带孔平板的应力分布及应力集中系数的计算

带孔平板的应力分布及应力集中系数的计算
带孔平板的应力分布及应力集中系数的计算

带孔平板的应力分布及应力集中系数的计算

一、问题重述

计算带孔平板的应力分布及应力集中系数。

二、模型的建立与计算

在ANSYS中建立模型,材料的设置属性如下

分析类型为结构(structural),材料为线弹性(Linear Elastic),各向同性(Isotropic)。弹性模量、泊松比的设定均按照题目要求设定,以N、cm为标

准单位,实常数设置中设板厚为1。

采用solid 4 node 42板单元,Element Behavior设置为Plane strs w/thk。

建立模型时先建立完整模型,分别用单元尺度为5cm左右的粗网格和单元尺度为2cm左右的细网格计算。

然后取四分之一模型计算比较精度,为了使粗细网格单元数与完整模型接近,

应力集中分析

应力集中与失效分析 刘一华 (合肥工业大学土木建筑工程学院工程力学系,安徽合肥 230009) 1 引言 由于某种用途,在构件上需要开孔、沟槽、缺口、台阶等,在这些部位附近, 因截面的急剧变化,将产生局部的高应力,其应力峰值远大于由基本公式算得的 应力值。这种现象称为应力集中,引起应力集中的孔、沟槽、缺口、台阶等几何 体称为应力集中因素[1]。 因孔、沟槽、缺口、台阶等附近存在应力集中,从而,削弱了构件的强度, 降低了构件的承载能力。应力集中处往往是构件破坏的起始点,应力集中是引起 构件破坏的主要因素[2-9]。应力集中现象普遍存在于各种构件中,大部分构件的 破坏事故是由应力集中引起的。因此,为了确保构件的安全使用,提高产品的质 量和经济效益,必须科学地处理构件的应力集中问题。 2 产生应力集中的原因[1] 构件中产生应力集中的原因主要有: (1) 截面的急剧变化。如:构件中的油孔、键槽、缺口、台阶等。 (2) 受集中力作用。如:齿轮轮齿之间的接触点,火车车轮与钢轨的接触点 等。 (3) 材料本身的不连续性。如材料中的夹杂、气孔等。 (4) 构件中由于装配、焊接、冷加工、磨削等而产生的裂纹。 (5) 构件在制造或装配过程中,由于强拉伸、冷加工、热处理、焊接等而引 起的残余应力。这些残余应力叠加上工作应力后,有可能出现较大的应力集中。 (6) 构件在加工或运输中的Array意外碰伤和刮痕。 3 应力集中的物理解释[1] 对于受拉构件,当其中无裂 纹时,构件中的应力流线是均匀 分布的,如图1a所示;当其中有

一圆孔时,构件中的应力流线在圆孔附近高度密集,产生应力集中,但这种应力集中是局部的,在离开圆孔稍远处,应力流线又趋于均匀,如图1b 所示。 4 应力集中的弹性力学理论 根据弹性力学理论,可以求得圆孔、裂纹尖端以及集中力附近的应力分布情况,分别如下: 4.1 圆孔边缘附近的应力[10] 圆孔附近A 点(图2)的应力为 ???????????? ??---=???????????? ??--+=???????????? ??-+=θθστθθσσθθσσ4sin 322sin 24cos 322cos 3224cos 322cos 2442222442222 442222r a r a r a r a r a r a r a r a r a xy y x (1) 式中a 为圆孔的半径。 由(1)式可见,在孔边a r =、0=θ处,σσ3=y 。 4.2 裂纹尖端附近的应力[11] I 型裂纹尖端A 附近(图3)的应力为 ??? ??-=23sin 2sin 12cos 2I θθθπσr K x ?? ? ??+=23sin 2sin 12cos 2I θθθπσr K y (2) 23cos 2sin 2cos 2I θ θ θ πτr K xy = 式中I K 称为I 型裂纹的应力强度因子,它是裂纹尖端应力强度的度量,与载荷的大小、构件与裂纹的尺寸与形状有关,对于无限大板,a K πσ=I 。 (2)式表明,裂纹尖端附近的应力与r /1成比例,即当0→r 时,x σ、y σ、 ∞→xy τ。

