国际电工辞汇IEV50(441)(1984)《开关设备、控制设备和熔断器》,并参照IEC947-1(1988)《低压开关设备和控制设备一般规则》、IEC269-1《低压熔断器一般要求》、IEC755(1983)《剩余电流动作保护器的一般要求》等标准中有关低压电器的名词术语。 1主题内容与适用范围 本标准规定了低压电器专用名词术语,包括一般术语、产品名称,结构与部件、设计参数和技术性能以及一般工作条件与试验要求等方面的术语。 本标准适用于低压电器产品及其标准制订、编制技术文件、编写和翻译专业手册、教材或书刊,供从事电工专业工作的生产、科研、使用和教学等有关部门的人员使用。 本标准所规定的术语中与GB2900-1《电工术语基本术语》的有关部分内容相协调;本标准中未作规定的术语,需要时可在有关标准中给予规定。 2引用标准 GB2900-1 电工术语基本术语 3一般术语 3.1低压电器 qpparatus 用于交流50Hz(或60Hz)、额定电压为1200V及以下、直流额定电压为1500V 及以下的电路内起通断、保护、控制或调节作用的电器(简称电器)。 distributing apparatus 主要用于配电电路,对电路及设备进行保护以及通断、转换电源或负载的电器。 control apparatus 主要用于控制受电设备,使其达到预期要求的工作状态的电器。 switchgear and controlgear 开关电器以及开关电器和相关联的控制、测量、保护及调节设备的组合的通称,也指由这些电器有设备以3及相关联的内连接线、辅助件、外壳和支持结构件的组合体。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

低压管道灌溉工程规划设计示例

低压管道灌溉工程规划设计示例 基本情况 某井灌区主要以粮食生产为主,地下水丰富,多年来建成了以离心泵为主要提水设备、 土渠输水的灌溉工程体系,为灌区粮食生产提供了可靠保证。 由于近几年来的连续干旱,灌 区地下水普遍下降, 为发展节水灌溉,提高灌溉水利用系数, 改离心泵为潜水泵提水, 改土 渠输水为低压管道输水。 井灌区内地势平坦,田、林、路布置规整 (见图4-27),单井控制面积。,地面以下1_0m 土层内为中壤土,平均容重/ m 。,田间持水率为24%。 工程范围内有水源井一眼, 位于灌区的中部。根据水质检验结果分析, 该井水质符合《农 田灌溉水质标准》(GB5084 — 2005),可以作为该工程的灌溉水源,水源处有 380V 三相电 源。据多年抽水测试,该井出水量为 55m 3/ h ,井径为220mm ,采用钢板卷管护筒,井深 20m ,静水位埋深 7m ,动水位埋深9m ,井口高程与地面齐平。 井灌区管灌系统的设计参数 (1) 灌溉设计保证率:75%。 (2) 管道系统水的利用率:95 %。 (3) 灌溉水利用系数:。 (4) 设计作物耗水强度:5mm / d 。 (5) 设计湿润层深:。 制度及工作制度 1 ?净灌水定额计算 采用公式 式中:h = , s =/m3, 2 ?设计灌水周期 采用公式 10Ed 式中:m = /hm , E d =5mm/d 代入得 T =(取T =10d) m 1000 s h( 1 2) 1 = x = , 2 = x =,代入得 m = / hm 2。

Q 0.85 50 h 3.工作制度 (1) 灌水方式。;考虑运行管理情况,采用各出口轮灌。 (2) 各出口灌水时间: 采用公式 式中:m = /hm 2, A =, °.85 , Q 50 m 3/h 则 t mA 空g 6.5 3.毛灌水定额 m 554.4 0.85 652.2 m 3/hm 2 4.灌水次数与灌溉定额 根据灌区内多年灌水经验,小麦灌水 额为 1911m 3/ hm 2。 4次,玉米灌水1次,则全年需灌水 5次,灌溉定 设计流量及管径确定 1?系统设计流量 采用公式 Q o amA Tt Q o amA 1 5544 12.7 41.8 Tt 0.85 11 18 因系统流量小于水井设计出水量,故取水泵设计出水量为 Q=50m3 / h ,灌区水源能满 足设计要求。 2?管径确定 采用公式 D 188巴 io °Y 18.8 110X 3PE 管材) mA Q 108.54 mm (选 取

