热力学-5火用分析基础解析

工程热力学

5

教师:李建明电话:85407591 电子信箱:lijmo@https://www.360docs.net/doc/478003443.html,

2010年2月

5 火用分析基础5.1 火用和火无的基本概念?热能中有可用能和不可用能

?热能转换机械能的最大能力为多大?受什么限制?

?能量不仅有数量,还有品质?可用能——就是可以连续地全部转变为功的能

?不可用能——不可能转变为功的能

?按照转变为功的可能性,可以把能分为可用能和不可用能两大类

?电能、机械能在理论上可以百分之百地转化为其他形式的能,所以是可用能

?大气、海洋等环境物体的热力学能是不可用能

?火用——能量的做功能力

?如何确定火用

–以给定环境为基准,在该环境状态下火用值为零

–做功过程是完全可逆过程,这样才能获得理论功

–过程中,除环境外,无其他热源或功源参与作用,功全部由物质的能量转化而得

?火用是系统由任一状态经可逆过程变化到与给定环境状态相平衡时所做的最大理论功

?火无是一切不能转换为火用的能量

?任何能量 E 都由火用 E x 和火无 A n 两部分组成 n

x A E E +=n

x a e e +=

?能量的可转换性、火用和

火无

–对于可无限转换的能量,火无等于 0,如机械能、电能全为火用,即能量等于火用

–对于不可转换的能量,火用等于 0,如环境介质中的热能全为火无

?系统出现不可逆过程,d s

g 大

于 0,必然有机械能损失,体系做功能力降低,即必然有火用损失,有火无增量?火用损(或火无增)可以作

为不可逆尺度的又一个度量

?5.2 火用值的计算

–火用的基本含义是表示系统

的理论做功能力

–系统之所以具有做功能力,是由于系统与环境之间存在着某种不平衡势

火用

热量火用

冷量火用

物质或物流火用

功源火用

电力、水力、风力

地力、波浪

化学、物理

动能、位能

扩散

5.2.1 功源火用

?电能、水力能、风能等功源可以百分之百地被用以完成功,都可以直接转化为机械能,理论上功源火用值与功源总能量相等

5.2.2 热量火用

?定义

–温度为 T 0 的环境条件下,系统(T > T 0 )所提供的热量中可转化为有用功的最大值,用 E x, Q 表示

?如果以环境为冷源,系统为热源,依照热力学第二定律,热量火用和热量火无分别为 Q T T E Q A Q T T E Q

x Q n Q x δδδδδ1δ0,,0,=-=??

? ??-=

S

T E Q A S

T Q E Q x Q n Q x ?=-=?-=0,,0,?对于循环,由于各过程是可逆的,热量火用和热量火无分别为

系统以恒温 T 供热时,公式同上

p

v 2

1 5 4 3 6 T s

2 1 5 4

3 6 E

xQ E xQ A nQ

A nQ

?热量火用是热量Q所能转换的最大有用功,其值取决于热量Q 的大小,传热时的温度和环境温度

?当环境状态一定时,单位热量的火用值只是温度T的单值函数

?高温下的热能较低温下的热能具有更大的可用性,可完成更多的有用功

?热量火无除了与T

0有关外,

还与 S 有关

?热量火用是能量本身的属性,E x, Q 与Q的方向相同

?系统吸热时,Q 为正值,

d E

也为正值,表示系统也xQ

吸收了火用(外界消耗功),反之,系统放热时,也放

出了火用(外界得到功)

?热量火用是过程量,环境状态一定时还与系统供热温度变化规律有关

电路分析基础作业参考解答

电路分析基础作业参考 解答 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。

(b )解:标注电流如图(b )所示。 由KCL 有 故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150=。 补充题: 1. 如图1所示电路,已知图1 解:由题得 I 3 2=0

第十章_热力学定律 知识点全面

第十章热力学定律 知识网络: 一、 功、热与内能 ●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U 表示。 ●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ●热传递的方式:热传导、对流热、热辐射。 二、 热力学第一定律、第二定律 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式u W Q ?=+ 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 一、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU ,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU ,物体吸收的热量等于物体内能的增加。 若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。