土中 应 力 计 算

第2章 土中 应 力 计 算 自重应力:由土体重力引起的应力 附加应力:由于建筑物荷载在土中引起的应力 要求: 正确理解自重应力、附加应力、基底压力、基底附加压力的概念及影响因素。 掌握各种应力的计算公式、计算方法及分布规律。 第一节 土中应力状态 法向应力以压应力为正,拉应力为负; 剪应力以逆时针方向为正,顺时针方向为负。 σx 、σy 、σz ,τ xy =τ yx 、τ yz =τ zy 、τ zx =τ xz , 第二节 土中的自重应力 由土体重力引起的应力称为自重应力。一般是自土体形成之日起就产生于土中。 一、均质地基土的自重应力 土体在自身重力作用下任一竖直切面均是对称面,切面上都不存在切应力。因此只有竖向自重应力σc z ,其值等于单位面积上土柱体的重力W 。深度z 处土的自重应力为: 式中 γ为土的重度,kN/m 3 ;F 为土柱体的截面积m 2。 σcz 的分布:随深度z 线性增加,呈三角形分布。 二、成层地基土的自重应力 地基土通常为成层土。当地基为成层土体时,设各土层的厚度为h i ,重度为γi ,则在深度z 处土的自 地下水位以上的土层取天然重度γ,地下水位以下的土层取有效重度γ` ( γ` = γsat- γw) γ w=10kN/m3 三、土层中有不透水层时的自重应力 在地下水位以下,如果埋藏有不透水层(坚硬的粘土、基岩),该层面处的自重应力应按上覆土层的水土总重计算。 四、水平向自重应力 式中K 0为侧压力系数,也称静止土压力系数

例题 2-1某土层及其物理性质指标如图所示,地下水位在地表下1.0 m ,计算土中自重应力并绘出分布 a 点: b 点: c 点: d 点: 例题 2-2某地基土层的地质剖面如图所示,计算各土层的自重应力并绘出分布 50m 处: 48m 处: 45m 顶: 45m 不透水层面: 43m 处: 【课堂讨论】 ? 土的性质对自重应力有何影响? ? 地下水位的升降是否会引起土中自重应力的变化?如何影响? 作业1、 2 ==h cz γσkpa h cz 6.1816.1811=?==γσkpa h h cz 4.271)108.18(6.182 211=?-+=+=γγσ kpa h h h cz 6.523)104.18(4.273 32211=?-+=++=γγγ σ0==h cz γσkpa h cz 3621811=?==γσ h h cz 5.613)105.18(362211=?-+=+=γγσkpa h h h w w cz 5.913105.612211=?+=++=γγγσkpa h h h h w w cz 5.1292195.913 32211=?+=+++=γγγγσ

圆孔孔边应力集中

4.8 半无限平面边界上受法向集中力作用的问题一 弗拉芒一布辛涅斯克问题 没有边界的无限大物体称为无限体。将它用平面分成两半,每一半就称半无限体。本节分析的是半无限的弹性平面体在边界上受一法向集中力作用的问题(图4-8)。这一问题在实际工程问题中会经常遇到,如建筑物地基的应力和沉陷问题等。最近发展起来的边界元数值计算法也利用这问题的解答。 假定在边界面上沿半无限平面厚度上分布有均匀压力P。这样,半无限体就处于平面应变状态,单位厚度上分布的压力就可视为集中力P,其量纲为[力×长度-1] 解题:如图4-8所示,估计应力呈扇形分布,因此采用极坐标。为解题方便,取X轴方向向下,y轴方向向右,相应地极坐标r方向向外,θ方向由x轴逆时针旋转。 图4-8半无限平面边界受法间集中力 (1)初定应力函数:根据应力的函数形式决定应力函数的形式,而应力的函数形式是根据估计的应力分布情况面定。本题中估计σr的

分布与P ,r ,θ都有关系,与P 成正比,与r 成反比。 故σr 的函数形式估计为 )(θσF r P r = (a ) 式中σr 与P ,r 都是一次幂关系,这是因为只有这样,等式两边的量纲才能相等(皆为[力×长度-2])。 列出应力函数与应力分量的关系式,即(4.18)式的第一式 22211θ??σ??+??=r r r r 由此式可见,为使等式两边r 的幂次相等,应力函数中的r 的幂次应当比应力分量中r 的幂次高两次,所以初选应力函数的形式为 )(θ?rf = (b ) 式中f (θ)可通过双调和方程得到。将(b )式代入双调和方程(4.17)式得 )(1)(11122 22222=????????+??+??+??θθθθf r f r r r r r )( 即 0)]()(2)([122443=++θθθθθf d f d d f d r (c ) 删去因子3 1r ,(c )式为常系数线性微分方程,其通解为 ) sin cos (sin cos )(θθθθθθD C B A f +++= (d ) 代入(b )得 )] sin cos (sin cos [θθθθθ?D C B A r +++= (e )