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

第三节-低压管道灌溉Word版

第三节低压管道灌溉 一、低压管道灌溉概述 1.何谓低压管道灌溉 由低压管道输水进行地面灌溉的工程称为低压管道输水灌溉工程,简称为低压管道灌溉。 低压指一般不超过0.3MPa。 2.系统的组成 (1)水源:河流、水库、塘坝、水井等 (2)取水工程:水泵、电机等 (3)输配水管网系统:各级管道、分水设施、保护装置与附属设施等,其中管网由干管、支管组成 (4)田间灌水系统:分水口以下的田间灌水设施,如移动灌水软管、畦田、灌水沟 3.优点 (1)节水比渠道节水30%左右 (2)省地与渠灌相比节水耕地1%-2% (3)节能与喷灌微灌比,比较节能 (4)增产由于灌水及时,均匀,增产15% (5)省工省时输水快,供水及时,节水管理用工 (6)投资及运行费用低投资远低于喷灌和微灌 4. 缺点 (1)本质上仍是地面灌溉 (2)单个工程控制范围较小 二、给水栓与出水口 1、给水栓 连接灌水软管的装置 2、出水口

由地下输水管道向田间沟、畦配水的放水装置。一般情况出水口或给水栓间距为50~

100米 每个出水口(包括给水栓)控制面积在4~9亩 三、低压管灌系统的规划设计 (一)规划设计原则 (1)管道系统布置应与排水、道路、林带等规划紧密结合,统筹安排。 (2)合理确定支管间距与出水口间距,适应田间灌水要求。 (3)系统运行可靠,维护管理方便。 (4)节省投资与运行管理费用。因地制宜地选择管材,管线顺直,进行必要的方案比较。(三)管网布置 (1)水源(机井)位于田块一侧 常采用“一”字形、“T”形、“L”形三种形式。

(2)水源(机井)位于田块中心常采用“H”形、环形或一字型。 支管间距50~100m,单向灌取小值,双向灌取大值,畦宽多取0.8-2.5m。 (3)水源位于田块一侧,控制面积较大成近似方形地块,可布置成梳齿形、丰字型两种形式。

GB5025496电气装置安装工程低压电器施工及验收规范

GB50254-96电气装置安装工程低压电器施工及验收规范 1 总则 1.0.1 制订本规范的目的。 1.0.2 本规范适用于交流50Hz额定电压1200V及以下,直流额定电压为1500V及以下的电气设备安装和验收,此适用范围与新修订的国家标准“电工术语”GB2900—18相一致。这些通用电气设备系直接安装在建筑物或设备上的,与成套盘、柜内的电气设备安装和验收不同。盘、柜上的电器安装和验收,应符合有关规程、规范的规定。 特殊环境下的低压电器(如防爆电器、热带型、高原型、化工防腐型等),其安装方法尚应符合相应国家现行标准的有关规定。 1.0.3 强调按设计进行安装的基本原则。 1.0.4 妥善运输和保管设备及材料,以防其性能改变、质量变劣,是工程建设的重要环节之一。但运输、保管的具体规定不应由施工及验收规范制订,而应执行国家统一制订的有关规程。 1.0.5 设备和器材在安装前的保管是一项重要的前期工作,施工前做好设备及器材的保管工作便于以后的施工。 设备及器材的保管要求和措施,因其保管的时间长短而不同,故本条明确为设备到达现场后至安装前的保管,其保管期限不超过一年。对需要长期保管的设备和器材,应按其专门规定进行保管。 1.0.6 凡未经有关单位鉴定合格的设备或不符合国家现行技术标准(包括国家标准和地方或行业标准)的原材料、半成品、成品和设备,均不得使用和安装。 事先做好检验工作,为顺利施工提供良好条件,首先检查包装和密封应良好。对有防潮要求的包装应及时检查,发现问题及时处理,以防受潮影响施工。 每台设备出厂时,应附有产品合格证明书、安装使用说明书,复杂设备带有试验记录和装箱清单等。 规格不符合要求及时更换,附件、备件不全将影响以后的运行,故应及时发现及时解决。 1.0.8 施工现场中的安全技术规程有“电业安全工作规程”、“施工供用电规程”、“消防规程”等,都是施工过程中应遵守的现行有关安全技术标准,认真贯彻、执行这些标准对施工人员的人身安全和设备安全,是非常重要的。 1.0.9 为了避免现场施工混乱,加强施工的管理,实行文明施工,本条提出低压电器安装前,有关的建筑工程应具备的一些具体要求,以便给安装工作创造一个良好的施工条件,这对保证低压电器的安装质量,避免损失、协调电气安装与土建施工的关系是必须的。 本条主要是防止二次装修时造成设备损坏,避免尚未进行设备交接、无人维护造成设备的丢失等,故应采取临时性防护。