对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解: ①在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律 ●能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ●第一类永动机不可制成是因为其违背了热力学第一定律 ●第二类永动机不可制成是因为其违背热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)●熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展,至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵的意义上说,系统自发变化时总是向着熵增加的方向发展,不会使熵减少。 ③任何宏观物质系统都有一定量的熵,熵也可以在系统的变化过程中产生或传递。 ④一切自然过程的发生和发展中,总熵必定不会减少。 ●能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。 四、能源和可持续发展: ●能源的重要性:能源是社会存在与发展永远不可或缺的必需品,是国民经济运动的物质基础,它与材料、信息构成现代社会的三大支柱。 ●化石能源:人们把煤、石油叫做化石能源。 ●生物质能:生物质能指绿色植物通过光合作用储存在生物体内的太阳能,储存形式是生物分子的化学能。 ●风能:为了增加风力发电的功率,通常把很多风车建在一起,我国新疆、内蒙古等地已经开始大规模利用风力发电。

热力学复习知识点汇总

概 念 部 分 汇 总 复 习 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝热过程中内能U 是一个态函数: A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形 式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分 形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公式一比较 即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 公式:nR C C V p =- 14、绝热过程的状态方程: const =γpV ;const =γ TV ; const 1 =-γ γT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率2 11T T - =η,逆循环 为卡诺制冷机,效率为2 11T T T -= η (只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 17、无摩擦的准静态过程是可逆过程。 18、卡诺定理:所有工作于两个一定温度T 1与T 2之间的热机,以可逆机的效率为最高。并且所有的可逆机 的效率η都相等21 1T T - =η ,与工作物质无关,只与热源温度有关。 19、热机的效率:1 21Q Q -=η,Q 1为热机从高温热源吸收的热量,Q 2 为热机在低温热源放出的热量。 20、克劳修斯等式与不等式:02 211≤+T Q T Q 。 21、可逆热力学过程0=?T dQ ,不可逆热力学过程0

10-热力学基础习题解答

本 章 要 点 1.体积功 2 1 d V V W p V = ? 2.热力学第一定律 21Q E E W E W =-+=?+ d d d Q E W =+ 3. 气体的摩尔热容 定容摩尔热容 2V i C R = 定压摩尔热容 (1)2 P i C R =+ 迈耶公式 C P =R+C V 4.循环过程 热机效率 2111Q W Q Q η= =- 制冷系数 22 12 Q T e W T T = =- 5. 卡诺循环 卡诺热机效率 211 1T W Q T η= =- 卡诺制冷机制冷系数 22 12 Q T e W T T = =- 6. 热力学第二定律定性表述:开尔文表述、克劳修斯表述;热力学第二定律的统计意义; 7. 熵与熵增原理 S=klnW 1 2ln W W k S =?≥0 2 211 d ( )Q S S S T ?=-= ? 可逆 习题10 一、选择题 10. A 二、填空题 1. 15J 2. 2/5 3. 4 1.610J ? 4. ||1W -; ||2W - 5. J ; J 6. 500 ;700 7. W /R ; W 2 7