应力集中的分析

1.应力集中的现象及概念 材料在交变应力作用下发生的破坏称为疲劳破坏。通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。 承受轴向拉伸、压缩的构件,只有在寓加力区域稍远且横截面尺寸又无急剧变化的区域内,横截面上的应力才是均匀分布的。然而工程中由于实际需要,某些零件常有切口、切槽、螺纹等,因而使杆件上的横截面尺寸发生突然改变,这时,横截面上的应力不再均匀分布,这已为理论和试验所证实。 如图 2-31[a] 所示的带圆孔的板条,使其承受轴向拉伸。由试验结果可知 : 在圆孔附近的局部区域内,应力急剧增大,而在离开这一区域稍远处,应力迅速减小而趋于均匀( 图 2 — 31[b]) 。这种由于截面尺寸突然改变而引起的应力局部增大的现象称为应力集 中。在 I — I 截面上,孔边最大应力与同一截面上的平均应力之比,用表示 称为理论应力集中系数,它反映了应力集中的程度,是一个大于 1 的系数。而且试验结果还表明 : 截面尺寸改变愈剧烈,应力集中系数就愈大。因此,零件上应尽量避免带尖角的孔或槽,在阶梯杆截面的突变处要用圆弧过渡。

在静荷作用下,各种材料对应力集中的敏感程度是不相同的。像低碳钢那样的塑性材料具有屈服阶段,当孔边附近的最大应力达到屈服极限时,该处材料首先屈服,应力暂时不再增大。如外力继续增加,增加的应力就由截面上尚未屈服的材料所承担,使截面上其它点的应力相继增大到屈服极限,该截面上的应力逐渐趋于平均,如图2-32 所示。因此,用塑性材料制作的零件,在静荷作用下可以不考虑应力集中的影响。而对于组织均匀的脆性材料,因材料不存在屈服,当孔边最大应力的值达到材料的强度极限时,该处首先断裂。因此用脆性材料制作的零件,应力集中将大大降低构件的强度,其危害是严重的。这样,即使在静载荷作用下一般也应考虑应力集中对材料承载能力的影响。然而,对于组织不均匀的脆性材料,如铸铁,其内部组织的不均匀性和缺陷,往往是产生应力集中的主要因素,而截面形状改变引起的应力集中就可能成为次要的了,它对构件承载能力不一定会造成明显的影响。 要想搞明白这个问题,我想先要搞明白什么是荷载力、什么是应力?简单地来说荷载力来源于动力源作用于工作终端,其力的大小为工作终端负荷加传动损耗,而应力则是由材料内部的分子发生错位(部分分子受拉力或热力作用其分子链被拉长、而有些分子则受压缩力或冷凝力的作用其分子被压缩,同时这两种变形的分子又相互作用在其过渡区域就会受两种作用力的影响,分子链也会受到破坏产生裂纹)而产生的作用力。人们在生产实践中发现材料在受力情况下都会发生变形,其变形量与受力的大小及受力的区城大小有关,卸载后的剩余应力与局剖的变形量成正比,对台阶轴而言若不加任何措施、由于作用区域小其作用力仅在轴的圆周面上产生作用,轴芯部分并不受力,这种现象本人称它为集肤效应。因此此时的轴肩处的圆周面受到剪切变形,分子链相继受到破坏并向轴芯延伸最终导至轴颈断裂。若在轴肩处采用圆弧过度等措施,相对来说增加了作用区域(两作用力之间的距离增加,材料所允许的扭转角度就变大,随着轴的扭转角度的增加使得轴芯部分有更多的分子链来参加传递动力,这样每个分子链的负荷也就变小很多,轴的寿命也得以延长,值得注意的是这并不意味着此轴可永久使用,因为材料在受力的情况下都会受损,只不过程度不同,程度大的寿命短、程度小的寿命长,这也就是人们常说的疲劳寿命。 现在再来解释过盈配合为什么在边缘处产生应力集中? 因为是过盈,所以内外圈在接触表面都要产生变形,而不接触的其它表面不会变形。这样接触面区域是压应力,而在接触边缘处轴的材料必然出现拉应力以阻止轮毂边缘和接触区外的材料进一步变形。但配合面的母线是直线,在外力作用下必然要产生相同的变形量,为了协