给水管网水力计算基础

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2 π==所以管径v Q v Q d /13.1/4== π。但是,仅依靠这个公式还不能完全解决问题,因为在流 量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =0.6-1.0m/s ; ——当直径d>400mm ,经济流速v=1.0~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 这一类的计算,首先应从各管段末端开始,向水塔方向求出各管段的流量,然后选用经

给水部分水力计算

2.2给水系统 2.2.1 给水用水定额及时变化系数 本设计建筑用水主要为住宅部分和商场卫生间。因为本商住楼一层商业区用 水量由市政供水管网直接供水,住宅区采用水泵并联分区供水的方式。参考《建 筑给水排水设计规范》 (GB50015-2003)的有关规定的用水量标准及时变化系数,本设计中采用的用 水量标 准见表2-1: 用水量表2-1 序号用水类别用水量标准使用单位数使用时间时变化系数 1 住宅200L/人.d 476人1 2 2.5 2 商场6L/m2.d 1210m224 1.5 注:在此住宅用水人数是按每套房 3.5 人计 2.2.2 最高日用水量 Q d=m·q d ? 式中:Q d——最高日用水量,L/d; m——用水单位数; q d——最高日生活用水定额,(L/人·d) 则: Q d1=m1·q d1=476×200=95200L/s=95.2m3/d Q d2=m2·q d2=1210×6=7260L/s=7.26m3/d 未预见用水量按总用水量的10%计算,即: Qd'=10%×(Q d1+Q d2)=(95.2+7.26)=10.25m3/d 2.2.3则本建筑的最高日用水量为: Q d=Q d1+Q d2+Q d'=95.2+7.26+10.25=112.71m3/d Q h=K h·Q p 式中: Q h——最大小时用水量,m3/h; K h ——小时变化系数; Q p ——平均小时用水量,m3/h 。 则: Q h1=K h1·Q p1=2.5×95.2÷24=9.58m3/h Q h2=K h2·Q p2=1.5×7.26÷24=0.45m3/h Q'=10%(Qh1+Q h2)=(Q h1+Q h2)=10%(9.58+0.45)=1.00m3/h Q h=Q h1+Q h2+Q'=9.58+0.45+1.00=11.00m3/h 2.2.4设计秒流量 进行给水管网最不利管段的水力计算,目的是算出各管段的设计秒流量,各