8. 1123 V p ;0 9. 22+i ; 2 +i i 10. 8.31 J ; J 三、计算题 1. -700J 2. (1)T C =100 K; T B = 300 K . (2) 400J AB W =; W BC = 200 J; W CA =0 (3)循环中气体总吸热 Q = 200 J . 3. (1) W da =-×103J ; (2) ΔE ab =×104 J ; (3) 净功 W = ×103 J ; (4)η= 13% 4. (1)10%η= ;(2)4 310bc W J =? 习题10 一 选择题 1. 1摩尔氧气和1摩尔水蒸气(均视为刚性分子理想气体),在体积不变的情况下吸收相等的热量,则它们的: (A )温度升高相同,压强增加相同。 (B )温度升高不同,压强增加不同。 (C )温度升高相同,压强增加不同。 (D )温度升高不同,压强增加相同 。 [ ] 2. 一定量理想气体,从状态A 开始,分别经历等压、等温、绝热三种过程(AB 、AC 、AD ),其容积由V 1都膨胀到2V 1,其中 。 (A) 气体内能增加的是等压过程,气体内能减少的的是等温过程。 (B) 气体内能增加的是绝热过程,气体内能减少的的是等压过程。 (C) 气体内能增加的是等压过程,气体内能减少的的是绝热过程。 (D) 气体内能增加的是绝热过程,气体内能减少的的是等温过程。 [ ] 3. 如图所示,一定量的理想气体,沿着图10-17中直线从状态a ( 压强p 1 = 4 atm , 体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4 L ).则在此过程中: (A ) 气体对外做正功,向外界放出热量. (B ) 气体对外做正功,从外界吸热. (C ) 气体对外做负功,向外界放出热量. (D ) 气体对外做正功,内能减少. [ ] 图10-17 图10-18 p (atm) V (L) 0 1 2 3 4 1 2 3 4 a b p O

热力学的基础知识

热力学的基础知识

热力学的基础知识 1、水和水蒸汽有哪些基本性质? 答:水和水蒸汽的基本物理性质有:比重、比容、汽化潜热、比热、粘度、温度、压力、焓、熵等。水的比重约等于1(t/m3、kg/dm3、g/cm3)蒸汽比容是比重的倒数,由压力与温度所决定。水的汽化潜热是指在一定压力或温度的饱和状态下,水转变成蒸汽所吸收的热量,或者蒸汽转化成水所放出的热量,单位是: KJ/Kg。水的比热是指单位质量的水每升高1℃所吸收的热量,单位是KJ/ Kg·℃,通常取4.18KJ。水蒸汽的比热概念与水相同,但不是常数,与温度、压力有关。 2、热水锅炉的出力如何表达? 答:热水锅炉的出力有三种表达方式,即大卡/小时(Kcal/h)、吨/小时(t/h)、兆瓦(MW)。 (1)大卡/小时是公制单位中的表达方式,它表示热水锅炉每小时供出的热量。 (2)"吨"或"蒸吨"是借用蒸汽锅炉的通

俗说法,它表示热水锅炉每小时供出的热量相当于把一定质量(通常以吨表示)的水从20℃加热并全部汽化成蒸汽所吸收的热量。 (3)兆瓦(MW)是国际单位制中功率的单位,基本单位为W (1MW=106W)。正式文件中应采用这种表达方式。 三种表达方式换算关系如下: 60万大卡/小时(60×104Kcal/h)≈1蒸吨/小时〔1t/h〕≈0.7MW 3、什么是热耗指标?如何规定? 答:一般称单位建筑面积的耗热量为热耗指标,简称热指标,单位w/m2,一般用qn表示,指每平方米供暖面积所需消耗的热量。黄河流域各种建筑物采暖热指标可参照表2-1

上表数据只是近似值,对不同建筑结构,材料、朝向、漏风量和地理位置均有不同,纬度越高的地区,热耗指标越高。 4、如何确定循环水量?如何定蒸汽量、热量和面积的关系? 答:对于热水供热系统,循环水流量由下式计算: G=[Q/c(tg-th)]× 3600=0.86Q/(tg-th)式中:G - 计算水流量,kg/h

知识点热力学与料热力学部分

知识点热力学与料热力学部分

————————————————————————————————作者:————————————————————————————————日期:

热力学与材料热力学部分 热力学:用能量转化和守恒的观点来研究物质热运动的客观规律;以实验事实为基础,总结研究系统状态变化过程中的功能转化和热力学过程的方向性问题。 热力学研究能(energy)和能的转变(transformations)规律 材料研究的每个过程离不开热力学 1、材料服役性能 2、材料制备 3、材料微观组织 材料热力学是热力学基本原理在材料设计、制备与使用过程中的应用。 材料热力学是材料科学的重要基础之一。 材料学的核心问题是求得材料成分-组织结构-各种性能之间的关系。问题的前半部分,即材料成分-组织结构的关系要服从一个基本的科学规则,这个基本规则就是材料热力学。在材料的研究逐渐由“尝试法”走向“定量设计”的今天,材料热力学的学习尤其显得重要。 材料热力学是经典热力学和统计热力学理论在材料研究方面的应用,其目的在与揭示材料中的相和组织的形成规律。固态材料中的熔化与凝固以及各类固态相变、相平衡关系和相平衡成分的确定、结构上的物理和化学有序性以及各类晶体缺陷的形成条件等是其主要研究对象。 现代材料科学发展的主要特征之一是对材料的微观层次认识不断进步。利用场离子显微镜和高分辨电子显微镜把这一认识推进到了纳米和小于纳米的层次,已经可以直接观察到从位错形态直至原子实际排列的微观形态。这些成就可能给人们造成一种误解,以为只有在微观尺度上对材料的直接分析才是深刻把握材料组织结构形成规律的最主要内容和最主要途径;以为对那些熵、焓、自有能、活度等抽象概念不再需要更多的加以注意。其实不然,不仅热力学的主要长处在于它的抽象性和演绎性,而且现代材料科学的每一次进步和发展都一直受到经典热力学和统计热力学的支撑和帮助。材料热力学的形成和发展正是材料科学走向成熟的标志之一。工业技术的进步在拉动材料热力学的发展,而材料热力学的发展又在为下一个技术进步准备基础和条件。 材料热力学是热力学理论在材料研究、材料生产活动中的应用。因此这是一门与实践关系十分密切的科学。学习这门课程,不能满足于理解书中的内容,而应当多进行一些对实际材料问题的分析与计算,开始可以是一些简单的、甚至是别人已经解决的问题,然后由易渐难,循序渐进。通过不断的实际分析与计算,增进对热力学理论的理解,加深对热力学的兴趣,进而有自己的心得和成绩。 热力学最基本概念: 1、焓变 enthalpy

电路分析基础[第五章动态电路的分析]课程复习

第五章动态电路的分析 5.2.1 动态电路初始条件的确立 一、初始条件 动态电路中,一般将换路时刻记为t=0,换路前的一瞬间记为t=0_,换路后的一瞬间记为t=0+,则电路变量在t=0+的值,称为初始值,也称初始条件。 二、换路定则 如果在换路前后,电容电流或电感电压为有限值,则换路时刻电容电压和电 感电流不跃变,即u C (0_)=u C (0+),i L (0_)=i L (0+)。 三、初始条件的计算 (1)由换路前最终时刻即t=0_时的电路,求出电路的独立状态变量u C (0_) 和i L (0_)。从而根据换路定则得到u C (0+)和i L (0+); (2)画出t=0+时的等效电路。在这一等效电路中,将电容用电压为u C (0+) 的直流电压源代替,将电感用电流为i L (0+)的直流电流源代替; (3)由上述等效电路,用直流电路分析方法,求其他非状态变量的各初始值。 5.2.2 动态电路的时域分析法 5.2.2.1一阶电路的响应 一阶电路是指只含有一个独立储能元件的动态电路。 一、一阶电路的零输入响应 零输入响应是指动态电路无输入激励情况下,仅由动态元件初始储能所产生的响应,它取决于电路的初始状态和电路的特性。因此在求解这一响应时,首先必须掌握电容电压或电感电流的初始值,至于电路的特性,对一阶电路来说,则是通过时间常数τ来体现的。零输入响应都是随时间按指数规律衰减的,这是因为在没有外施激励的条件下,原有的储能总是要衰减到零的。在RC电路中,电