孔边应力集中 由于开孔

孔边应力集中由于开孔,孔口附近的应力将远大于无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换成分布不同,但静力等效,那么近处的应力分布将有显著变化,但远处所受影响可以忽略不计。可以简化局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面方向的线应变,即可以不计2应力分量和z相关的3个、、,远小于其余三个应力分量,因而是次要的,他们所引起的形变可以不计3薄板中面内的各店都没有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连体的应力边界问题中,两个弹性体具有相同的边界条件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边界条件的所有各组位移状态中,实际存在的一组位移应使总势能成为极值,如果考虑二阶变分总是大于或等于0.即()就可以证明:对于稳定平衡状态,这个极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受的力都是对称于某一轴,则所有应力、应变、位移、也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函数、并求得应力分量,然后再根据应力边界条件和弹性体边界形状看这些应力分量对应边界上什么样的面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量的函数形式,得出应力函数形式。带入相容方程求解应力函数,求解应力分量,看是否满足应力边界条件,是即可,不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换成分布不同,但静力等效,那么近处的应力分布将有显著变化,但远处所受影响可以忽略不计。可以简化局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面方向的线应变,即可以不计2应力分量和z相关的3个、、,远小于其余三个应力分量,因而是次要的,他们所引起的形变可以不计3薄板中面内的各店都没有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连体的应力边界问题中,两个弹性体具有相同的边界条件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边界条件的所有各组位移状态中,实际存在的一组位移应使总势能成为极值,如果考虑二阶变分总是大于或等于0.即()就可以证明:对于稳定平衡状态,这个极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受的力都是对称于某一轴,则所有应力、应变、位移、也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函数、并求得应力分量,然后再根据应力边界条件和弹性体边界形状看这些应力分量对应边界上什么样的面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量的函数形式,得出应力函数形式。带入相容方程求解应力函数,求解应力分量,看是否满足应力边界条件,是即可,不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换成分布不同,但静力等效,那么近处的应力分布将有显著变化,但远处所受影响可以忽略不计。可以简化局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面方向的线应变,即可以不计2应力分量和z相关的3个、、,远小于其余三个应力分量,因而是次要的,他们所引起的形变可以不计3薄板中面内的各店都没有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连体的应力边界问题中,两个弹性体具有相同的边界条件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边界条件的所有各组位移状态中,实际存在的一组位移应使总势能成为极值,如果考虑二阶变分总是大于或等于0.即()就可以证明:对于稳定平衡状态,这个极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受的力都是对称于某一轴,则所有应力、应变、位移、也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函数、并求得应力分量,然后再根据应力边界条件和弹性体边界形状看这些应力分量对应边界上什么样的面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量的函数形式,得出应力函数形式。带入相容方程求解应力函数,求解应力分量,看是否满足应力边界条件,是即可,不是另作假设。孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。 孔边应力集中由于开孔,孔口附近的应力将远大于 无孔时的应力,也远大于距孔口较远处的应力 圣维南如果把物体的一小部分便捷上的面力变换 成分布不同,但静力等效,那么近处的应力分布将有 显著变化,但远处所受影响可以忽略不计。可以简化 局部边界上的应力边界条件 小挠度薄板弯曲问题的三个基本假设1垂直于中面 方向的线应变,即可以不计2应力分量和z相关的3 个、、,远小于其余三个应力分量,因而是次要的,他 们所引起的形变可以不计3薄板中面内的各店都没 有平行于中面的位移 弹性常数无关?具有相同的应理解常体力/在单连 体的应力边界问题中,两个弹性体具有相同的边界条 件,受同样分布的外力。 极小势能原理在给定的外力作用下,在满足位移边 界条件的所有各组位移状态中,实际存在的一组位移 应使总势能成为极值,如果考虑二阶变分总是大于或 等于0.即()就可以证明:对于稳定平衡状态,这个 极值是极小值 平面应变物体截面形状、面力、体力、约束、沿z 方向均不变,只有平面应变分量()仅为xy函数的 弹性力学问题 对称如果弹性体的几何形状、约束情况、以及所受 的力都是对称于某一轴,则所有应力、应变、位移、 也都对称于这一轴。 平面应力只有平面应力分量()存在,仅为xy函 数的弹性力学问题、深梁平板坝的平板支墩 逆解法先设定各种形式、满足相容方程的应力函 数、并求得应力分量,然后再根据应力边界条件和弹 性体边界形状看这些应力分量对应边界上什么样的 面力,从而得知所选取的应力函数可以解决问题。 半逆解法针对所要求解的问题,根据弹性体的边界 形状和受力情况,假设部分或全部应力分量的函数形 式,得出应力函数形式。带入相容方程求解应力函数, 求解应力分量,看是否满足应力边界条件,是即可, 不是另作假设。

第三章 土中应力计算习题与答案

第三章-土中应力计算习题与答案. 第三章土中应力计算一、填空题由土筑成的梯形断面路堤,因自重引起的基底1.