低压管道灌溉技术

(一)适用范围井灌区,山区的水泉、小水、小库、塘坝及其它形式的灌区都适用管灌。低压管道输水灌溉最适用于我国北方平原的井灌区,尤其适应我国现阶段生产责任制的种植方式。 (二)操作步骤 1. 管道规划设计主要根据出水量和输水距离等条件,合理选用适宜的管材、管径和长度,进行管道合理规划。要求线路短,控制面积大,输水通畅。地势平坦的地区,可沿田间道路、林网线路铺设;地势复杂的地区,应选择最佳路线。老灌区可沿原有土垄沟或顺耕作垄铺设。现使用较多的有塑料软管和硬管两种,主要从经济实力和使用寿命考虑。 (1)地下硬塑管道。地下硬塑输水管道,是很好的防渗输水管道,节省耕地,施工简单,管护容易,使用方便,配合三通、放水口、排水阀,完成输水、分水、放水和排水。①管道规划。管道布局要根据水泵流量,井位和地块形状而定。可从三方面考虑:一要尽量走高线,有利输水入畦;二要力求管道伸入田间双向配水,以缩短土垄沟长度;三要少拐弯,避免局部水头损失过大。多向同时输水的管道,应尽量对称布置,使各分管的口径、长度、位置等尽量相近,使水量均匀分布。输水管口径应小于133毫米,管道间距50~100米左右。②确定管径。适宜的管径是保证投资合理,取得最佳效益的首要条件。一般每小时出水量30立方米以下的,管径为100毫米,30~45立方米为125毫米,45~60立方米为150毫米,60~80立方米为175毫米。 (2)地下软塑管道①管道的规划设计。要根据机井的控制面积和地块形状,确定管道的长度和布置形式,可单向或双向配水。但要注意:一是尽量沿高处布管,以利向田间输水;二是尽可能走直线,少拐弯;三是尽量缩短主管道和田间土垄沟的输水长度。②管径选择及输水距离。管道首端压力以不大于0.3公斤/平方厘米(即3米水头)为宜;这时管中流速在每秒0.8~1.0米以上。高扬程水泵配软塑管输水,也不宜输水太远,以免水泵扬程增加过多,出水量减少过大。选择的软塑管与水泵配接后出水量减少值以不超过10%为宜。管径根据机井的出水量确定。如单井出水量每小时20立方米左右,可选直径120毫米的软管,输水距离150米;如输水更远时,可选直径160毫米的软管,输水距离最远达到600米。直径240毫米的软管可作输水主管道,下设3~4条支管配水,可选用直径120毫米以下的软塑管。管道每节长度应根据地块大小和畦田长短确定,输水段每节管长可超过50米,田间段每节10~20米。 2. 施工程序 (1)地下硬塑管道①开沟。按规划放线开挖,沟宽0.8米,深要超过冻土层,掌握沟直底平,挖出土放一边,以利接管操作。②接管。有插接、对焊和对口套箍3种,常用插接法,沿沟顺输水方向依次插接管道和三通。将下节管的一端放入烧热的机油或食油中加热软化后取出,用预制的圆台形木模将软化管口撑大,迅速将上节管插接10厘米以上,自然冷却即可。接三通注意立管竖直。 ③安装排水阀。可在铁三通横管上钻孔,用螺栓塞堵闭,也可在末端三通模管外端安装阀门。排水阀装好后要与土隔离,以免日久锈死。④接连结管。用软管、

低压管道输水灌溉工程技术规范水头损失

竭诚为您提供优质文档/双击可除 低压管道输水灌溉工程技术规范水头损 失 篇一:低压管道灌溉工程规划设计示例 4.4低压管道灌溉工程规划设计示例 4.4.1基本情况 某井灌区主要以粮食生产为主,地下水丰富,多年来建成了以离心泵为主要提水设备、土渠输水的灌溉工程体系,为灌区粮食生产提供了可靠保证。由于近几年来的连续干旱,灌区地下水普遍下降,为发展节水灌溉,提高灌溉水利用系数,改离心泵为潜水泵提水,改土渠输水为低压管道输水。 井灌区内地势平坦,田、林、路布置规整(见图4-27),单井控制面积12.7hm。,地面以下1_0m土层内为中壤土,平均容重14.8kn/m。,田间持水率为24%。 工程范围内有水源井一眼,位于灌区的中部。根据水质检验结果分析,该井水质符合《农田灌溉水质标准》,可以 作为该工程的灌溉水源,水源处有380V三相电源。据多年 抽水测试,该井出水量为55m3/h,井径为220mm,采用钢 板卷管护筒,井深20m,静水位埋深7m,动水位埋深9m,井

口高程与地面齐平。 4.4.2井灌区管灌系统的设计参数 (1)灌溉设计保证率:75%。(2)管道系统水的利用率:95%。(3)灌溉水利用系数:0.85。(4)设计作物耗水强度:5mm/d。(5)设计湿润层深:0.55m。 4.4.3制度及工作制度 1.净灌水定额计算采用公式式中:h=0.55m,2.设计灌水周期代入得m=554.4m3/hm2。 (低压管道输水灌溉工程技术规范水头损 失)m1000sh(12) s=14.8kn/m3,1=0.24×0.95=0.228,2=0.24× 0.65=0.1560, t理 采用公式式中:m=554.4m3/hm,3.毛灌水定额 m 10ed ed=5mm/d代入得t=11.09d(取t=10d) m m 554.4