容电压总是从u C (0+)单调地衰减到零的,其时间常数τ=RC,即u C (t)=u C (0+)e-t/ τ;在RL电路中电感电流总是从i L ,(0+)单调地衰减到零的,其时间常数τ=L /R,即i L (t)=i L (0+)e-t/τ,掌握了u C (t)和i L (t)后,就可以用置换定理将电 容用电压值为u C (t)的电压源置换,将电感用电流值为i L (t)的电流源置换,再 求电路中其他支路的电压或电流即可。 二、一阶电路的零状态响应 零状态响应是动态电路在动态元件初始储能的零为情况下,仅由输入激励所引起的响应。随着时间的增加,动态元件储能由零开始按指数规律上升至稳态值,即电容电压和电感电流都是从它的零值开始按指数规律上升到达它的稳态值的,时间常数r仍与零输入响应时相同。在直流电路中,当电路到达稳态时,电容相 当于开路,电感相当于短路,由此可以确定电容或电感的稳态值,则可得u C (t)=u C (∞)(1-e-t/τ),i L (t)=i L (∞)(1-e-t/τ),掌握了u C (t)和i L (t)后,就可以用置换 定理将电容用电压值为u C (t)的电压源置换,将电感用电流值为i L (t)的电流源 置换,再求电路中其他支路的电压或电流即可。 三、一阶电路的全响应 由储能元件的初始储能和独立电源共同引起的响应,称为全响应。 1.全响应及其分解 (1)全响应分解为强制响应和自由响应之和,或稳态响应和瞬态响应之和即 u C (t)=(U -U S )e -t/τ +U S (t≥0) =固有响应+强制响应 =瞬态响应+稳态响应 式中第一项是对应微分方程的通解,称为电路的自由响应或固有响应,其变化规律取决于电路结构和参数,与输入无关,其系数需由初始状态与输入共同确定。自由响应将随时间增长而按指数规律衰减到零,所以又称为瞬态响应。

火用分析方法及其应用

[?]分析方法及其应用 摘要:本文从?的定义出发,给出了?的定义以及分析的意义。?传递研究?的传递和转换规律,系经典热力学在从热静力学向热动力学过渡的过程中产生的研究新领域。阐述了静态的?分析方法的特点,分析了?传递的产生与发展现状,指出?传递的学科属性及其应用。 关键词:热力学;?;?分析;?传递 1 引言 热力学第一定律“能量守恒定律”只是从数量上说明了能量在转化过程中的总量守恒关系,它可以发现装置或循环中哪些设备、部位能量损失大,但未顾及到能量质量的变化,不能发现耗能的真正原因。而热力学第二定律阐述了孤立系统熵增原理,从能的本性的高度,规定过程发生的方向性与限制,特别是指出了能量转化的条件和限制,指出能量在转移过程中具有部分地乃至全部地失去其使用价值的客观规律。为提高火电机组的发电效率,减少在电力生产过程中排放物对环境的影响,人们对火电机组的热力系统性能开展了大量的理论与试验研究。从热力学观点,所从事的这些研究大体可分为能量分析与?分析两类方法。传统的研究主要基于热力学第一定律的能量分析,它们从能的“量”方面评价热力设备和系统,而近年来广泛开展的?分析法则是基于热力学第二定律,它们从能的“量”与“质”2个方面进行评价。后者既能辨别?损的性质,即内部不可逆性与外部排放性,也能揭示?损的分布规律,从而能很好地指明系统性能改进方向。 2 ?的概念及其定义 表征物质所含热量多少的状态参数之一的焓,只表达了单位质量物质所含热量的多少,但并未表明热量质量的优劣。能源是有级别的,相同的热能量,其有效作功的能力并不相同。最能说明这一问题的是:稍高于环境温度的锅炉排出的烟气,尽管其量很大,但其热量很难加以利用。

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

《电路分析基础》作业参考解答

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。 (b )解:标注电流如图(b )所示。 由KCL 有

故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150 =。 图 补充题: 1. 如图1R 。 图1 解:由题得 因为 所以 2. 如图2所示电路,求电路中的I 、R 和s U 。 I 3 2=0

工程热力学知识点

工程热力学复习知识点 一、知识点 基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。 1. 基本概念 掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。 掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。 理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。 2. 热力学第一定律 掌握和理解:热力学第一定律的实质。 理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。 理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。 3. 热力学第二定律 掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。 掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文