形,桥梁墩台等梯压力分布图形是刚性基础在中心荷载作用下,基底的沉降是 的。相同曲线地基中附加应力分布随深度增加呈2 点下中减小,同一深度处,在基 附加应力最大。 3.单向偏心荷载作用下的矩形基础,e >当偏心,产生 l/6时,基底与地基局脱 。重分

在地基中,矩形荷载所引起的附加应力,其影4.比相,浅响深度比相同宽度的条形基 础 深。同宽度的方形基础上层坚硬、下层软弱的双层地基,在荷载作用5.现象,反之,将发扩散下,将发生应力现象。生应力集中附和 6.土中应力 按成因可分为自重应力 加应力。 7.计算土的自重应力时,地下水位以下的重度应取有效重度(浮重度)。导致地下水位大幅度下降,长期抽取地下水位,8. 增从而使原水位以下土的有效自重应力 的严重后地基沉降,而造成 加果。

9 饱和土体所受到的总应力为有效应力 隙水压力之和。 二、名词解释 1.基底附加应力:基底压应力与基底标高处原土层自重应力之差。 2.自重应力:由土层自身重力引起的土中应力。 3.基底压力:建筑物荷载通过基础传给地基,在基础底面与地基之间的接触应力。

三、选择题 1.成层土中竖向自重应力沿深度的增大而 发生的变化为:( B ) (A)折线减小(B)折线增大(C)斜线减小(D)斜线增大 2.宽度均为b,基底附加应力均为P的基础,同0一深度处,附加应力数值最大的是:( C )(A)方形基础(B)矩形基础(C)为直径)b)圆形基础(D(条形基础. 3.可按平面问题求解地基中附加应力的基 础是:( B ) (A)柱下独立基础(B)墙下条形基 础

土中应力的计算

第2章土中应力分布及计算 一、思考题 1、自重应力,附加应力的大小与地基土的性质是否相关? 2、自重应力与附加应力在地基中的分布各有何特点? 3、基底压力分布的主要影响因素有哪些? 4、在基底总压力不变的前提下,增大基础埋深对土中应力分布有什么影响? 5、宽度相同的矩形和条形基础,其基底压力相同,在同一深度处,哪一个基础下产生的附加应力大? 6、地下水位升降,对土中应力分布有何影响? 7、自重应力,附加应力计算时的起算点是否相同? 二、选择题 1、有两个不同的基础,其基础总压力相同,问在同一深度处,哪一个基础产生的附加应力大?() A、宽度小的基础产生的附加应力大 B、宽度小的基础产生的附加应力小 C、宽度大的基础产生的附加应力小 D、两个基础产生的附加应力相等 2、某场地自上而下的土层分布为:第一层粉土,厚3m,重度γ=18kN/m3;第二层粘土,厚5m,重度γ=18.4kN/m3,饱和重度γsat =19kN/m3,地下水位距地表5m,试求地表下6m处土的竖向自重应力() A、99.8kPa B、109.8kPa C、111kPa D、109.2kPa 3、成层地基土中的自重应力() A、均匀分布 B、直线分布 C、曲线分布 D、折线分布 4、有一基础埋置深度d=1.5m,建筑物荷载及基础和台阶土重传至基底总压力为100KN/m2,若基底以上土的重度为18 KN/m2,基底以下土的重度为17 KN/m2,地下水位在地表处,则基底竖向附加压力为多少() A、85 KN/m2 B、73 KN/m2 C、88 KN/m2 5、一矩形基础,短边b=3m,长边l=4m,在长边方向作用一偏心荷载F+G=1200KN,偏心距为多少时,基底不会出现拉应力() A、0.5m B、0.57m C、0.67m 6、由建筑物荷载或其它外载在地基内产生的应力称为() A、自重应力 B、附加应力 C、基底压力 D、基底附加压力 7、土的自重应力计算中假定的应力状态为() A、σ z ≠0、σ x ≠0、τ xz ≠0 B、σ z ≠0、σ x ≠0、τ xz =0 C、σ z ≠0、σ x =0、τ xz =0 8、当上部结构荷载的合力不变时,荷载偏心距越大,则基底压力平均值() A、越大 B、越小 C、不变