空调水管水力计算

一、空调水系统的设计原则: 1、力求水力平衡; 2、防止大流量小温差; 3、水输送符合规范要求; 4、变流量系统宜采用变频调节; 5、要处理好水系统的膨胀与排气; 6、解决好水处理与水过滤; 7、切勿忽视管网的保冷与保温效果。 二、冷冻水、冷却水管的计算 1、压力式水管道管径计算 D=103πνL 4(mm ) 公式中 L------水流量(m 3/s ) v-------计算流速(m/s ) 一般水管系统的管内水流速可参考表13-12的推荐值取用 表13-13选择。 2、直线管段的阻力计算 Δh=d l λ×2 2v ρ=R ×l 式中Δh---长度为l (m )的直管段的摩擦阻力(Pa ) λ---水与管内壁间的摩擦阻力系数; l----直管段的长度(m ); d----管内径(m ); ρ----水的密度(kg/m 3),当4℃时为1000kg/m 3 R-----长度为1m 直管段的摩擦阻力(Pa/m ) 三、空调设备流量计算 由Q=CM ΔT 可得出:M=Q/C*ΔT (Kg/S ) Q-----空调制冷或制热量(Kw ) C-----水的比热容,4.2KJ/Kg*℃ ΔT---进出空调设备的供回水温差,ΔT =T G -T H 四、风机盘管选择 1、计算室内空调冷负荷Q (W ),简单依单位面积指标及经验估算。 2、考虑机组的盘管用后积垢积尘对传热的影响,对空调冷负荷要进行修正,冷负荷应乘以系数a 仅冷却使用 a=1.10 作为加热、冷却两用 a=1.20 仅作为加热用 a=1.15 3、依据空调冷负荷选择风机盘,一般按中档运行能力选择。 4、校核风量:L=) (3600s n h h Q -ρ L-----风机盘管名义风量(m 3/h )

电气装置安装工程-低压电器施工及验收规范GB50254

电气装置安装工程低压电器施工及验收规范GB50254-96 1 总则 1.0.1 为保证低压电器的安装质量,促进施工安装技术的进步,确保设备安装后的安全运行,制订本规范。 1.0.2 本规范适用于交流50Hz额定电压1200V及以下、直流额定电压为1500V及以下且在正常条件下安装和调整试验的通用低压电器。不适用于无需固定安装的家用电器、电力系统保护电器、电工仪器仪表、变送器、电子计算机系统及成套盘、柜、箱上电器的安装和验收。 1.0.3 低压电器的安装,应按已批准的设计进行施工 1.0.4 低压电器的运输、保管,应符合现行国家有关合产品技术 标准的规定;当产品有特殊要求时,应符 文件的要求。 应为一年及以下;当超期保管时,应符合设 1.0.5 低压电器设备和器材在安装前的保管期限,备和器 材保管的专门规定。 1.0.6 采用的设备和器材,均应符合国家现行技术标准的规定,并应有合格证件,设备应有铭 [Irfcr 牌。 1.0.7 设备和器材到达现场后,应及时做下列验收检查: 1.0.7.1 包装和密封应良好。 1.0.7.2 技术文件应齐全,并有装箱清单。 1.0.7.3 按装箱清单检查清点,规格、型号,应符合设计要求;附件、备件应齐全。 1.0.7.4 按本规范要求做外观检查。 1.0.8 施工中的安全技术措施,应符合国家现行有关安全技术标准及产品技术文件的规定。 1.0.9 与低压电器安装有关的建筑工程的施工,应符合下列要求: 1.0.9.1 与低压电器安装有关的建筑物、构筑物的建筑工程质量,应符合国家现行的建筑工程施工及验收规范中的有关规定。当设备或设计有特殊要求时,尚应符合其要求。 1.0.9.2 低压电器安装前,建筑工程应具备下列条件: (1) 屋顶、楼板应施工完毕,不得渗漏。 (2) 对电器安装有妨碍的模板、脚手架等应拆除,场地应清扫干净。 (3) 室内地面基层应施工完毕,并应在墙上标出抹面标高 (4) 环境湿度应达到设计要求或产品技术文件的规定。

管道摩擦阻力计算

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2. 规范中水力计算公式的规定 3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力 计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广.