表述等)。卡诺循环和卡诺定理。 掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。 理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。 理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。 4. 理想气体的热力性质 熟悉和了解:理想气体模型。 理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。 理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。 5. 实际气体及蒸气的热力性质及流动问题 理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。 理解并掌握:绝热节流的现象及特点 6. 蒸汽动力循环

热力学基础知识和物态变化

热力学基础知识和物态变化(2课时) 教学目标: 掌握熔解与凝固,汽化与液化的特点 掌握热力学的两个基本定律 教学重难点: 熔解与凝固,汽化与液化的特点 热力学的两个基本定律 教学方法: 讲授法练习法 一、复习提问 1.标准大气压与真空度和表压力的关系? 2.物质存在的形态有哪几种? 二、讲授内容 基础知识——热力学基础知识(续) 物态变化:当温度变化时,物质状态的变化。 (四)、熔解与凝固 熔解:物质由固态变液态。其过程要不断吸热,而温度保持不变。 凝固:物质由液态变固态。其过程要不断放热,而温度保持不变。 提问:试举出固液态变化过程吸、放热的例子。落雪不冷溶雪冷。 (五)、汽化与液化 汽化:物质由液态变气态的现象。其过程要不断吸热,汽化方式有。

蒸发—液体表面附近的分子飞出液面,形成蒸气。蒸发时要从周围物体吸热,有致冷作用。 沸腾—对液体加热,液体温度升到某一温度时,液体中小气泡吸热,气泡增大上浮,到达液面时破裂,放出气泡中的蒸气。其过程要吸热但温度不变。 提问:蒸发与沸腾的异同 相同处—都是汽化现象,都需要吸热。 不同处—蒸发是液体表面进行的气化,沸腾是液体内部和表面同时进行的汽化;蒸发可在任可温度下进行,沸腾只在一定温度下进行;蒸发是平和的汽化,沸腾是剧烈的汽化。 汽化热:单位质量的某种液体变成同温度的气体时吸收的热量。制冷技术中,是利用制冷剂的汽化热(潜热)来制冷的。 液化:物质由气态变液态,其过程要放出热。液化方式有。 降低温度—降至足够低时,任何气体都会液化。 增大压强—各种气体降至某一温度或以下时,再增大压强才能被液化,该温度称临界温度。液化石油气是在常温下增大压强而液化。 (六)、升华与凝华 升华:物质从固态直接变成气态的现象,其过程吸热,有致冷作用,如固体二氧化碳(干冰)升华来获得低温。 凝华:物质从气态直接变成固态的现象。其过程放热,如霜就是空气中的水蒸气遇冷直接凝华成小滴和小冰晶,大量的小水滴和小冰晶形成了天空中的云。

《电路分析基础》课程练习试题和答案

电路分析基础 第一章 一、 1、电路如图所示, 其中电流I 1为 答( A ) A 0.6 A B. 0.4 A C. 3.6 A D. 2.4 A 3Ω 6Ω 2、电路如图示, U ab 应为 答 ( C ) A. 0 V B. -16 V C. 0 V D. 4 V 3、电路如图所示, 若R 、U S 、I S 均大于零,, 则电路的功率情况为 答( B ) A. 电阻吸收功率, 电压源与电流源供出功率 B. 电阻与电流源吸收功率, 电压源供出功率 C. 电阻与电压源吸收功率, 电流源供出功率 D. 电阻吸收功率,供出功率无法确定

U I S 二、 1、 图示电路中, 欲使支路电压之比 U U 1 2 2=,试确定电流源I S 之值。 I S U 解: I S 由KCL 定律得: 2 23282 22U U U ++= U 248 11 = V 由KCL 定律得:04 2 2=+ +U I U S 11 60 - =S I A 或-5.46 A 2、用叠加定理求解图示电路中支路电流I ,可得:2 A 电流源单独作用时,I '=2/3A; 4 A 电流源单独作用时, I "=-2A, 则两电源共同作用时I =-4/3A 。