基于有限元理论的疲劳热点应力集中系数计算方法研究

490
第十五届中国海洋(岸)工程学术讨论会论文集
基于有限元理论的疲劳热点应力集中系数 计算方法研究*
黄怀州,尹光荣,孟庆政,宋晓秋,王海龙
(海洋石油工程股份有限公司,天津 300451) 摘要:疲劳损伤是造成海洋结构物破坏的主要形式之一。主要讨论了基于有限元理论的疲劳热点应力的不同计算方法的优 劣,研究并分析在不同计算方法下的结果合理性。通过运用 ANSYS 有限元软件计算对比实验结果和公式推导,首次提出并 验证了利用高斯点积分应力外推热点应力的方法, 并运用最小二乘法推导出应力集中系数外推值与实验值的线性关系, 对利 用有限元方法分析海洋结构物的疲劳寿命具有一定的指导意义和参考价值。 关键词:疲劳;热点应力;有限元;应力集中系数 随着海洋石油工业的发展,通常要在恶劣的海况条件下建造各种平台,以适应海上钻井采油作业的需 要。海洋平台在工作时受到的环境包括风、波、流、潮汐、冰等情况,其中波浪力不仅能引起巨大的水平 方向交变荷载,且循环次数也非常频繁,是造成结构疲劳破坏的主要因素。如图 1 所示典型的管结构的疲 劳破坏。 可靠的疲劳热点应力的获得,一直都是工程界的难点。在文献[1]实验数据基础上,用有限元方法分析 了八种不同的疲劳热点应力集中系数计算方法的优劣,对比验证高斯点积分应力外推热点应力方法的准确 性和稳定性,并运用最小二乘法推导出应力集中系数外推值与实验值的线性关系,得到一套可靠的分析方 法。
图 1 管结构的疲劳破坏
1 基本理论和基本假定
1.1 基本理论 通常疲劳分析建立在 S-N 曲线和线性损伤假设基础上,公式为:
D =

k
i=1
式中: D 为累积疲劳损伤; a 为设计 S ? N 曲线在 log N 轴上的截距;m 为 S ? N 曲线斜率的负倒数;k 为应力组块数量; ni 为应力组 i 的应力循环次数; Ni 为常应力幅值 Δσ i 作用下的疲劳失效循环次数;η 为 利用率,设计疲劳系数的倒数[2-3]。 理论上应力幅值 Δ σ 是由局部应力 σ local 决定,但是由于局部应力非常难以获得,工程上常采用热点
*
ni 1 = N i a

k
i=1
n i ? (Δ σ
i
)m
≤ η
(1)
作者简介:黄怀州,男,结构工程师,主要从事导管架结构设计工作。Email:huanghz@https://www.360docs.net/doc/479784247.html,

应力集中分析

应力集中分析 假设应力在整个横截面上均匀分布而且整个杆件是均匀的,则有公式A F =σ,F 为该截面上的拉内力,A 为材料该截面的横截面积。而实际上,构件并不是如此理想的,由于某种用途,在构件上经常需要有些孔洞、键槽、缺口、轴肩、螺纹或者是其他杆件在几何外形上的突变。所以在实际工程中,这些看似细小的变形可能导致构件在这些部位产生巨大的应力,其应力峰值远大于由基本公式算得的应力值,这种现象称为应力集中,从而可能产生重大的安全隐患。 应力集中削弱了构件的强度,降低了构件的承载能力。应力集中处往往是构件破坏的起始点,是引起构件破坏的主要因素。同时,应力集中的存在降低了整个构件的材料利用率,因为可能为了一部分结构的稳定而采用较高的等级的材料,与此同时构件其他部分的强度并不需要如此高的性能。因此,为了确保构件的安全使用,提高产品的质量和经济效益,必须科学地处理构件的应力集中问题。 一、 应力集中的表现及解释(主要分析拉压应力) 1、 理论应力集中系数: 工程上用应力集中系数来表示应力增高的程度。应力集中处的最大应力与基准应力之比,定义为理论应力集中系数,简称应力集中系数,即 (4) 在(4)式中,最大应力可根据弹性力学理论、有限元法计算得到,也可由实验方法测得;而基准应力是人为规定的应力比的基准,其取值方式不是唯一的,大致分为以下三种: (1) 假设构件的应力集中因素(如孔、缺口、沟槽等)不存在,以构件未减小时截面上的应力为基准应力。 (2) 以构件应力集中处的最小截面上的平均应力作为基准应力。 (3) 在远离应力集中的截面上,取相应点的应力作为基准应力。 max σn σn max σσα=max σn σ