低压电器标准化

低压电器标准化 1.低压电器标准体系我国低压电器行业经过50多年的发展,从企业、产品、标准、检测等方面已形成比较完整的体系。我国低压电器标准体系依据IEC(国际电工委员会)体系建立,在上世纪90年代就已经完成同IEC标准的接轨。低压电器的国家标准基本以等同、修改采用国际标准和国外先进标准为主,同时结合我国的实际情况,如地理环境差异、技术发展和应用情况等因素制定了一批自主创新的、符合我国发展实情的技术标准。目前我国低压电器行业共有国家标准62项,行业标准38项,这些标准的发布实施,能够为企业提供设计、生产和认证依据,能够较好满足市场需求和国民经济发展需要。 2.低压电器标准化发展 ⑴现有专业技术委员会情况 我国低压电器行业目前有4个全国性技术标委会和1个分技术委员会,秘书处都设在上海电器科学研究所(集团)有限公司(简称上电科)。 全国低压电器标准化技术委员会(SAC/TC189)主要归口低压配电和控制电器,家用断路器及类似设备的标准,对口IEC/SC17B低压开关设备和控制设备、IEC/SC23E家用断路器及类似设备等技术领域。;全国熔断器标准化技术委员会(SAC/TC340)主要归口熔断器标准,对口IEC/TC32熔断器领域;全国熔断器标委会低压熔断器分技术委员会主要归口制定低压熔断器标准,对口IEC/SC32B低压熔断器技术领域;全国电器设备网络通信接口标准化技术委员会(SAC/TC411),主要归口电器设备与网络之间的通信协议、通信规约等技术领域;全国低压设备绝缘配合标准化技术委员会(SAC/TC417),主要归口低压绝缘配合理论研究与应用标准,对口IEC/ TC109低压设备绝缘配合技术领域。 这些专业技术委员会在国际标准的研究与参与、产品技术发展前沿动态的研究和传播、国家标准行业标准的制修订、标准宣贯、监督实施、技术咨询等方面发挥了巨大作用。上电科作为上述标委会的秘书处承担单位,长期承担了我国的低压电器标准化工作,现行的百余份国家标准和行业标准,绝大部分由上电科负责制修订,同时在国内外标准化研究、技术创新、产品研发等方面引领了我国低压电器行业的发展,在行业中的具有很高的威信。 ⑵低压电器标准化工作 ①标准制修订工作 标准制修订工作作为技术积累、技术创新成果 扩散和提高技术创新效率的平台,是标准化工作的重要组成部分。制定标准、实施标准,实质上就是推广应用先进技术、消化吸收先进技术、提高自主创新能力的过程。作为在沪标委会的秘书处承担单位,上电科紧贴行业发展需求,本着为上海市、为长三角提供优质标准化服务的长远目标,坚持以企业为主体、突出企业参与的原则,带领行业内企业有重点的开展了系列标准制修订工作,仅2008年一年,上电科就承担了32项国家标准的制修订任务,并组织了40余家低压电器企业特别是长三角地区的企业参与到标准的制修订工作中,完成了一批能够体现低压电器产品核心技术、满足低压电器行业发展需求的高水平的标准。

低压管道灌溉技术

低压管道灌溉技术 (一)适用范围井灌区,山区的水泉、小水、小库、塘坝及其它形式的灌区都适用管灌。低压管道输水灌溉最适用于我国北方平原的井灌区,尤其适应我国现阶段生产责任制的种植方式。 (二)操作步骤 1. 管道规划设计主要根据出水量和输水距离等条件,合理选用适宜的管材、管径和长度,进行管道合理规划。要求线路短,控制面积大,输水通畅。地势平坦的地区,可沿田间道路、林网线路铺设;地势复杂的地区,应选择最佳路线。老灌区可沿原有土垄沟或顺耕作垄铺设。现使用较多的有塑料软管和硬管两种,主要从经济实力和使用寿命考虑。 (1)地下硬塑管道。地下硬塑输水管道,是很好的防渗输水管道,节省耕地,施工简单,管护容易,使用方便,配合三通、放水口、排水阀,完成输水、分水、放水和排水。①管道规划。管道布局要根据水泵流量,井位和地块形状而定。可从三方面考虑:一要尽量走高线,有利输水入畦;二要力求管道伸入田间双向配水,以缩短土垄沟长度;三要少拐弯,避免局部水头损失过大。多向同时输水的管道,应尽量对称布置,使各分管的口径、长度、位置等尽量相近,使水量均匀分布。输水管口径应小于133毫米,管道间距50~100米左右。 ②确定管径。适宜的管径是保证投资合理,取得最佳效益的首要条件。