3、图示电路ab 端的戴维南等效电阻R o = 4 Ω;开路电压U oc = 22 V 。 b a 2 解:U=2*1=2 I=U+3U=8A Uab=U+2*I+4=22V Ro=4Ω 第二章 一、 1、图示电路中,7 V 电压源吸收功率为 答 ( C ) A. 14 W B. -7 W C. -14 W D. 7 W

电路分析基础 课程复习题与答案

《 电路分析基础 》课程练习题 第一章 一、 1、电路如图所示, 其中电流I 1为 答( A ) A 0.6 A B. 0.4 A C. 3.6 A D. 2.4 A 3Ω 6Ω 2、电路如图示, U ab 应为 答 ( C ) A. 0 V B. -16 V C. 0 V D. 4 V 3、电路如图所示, 若R 、U S 、I S 均大于零,, 则电路的功率情况为 答( B ) A. 电阻吸收功率, 电压源与电流源供出功率 B. 电阻与电流源吸收功率, 电压源供出功率 C. 电阻与电压源吸收功率, 电流源供出功率 D. 电阻吸收功率,供出功率无法确定

U I S 二、 1、 图示电路中, 欲使支路电压之比 U U 1 2 2=,试确定电流源I S 之值。 I S U 解: I S 由KCL 定律得: 2 23282 22U U U ++= U 248 11 = V 由KCL 定律得:04 2 2=+ +U I U S 11 60 - =S I A 或-5.46 A 2、用叠加定理求解图示电路中支路电流I ,可得:2 A 电流源单独作用时,I '=2/3A; 4 A 电流源单独作用时, I "=-2A, 则两电源共同作用时I =-4/3A 。

3、图示电路ab 端的戴维南等效电阻R o = 4 Ω;开路电压U oc = 22 V 。 b a 2 解:U=2*1=2 I=U+3U=8A Uab=U+2*I+4=22V Ro=4Ω 第二章 一、 1、图示电路中,7 V 电压源吸收功率为 答 ( C ) A. 14 W B. -7 W C. -14 W D. 7 W 2、图示电路在t =0时开关闭合,t ≥0时u t C ()为 答 (D ) A. ---1001100(e )V t B. (e )V -+-505050t