带孔平板的应力集中分析

有限元方法 Finite Element Method ——基于ANSYS的有限元建模与分析 姓名吴威 学号20100142 班级10级土木茅以升班2班 西南交通大学 2014年4月

综合练习——带孔平板的应力分布及应力集中系数的计算一、问题重述 计算带孔平板的应力分布及应力集中系数。 二、模型的建立与计算 在ANSYS中建立模型,材料的设置属性如下 分析类型为结构(structural),材料为线弹性(Linear Elastic),各向同性(Isotropic)。弹性模量、泊松比的设定均按照题目要求设定,以N、cm为标准单位,实常数设置中设板厚为1。

采用solid 4 node 42板单元,Element Behavior设置为Plane strs w/thk。 建立模型时先建立完整模型,分别用单元尺度为5cm左右的粗网格和单元尺度为2cm左右的细网格计算。 然后取四分之一模型计算比较精度,为了使粗细网格单元数与完整模型接近,四分之一模型分别用单元尺度为2.5cm左右的粗网格和单元尺度为1cm左右的细网格计算。 (1) 完整模型的计算 ①粗网格

单元网格的划分及约束荷载的施加如图(单元尺度为5cm) 约束施加时在模型左侧边界所有节点上只施加x方向的约束,即令U X=0,在左下角节点上施加x、y两个方向的约束,即U X=0、U Y=0。荷载施加在右侧边界上,大小为100。 对模型进行分析求解得到: 节点应力云图(最大值222.112)

单元应力云图(最大值256.408) 可看出在孔周围有应力集中现象,其余地方应力分布较为均匀,孔上部出现最大应力。 ②细网格 单元网格的划分及约束荷载的施加如图(单元尺度为2cm)

第三章土中应力计算习题及答案解析

第三章土中应力计算 一、填空题 1.由土筑成的梯形断面路堤,因自重引起的基底压力分布图形是梯形,桥梁墩台等刚性基础在中心荷载作用下,基底的沉降是相同的。 2.地基中附加应力分布随深度增加呈曲线减小,同一深度处,在基底中心点下,附加应力最大。 3.单向偏心荷载作用下的矩形基础,当偏心距e > l/6时,基底与地基局部脱开,产生应力重分部。 4.在地基中,矩形荷载所引起的附加应力,其影响深度比相同宽度的条形基础浅,比相同宽度的方形基础深。 5.上层坚硬、下层软弱的双层地基,在荷载作用下,将发生应力扩散现象,反之,将发生应力集中现象。 6.土中应力按成因可分为自重应力和附加应力。 7.计算土的自重应力时,地下水位以下的重度应取有效重度(浮重度)。 8.长期抽取地下水位,导致地下水位大幅度下降,从而使原水位以下土的有效自重应力增加,而造成地基沉降的严重后果。 \ 9.饱和土体所受到的总应力为有效应力与孔隙水压力之和。 二、名词解释 1.基底附加应力:基底压应力与基底标高处原土层自重应力之差。 2.自重应力:由土层自身重力引起的土中应力。 3.基底压力:建筑物荷载通过基础传给地基,在基础底面与地基之间的接触应力。 三、选择题 1.成层土中竖向自重应力沿深度的增大而发生的变化为:(B ) (A)折线减小(B)折线增大(C)斜线减小(D)斜线增大 — 2.宽度均为b,基底附加应力均为P0的基础,同一深度处,附加应力数值最大的是:(C )(A)方形基础(B)矩形基础(C)条形基础(D)圆形基础(b为直径) 3.可按平面问题求解地基中附加应力的基础是:(B ) (A)柱下独立基础(B)墙下条形基础(C)片筏基础(D)箱形基础 4.基底附加应力P0作用下,地基中附加应力随深度Z增大而减小,Z的起算点为:(A )(A)基础底面(B)天然地面(C)室内设计地面(D)室外设计地面 5.土中自重应力起算点位置为:(B ) (A)基础底面(B)天然地面(C)室内设计地面(D)室外设计地面6.地下水位下降,土中有效自重应力发生的变化是:(A ) (A)原水位以上不变,原水位以下增大(B)原水位以上不变,原水位以下减小》 (C)变动后水位以上不变,变动后水位以下减小 (D)变动后水位以上不变,变动后水位以下增大 7.深度相同时,随着离基础中心点距离的增大,地基中竖向附加应力:(D ) (A)斜线增大(B)斜线减小(C)曲线增大(D)曲线减小 8.单向偏心的矩形基础,当偏心距e < l/6(l为偏心一侧基底边长)时,基底压应力分布图简