一般每小时出水量30立方米以下的,管径为100毫米,30~45立方米为125毫米,45~60立方米为150毫米,60~80立方米为175毫米。 (2)地下软塑管道①管道的规划设计。要根据机井的控制面积和地块形状,确定管道的长度和布置形式,可单向或双向配水。但要注意:一是尽量沿高处布管,以利向田间输水;二是尽可能走直线,少拐弯;三是尽量缩短主管道和田间土垄沟的输水长度。②管径选择及输水距离。管道首端压力以不大于0.3公斤/平方厘米(即3米水头)为宜;这时管中流速在每秒0.8~1.0米以上。高扬程水泵配软塑管输水,也不宜输水太远,以免水泵扬程增加过多,出水量减少过大。选择的软塑管与水泵配接后出水量减少值以不超过10%为宜。管径根据机井的出水量确定。如单井出水量每小时20立方米左右,可选直径120毫米的软管,输水距离150米;如输水更远时,可选直径160毫米的软管,输水距离最远达到600米。直径240毫米的软管可作输水主管道,下设3~4条支管配水,可选用直径120毫米以下的软塑管。管道每节长度应根据地块大小和畦田长短确定,输水段每节管长可超过50米,田间段每节10~20米。

电气装置安装工程低压电器施工及验收规范81698

电气装置安装工程低压电器施工及验收规范 主编部门:中华人民共和国电力工业部 批准部门:中华人民共和国建设部 施行日期:1996年12月1日 关于发布《电气装置安装工程低压电器施工及验收规范》等四项国家标准的通知 建标[1996]337号 根据国家计委计综[1986]2630号文和建设部(91)建标技字第6号文的要求,由电力工业部会同有关部门共同修订的《电气装置安装工程低压电器施工及验收规范》等四项标准,已经有关部门会审。现批准《电气装置安装工程低压电器施工及验收规范》GB50254—96、《电气装置安装工程电力变流设备施工及验收规范》GB50255—96、《电气装置安装工程起重机电气装置施工及验收规范》GB50256—96和《电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范》GB50257—96为强制性国家标准,自一九九六年十二月一日起施行。原《电气装置安装工程施工及验收规范》GBJ232—82中第七篇“低压电器篇”、第六篇“硅整流装置篇”、第八篇“起重机电气装置篇”、第十六篇“爆炸和火灾危险场所电气装置篇”同时废止。 本规范由电力工业部负责管理,具体解释等工作由电力部电力建设研究所负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九六年六月五日 1总则 1.0.1为保证低压电器的安装质量,促进施工安装技术的进步,确保设备安装后的安全运行,制订本规范。 1.0.2本规范适用于交流50Hz额定电压1200V及以下、直流额定电压为1500V及以下且在正常条件下安装和调整试验的通用低压电器。不适用于无需固定安装的家用电器、电力系统保护电器、电工仪器仪表、变送器、电子计算机系统及成套盘、柜、箱上电器的安装和验收。 1.0.3低压电器的安装,应按已批准的设计进行施工。 1.0.4低压电器的运输、保管,应符合现行国家有关标准的规定;当产品有特殊要求时,应符合产品技术文件的要求。