火用分析

目前的资源综合利用分析与评价主要是基于统计数据的指标评价。较早出现并具有影响力的评价指标有联合国可持续发展委员会建立的可持续发展指标,蔡邦成等基于生态环境和经济可持续发展理念建立了区域可持续发展评价指标。但是,指标评价存在数据统计工作繁多、指标计算过程复杂、不能给出量化的评价结果等问题。在能源利用效率研究中,一直困扰人们的也是如何将非同质的能源投入要素、不同产出进行加总和成本分摊等问题,火用概念的提出解决了这个问题。火用指能量、物质系统在只有环境作用的条件下,经历可逆过程达到与周围环境状态平衡时能产生的最大可用功。火用为正确评价不同形态的能量、不同状态的物质的价值提供了统一的标尺[1]。火用分析是根据进出系统火用的不平衡发现不可逆火用损失,对系统物质、能量利用状况给出全面评价的分析方法。火用分析不仅已被广泛应用于冶金、电力、水泥等高耗能生产过程和设备的能量系统的分析和评价,火用理论也成为了评价地球和国家资源环境状况的重要工具。建设资源节约、环境友好两型社会要求的是节约原材料、能源、资金、劳动力以及环境资源等的广义节能。广义节能必须要有新的科学有效的分析和评价方法对经济系统进行评价和监督。将火用理论与微观经济学结合,形成了交叉学科—火用(热)经济学。火用(热)经济学在生产系统的综合经济性分析方面得到了应用。张超等在单位火用成本基础上,分析了电厂热力系统在设计工况以及变工况下火用成本的分布规律,并且定量研究了各种运行参数对设备火用成本的影响。而运用火用(热)经济学对运行机组各设备的火用成本变化进行在线监督,已经是热力系统故障诊断的主要方法之一。但是,火用经济学分析中总是存在热力学参数火用与经济学量货币资金的分别衡算问题,衡算方程多,计算过程复杂。目前,火用经济学分析的应用研究主要集中在只有单一火用流输入的火电厂或者供热系统的火用成本分析、经济性优化和故障诊断等方面。生产资料(土地、原材料和能源等)、资金和劳动力是生产系统的3 个要素资源,随着环境恶化,生产的环境成本越来越高,环境资源也成为了生产要素资源之一。若能将这些类别截然不同的资源用统一的测度参数进行度量,就解决了同类型资源的加总和比较问题,从而可对资源综合利用状况进行量化分析[2]。 1.自然资源的泛火用计算 泛火用反应的是物品的价值,只有当物质和能量等自然资源是商品时才有泛火用,当属于生产资料的自然资源不是商品时,它们虽然含有火用,但它们的泛火用为0。自然资源可分为不可再生资源和可再生资源,许多可再生资源如太阳能、风能、水能等都不是商品资源,它们的泛火用为0。物质、能量等自然资源的泛火用可用下式表示 U ME=U NR=E NR 式中:U ME 为投入到系统的物质和能量的泛火用,MJ;U NR 为不可再生资源的泛火用,MJ; E NR 为不可再生资源的火用,MJ。式(1)表明:投入到系统的物质和能量等自然资源的泛火用等于其中不可再生的自然资源的泛火用,可再生资源的泛火用为0 MJ,而不可再生资源的泛火用等于其火用值。 1.1资金的泛火用计算 货币是一般商品的特殊等价物,可以与任何商品进行交换。当作为特殊商品的资金货币与一般商品进行交换时,认为它们具有等量的泛火用。例如,用一定量的资金购买到一定量的某种商品时,可以认为这些资金的泛火用与购买到的商品的泛火用相同。 U C=u c C

工程热力学 基本知识点

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相 对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的 平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 2.常用公式 状态参数:1 2 1 2 x x dx- = ? ?=0 dx 状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达

物理选修3---3第十章热力学定律知识点汇总

物理选修3---3第十章热力学定律知识点汇总 (填空训练版) 知识点一、功和内能 1、绝热过程: 热力学系统只由于外界对它做功而与外界交换能量,它不从外界吸热,也不向外界传热的热力学过程,称为绝热过程。 2、内能: 内能是一种与热运动有关的能量。在物理学中,我们把物体内所有分子作无规则运动的动能和分子势能的总和叫做物体的内能。内能用字母U 表示。在宏观上,热力学系统的内能U 是状态量的函数,由系统的分子数、温度、体积决定。 3、绝热过程功和能的关系 功是过程量,能量是状态量,功是能量变化的量度。某热力学系统从状态1经过绝热过程达到状态2时,内能的增加量U U U 1 2-= ?就等于外界对系统所做的功W ,即 W U =? 可见,这一过程实现了其它形式的能与内能之间的转化。 知识点二、热和内能 1、热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 2、热传递的方式:热传导、对流热、热辐射。 3、热传递过程热和能的关系 某热力学系统从状态1经过单纯的传热过程达到状态2时,内能的增加量U U U 1 2-= ?就等于外界对系统传递的热量Q ,即 Q U =? 可见,这一过程只是实现了内能与内能之间的转移。 知识点三、热力学第一定律、能量守恒定律 1、热力学第一定律

①热力学第一定律表述: 一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。 ②热力学第一定律表达式 ? U+ = Q W ③应用热力学第一定律解题的思路与步骤: 1)、明确研究对象是哪个物体或者是哪个热力学系统。 2)、分别列出物体或系统(吸收或放出的热量)和外界对物体或系统所做的功。 3)、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 4)、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU,物体吸收的热量等于物体内能的增加。 若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。 ④对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 2、能量守恒定律 ①能量守恒定律内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变。 ②对能量守恒定律的理解:

相关文档
最新文档