有效应力集中系数 Kσ

有效应力集中系数Kσ、Kτ σb (MPa ) 螺纹 (Kτ=1 ) Kσ 键槽花键横孔配合 KσKτ Kσ KτKσKτH7/r6 H7/k6 H7/h6 A 型 B 型 A、 B 型 矩 形 渐 开 线 型 d0/d=0.05-0.1 5 d0/d=0.15-0.2 5 d0/d=0.05-0.2 5 KσKτKσKτKσKτ 400 1.45 1.5 1 1.3 1.2 1.3 5 2.1 1.4 1.90 1.70 1.70 2.0 5 1.5 5 1.5 5 1.2 5 1.3 3 1.1 4 500 1.78 1.6 4 1.3 8 1.3 7 1.4 5 2.2 5 1.4 3 1.95 1.75 1.75 2.3 1.6 9 1.7 2 1.3 6 1.4 9 1.2 3 600 1.96 1.7 6 1.4 6 1.5 4 1.5 5 2.3 5 1.4 6 2.00 1.80 1.80 2.5 2 1.8 2 1.8 9 1.4 6 1.6 4 1.3 1 700 2.20 1.8 9 1.5 4 1.7 1 1.6 2.4 5 1.4 9 2.05 1.85 1.80 2.7 3 1.9 6 2.0 5 1.5 6 1.7 7 1.4 800 2.32 2.0 1 1.6 2 1.8 8 1.6 5 2.5 5 1.5 2 2.10 1.90 1.85 2.9 6 2.0 9 2.2 2 1.6 5 1.9 2 1.4 9 900 2.47 2.1 4 1.6 9 2.0 5 1.7 2.6 5 1.5 5 2.15 1.95 1.90 3.1 8 2.2 2 2.3 9 1.7 6 2.0 8 1.5 7 1000 2.61 2.2 6 1.7 7 2.2 2 1.7 2 2.7 1.5 8 2.20 2.00 1.90 3.4 1 2.3 6 2.5 6 1.8 6 2.2 2 1.6 6 1200 2.90 2.5 1.9 2 2.3 9 1.7 5 2.8 1.6 2.30 2.10 2.00 3.8 7 2.6 2 2.9 2.0 5 2.5 1.8 3 1.滚动轴承与轴的配合按H7/r6选择计算。螺纹的Kτ=1。 2. 蜗杆螺旋根部有效应力集中系数Kσ=2.3~2.5Kτ=1.7~1.9

ANSYS小孔应力集中仿真

ANSYS小孔应力集中仿真 打开ANSYS界面 进入Main Menu>>Preprocessor>>Element Type>>Add/Edit/Delete>>点击Add 弹出如下对话框: 选择Solid>>8 node 183;点击OK 回到Element Type界面,选中Type 1 plane183,点击Options 然后如下图改K3的值,这样,plane183就设置为有一定厚度的平面应力单元。点击OK

点击Close关闭Element Types对话框 点击Preprocessor下的Real Constants>>Add/Edit/Delete点击Add 弹出一下对话框,点击OK 然后弹出以下对话框,厚度填0.01,点击OK:

关闭Real Constants对话框 点击Material Props>>Material Models,如下图选择linear Isotropic(线性各向同性) 弹出对话框,填上弹性模量2.1e11和泊松比0.3,点击OK。 关闭Define Material Model Behavior窗口 点击Modeling>>Create>>Areas>>Rectangle>>By 2 Corners,在填出对话框里填写如下,点击OK:

得到一个矩形后,继续点击 Modeling>>Create>>Areas>>Circle>>Solid Circle,在弹出的对话框中输入如下数据,点击OK。 点击Modeling>>Operate>> Booleans>>Subtract>>Area 弹出对话框后鼠标在模型上显示向上箭头,点击矩形区域,再点击对话框中的Apply 然后再选择被减对象点击圆形,点击OK

相关文档
最新文档