低压管道灌溉工程规划设计示例

4.4低压管道灌溉工程规划设计示例 4.4.1基本情况 某井灌区主要以粮食生产为主,地下水丰富,多年来建成了以离心泵为主要提水设备、土渠输水的灌溉工程体系,为灌区粮食生产提供了可靠保证。由于近几年来的连续干旱,灌区地下水普遍下降,为发展节水灌溉,提高灌溉水利用系数,改离心泵为潜水泵提水,改土渠输水为低压管道输水。 井灌区内地势平坦,田、林、路布置规整(见图4-27),单井控制面积12.7hm 。,地面以下1_0m 土层内为中壤土,平均容重14.8kN /m 。,田间持水率为24%。 工程范围内有水源井一眼,位于灌区的中部。根据水质检验结果分析,该井水质符合《农田灌溉水质标准》(GB5084—2005),可以作为该工程的灌溉水源,水源处有380V 三相电源。据多年抽水测试,该井出水量为55m 3/h ,井径为220mm ,采用钢板卷管护筒,井深20m ,静水位埋深7m ,动水位埋深9m ,井口高程与地面齐平。 4.4.2井灌区管灌系统的设计参数 (1)灌溉设计保证率:75%。 (2)管道系统水的利用率:95%。 (3)灌溉水利用系数:0.85。 (4)设计作物耗水强度:5mm /d 。 (5)设计湿润层深:0.55m 。 4.4.3制度及工作制度 1.净灌水定额计算 采用公式 式中:=0.55m ,=14.8kN /m3,=0.24×0.95= 0.228,=0.24×0.65= 0.1560, 代入得= 554.4m 3/hm 2。 2.设计灌水周期 采用公式 式中:= 554.4m3/hm ,=5mm/d 代入得=11.09d(取=10d) 3.毛灌水定额 m 3/hm 2 4.灌水次数与灌溉定额 根据灌区内多年灌水经验,小麦灌水4次,玉米灌水1次,则全年需灌水5次,灌溉定 ) (100021ββγ-=h m s h s γ1β2βm d E m T 10= 理m d E T T 2.65285.04 .554== = η m m

低压电器施工及验收规范

低压电器施工及验收规范 第一章、总则 1.0.1 为保证低压电器的安装质量,促进施工安装技术的进步,确保设备安装后的安全运制订本规范。 1.0.2 本规范适用于交流50Hz 额定电压1200V 及以下、直流额定电压为1500V 及以下正常条件下安装和调整试验的通用低压电器。不适用于无需固定安装的家用电器、电力系保护电器、电工仪器仪表、变送器、电子计算机系统及成套盘、柜、箱上电器的安装和验1.0.3 低压电器的安装,应按已批准的设计进行施工。 1.0.4 低压电器的运输、保管,应符合现行国家有关标准的规定;当产品有特殊要求时符合产品技术文件的要求。 1.0.5 低压电器设备和器材在安装前的保管期限,应为一年及以下;当超期保管时,应设备和器材保管的专门规定。 1.0.6 采用的设备和器材,均应符合国家现行技术标准的规定,并应有合格证件,设备铭牌。 1.0.7 设备和器材到达现场后,应及时做下列验收检查: 1.0.7.1 包装和密封应良好。 1.0.7.2 技术文件应齐全,并有装箱清单。 1.0.7.3 按装箱清单检查清点,规格、型号,应符合设计要求;附件、备件应齐全。 1.0.7.4 按本规范要求做外观检查。 1.0.8 施工中的安全技术措施,应符合国家现行有关安全技术标准及产品技术文件的规定。 1.0.9 与低压电器安装有关的建筑工程的施工,应符合下列要求: 1.0.9.1 与低压电器安装有关的建筑物、构筑物的建筑工程质量,应符合国家现行的建筑程施工及验收规范中的有关规定。当设备或设计有特殊要求时,尚应符合其要求。 1.0.9.2 低压电器安装前,建筑工程应具备下列条件: (1)屋顶、楼板应施工完毕,不得渗漏。 (2)对电器安装有妨碍的模板、脚手架等应拆除,场地应清扫干净。 (3)室内地面基层应施工完毕,并应在墙上标出抹面标高。 (4)设备基础和构架应达到允许设备安装的强度;焊接构件的质量应符合要求,基础槽钢应固定可靠。 (5)预埋件及预留孔的位置和尺寸,应符合设计要求,预埋件应牢固。 1.0.9.3 设备安装完毕,投入运行前,建筑工程应符合下列要求: (1)门窗安装完毕。 (2)运行后无法进行的和影响安全运行的施工工作完毕。 (3)施工中造成的建筑物损坏部分应修补完整。 1.0.10 设备安装完毕投入运行前,应做好防护工作。 1.0.11 低压电器的施工及验收除按本规范的规定执行外,尚应符合国家现行的有关标准、规范的规定。 第二章、一般规定 2.0.1 低压电器安装前的检查,应符合下列要求: 2.0.1.1 设备铭牌、型号、规格,应与被控制线路或设计相符。 2.0.1.2 外壳、漆层、手柄,应无损伤或变形。 2.0.1.3 内部仪表、灭弧罩、瓷件、胶木电器,应无裂纹或伤痕。

相关文档
最新文档