电子技术实验报告阻容耦合放大电路

电子技术实验报告阻容耦合放大电路
电子技术实验报告阻容耦合放大电路

学生实验报告

实验1 阻容耦合放大器的设计与调测 5

第三部分 模拟电子技术基础实验 实验1 阻容耦合放大器的设计与调测 3.1.1实验目的 1.能根据一定的技术指标要求设计出单级放大电路。 2.研究单级低频小信号放大器静态工作点的意义。 3.掌握放大器主要性能指标的测试方法。 4.掌握用射随器提高放大器负载能力的方法。 3.1.2实验原理与设计方法 在晶体管放大器的三种组态中,由于共射极放大器既有电流放大,又有电压放大,所以在以信号放大为目的时,一般用共射放大器。分压式电流负反馈偏置是共射放器广为采用的偏置形式,如图 3.1.1.所示。它的分析计算方法,调整技术和性能的测试方法等,都带有普遍意义,并适用多级放大器。 R u 图 3.1.1单组阻容耦合放大器 电路中Rc 为晶体管的直流负载,其交流负载由Rc 与外接负载R L 组成。由R b1、R b2及R C 组成电流反馈式偏置电路,发射极交流旁路电容C e 是用来消除R e 对信号增益的影响,隔直电容C l 、C 2是将前一级输出的直流电压隔断,以免影响后一级的工作状态,同时将前一级输出的交流信号耦合到后一级。 1.静态工作点 放大器的静态工作点是指当放大器没有信号输入时,晶体管各极的直流电流和直流电压在特性曲线上所决定的点。 静态工作点选择是否合理,将直接影响放大特性的好坏,为使信号得到不失真的放大,放大器的工作点一般选在线性区的中点。但在小信号放大器中,由于输入信号小,运用范围也小,工作点可选低一些,以减少直流功耗。 通常,为了使工作点稳定,应先稳定I CQ ,而I CQ ≈I EQ ,因此,只要稳定了I EQ 也就稳定了I CQ ,如能满足I 1≥I BQ ,V B ≥V BE ,则2 12 b b b CC B R R R V V +=几乎与晶体管的参数无关,可近似值看成 是恒定的。

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

小信号阻容耦合放大电路设计

郑州科技学院 电子仿真实验报告 题目小信号阻容耦合放大电路设计学生姓名 专业班级 10级电科四班 学号201031099 院(系)电气工程学院 指导教师刘林荫 完成时间 2013年 9 月 15 日

目录 1 设计要求 (1) 2 设计说明 (1) (1)选定电路形式 (1) (2)选用三极管 (1) 3 设置静态工作点并计算元件参数 (1) 4 仿真设计 (2) (1)搭建实验电路 (2) (2)仿真分析 (2) 5.分析研究 (5) (1)问题分析 (5) (2)问题解决: (5)

1 设计要求 试设计一个工作点稳定的小信号单元放大电路。要求:|A v|>40,R i>1kΩR o<3kΩ, F L<100Hz,f H>100kHz,电路的V cc=+12V,R L=3kΩ,V i=10mV,R s=600Ω。 2 设计说明 (1)选定电路形式 选用如图5.1.1所示的基极分压式工作点稳定的小信号共射放大单元路。 图5.1.1 共射放大电路 (2)选用三极管 因设计要求f H>100kHz,f H的指标要求较高。一般来说,三极管的f T越大C b’e、C b‘c越小,f H越高。故选定三极管为9013,其I CM=500mA,V(BR)CEO20V,P CM=625mW, f T 150MHz,I CEO 0.1uA,h FE (β)为60200。对于小信号电压放大电路,工程上通常要 求β的数值应大于A v的数值,故取β=60。 3 设置静态工作点并计算元件参数 ICQ<26β/(Ri-rbb’)=1.95mA,取ICQ=1.5mA, Re=(VBQ-VBEQ)/ICQ=(3-0.6)/1.5kΩ=1.6kΩ,Re=1.6kΩ Rb2=βVBQ/(510)I1=(1224) kΩ,取Rb2=20kΩ Rb1=Rb2(Vcc-VBQ)/VBQ=20(12-3)/3=60kΩ,取Rb1=56kΩ. Rbe=rbb’+26β/ICQ=1240Ω RL’=|Av|rbe/β=0.827kΩ. Rc=RLRL’/(RL-RL’)=1.14kΩ,取Rc=1.2kΩ. Cb2=Cb1>(310)/ ω(Rs+rbe)=(2.68.6) μF。取Cb2=Cb1=10μF。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

实验一 单级阻容耦合放大电路设计

实验一单级阻容耦合放大电路设计 一、设计任务及目的 设计任务:设计一个分压式偏置的单级的小信号放大器,输入和输出分别用电容和负载隔直流,设计静态工作点,计算电路元件参数,拟定测试方案; (1)在面包板或万能板上安装电路,测量并调试静态工作点。 (2)测量设计好的偏置电压和电流。 (3)测量所设计电路的实际电压放大倍数。 (4)测量所设计电路的实际输入、输出电阻。 设计目的: (1)学习晶体管放大器的实计方法。 (2)研究静态工作点对输出波形影响及静态工作点的调整方法。 (3)掌握静态工作、电压放大倍数、输入电阻、输出电阻的测试方法。 二、设计要求和指标 已知条件:VCC=+12V,信号源Us=10Mv(P-P),内阻Rs=600Ω,负载RL=2KΩ 1、主要技术指标:输入内阻Ri>2kΩ,输出电压Uo≥0.3V,输出电阻Ro<5K. 2、频率响应20Hz-500KHz 3、I CQ=(0.5-2)mA,V BQ=(3~5)V(理论),U BQ>> U BE I CQ=(5-10)I BQ。 三、放大电路的基本原理 下图为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组 成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入 端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输 出信号u ,从而实现了电压放大。 在上图电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算:

1. 理论值设计 根据Ic=Ie,Rbe=Rbb+(1+B )*26/Ie 若取Ic=0.9mA, UBQ=4V ,Rbb=300Ω,放大倍数为100,CC B2 B1B1B U R R R U +≈ 可得RE=4K Ω,RB1=10K Ω,RB2=20K Ω U CE =U CC -I C (R C +R E )=5.7 电压放大倍数: be L C V r R R βA // -= =-38 输入电阻: R i =R B1 // R B2 // r be =3.5K Ω 输出电阻: R O ≈R C 2. (1)、静态工作点的测量 所谓静态工作点的测量,就是用合适的直流毫安表和直流电压表测量晶管的集电极电流Ie 和管压降Vce 。 (2)动态分析 (a )测量电压放大倍数 接入负载2K ,在输入端B 加f=1KHz 正弦波交流信号,调节输入信号幅度,使输出端在示波器频幕上得到一个最大不失真波形,同时测量V o 值 注:vi 是设计要求为10mv ,这个信号时从函数信号发生器生产生的。 (b )输入、输出电阻的测量 为了测量放大器的输入、出电阻,按图2电路在被测放大器的输入端与信号

多极低频阻容耦合放大器

安康学院电子技术课程设计报告书 课题名称:多极低频阻容耦合放大器 姓名: 学号: 院系: 专业: 指导教师: 时间:

课程设计项目成绩评定表设计项目成绩评定表

课程设计报告书目录 设计报告书目录 一、设计目的 (1) 二、设计思路 (1) 2.1选择反馈方式 (2) 2.2选择级数 (2) 2.3确定电路 (3) 三、设计过程 (3) 3.1功能放大模块 (3) 3.2反馈环节 (4) 3.3滤波模块 (4) 四多级放大电路的设计 (4) 4.1估算电压放大倍数并确定电路的形式 (4) 4.2三极管的选择 (5) 4.3输入级的计算 (5) 4.4输出级的计算 (7) 4.5第二级的计算 (8) 4.6第三级的计算 (9) 4.7各级电压放大倍数的确定 (9) 五调试与结果 (10) 5.1分析电路 (10) 5.2核算技术指标 (10) 5.3仿真波形图 (12) 六主要元器件与设备 (12) 七课程设计体会与建议 (12) 7.1设计体会 (13) 7.2设计建议 (13) 八参考文献 (13)

一、设计目的 1、熟悉集成电路的引脚安排。 2、掌握芯片的逻辑功能及使用方法。 3、了解面包板结构及其接线方法。 4、了解数字抢答器的组成及工作原理。 5、熟悉多级低频阻容耦合放大器的设计与制作。 二、设计思路 图1设计方框图 图中X表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号与反馈信号是相减关系(负反馈),即放大电路的净输入信号为 基本放大电路的增益(开环增益)为 反馈系数为 基本放大电 路 A 反馈网络 F + 输出信号 净输入信号 输入信号 反馈信号 i x f x + - o x

阻容耦合两级放大电路

模拟电子技术综合实验报告姓名: 学号: 班级: 课程设计名称:阻容耦合两级放大电路 实验室(中心): 电子电工实验室 指导教师 : 设计完成时间: 年月日

级电路) 2、给电路引入电压串联负反馈 (二)要求 1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号频 率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻与频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 二、设计任务 1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻与频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 要求得到的数据: (1)静态工作点; (2)接入负反馈前后电路放大倍数、输入输出电阻; (3)验证F f 1 A ; (4)测试接入负反馈前后两级放大电路的频率特性; (5)测试接入负反馈前后,电路输出开始失真时对应的输入信号幅度。 三、设计方案分析 1.概述 放大电路的前级输出端通过电容接到后级输入端,成为阻容耦合方式。由于电容对滞留的阻抗为无穷大,因而阻容耦合放大电路各极之间的直流通路各不相痛,各级的

静态工作点相互独立,求解或实际调试Q点时可以按单级处理,所以电路的分析,实际与调试简单易行,而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,因此,在分立元件电路中阻容耦合方式的到非常广泛的应用。其优点就是由于电容的隔直作用,各级放大器的静态工作点相互独立,独立估算;电路的分析、设计与调试方便;电容对交流信号几乎不衰减;缺点就是低频特性变差;大电容不易集成。同时,负反馈在电子线路中有着非常广泛的应用,采用负反馈就是以降低放大倍数为代价的,目的就是为了改善放大电路的工作性能,如稳定放大倍数、改变输入与输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。 2.两级阻容耦合及负反馈放大电路系统设计 (1)原理分析: 阻容耦合放大器(图1)就是一种最常见多级放大器其电路。 图1两级阻容耦合及负反馈放大电路 图1就是一个曲型的两级阻容耦合放大电路,有两个共射放大电路组成。对于交流信号,各级之间有着密切的联系,前级的输出电压就就是后级的输入信号,两级放大器的总电压放大倍数等于各级放大倍数的乘积。 四、设计仿真与调试 测量静态工作点 第一级:

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

多级放大电路级间耦合方式及分析

多级放大电路级间耦合方式及分析 多级放大电路级间耦合方式及分析 多级放大器级间耦合方式有三种类型:(1)阻容耦合方式因为电容可以阻断两级间的支流,所以各级间静态工作点互不影响,可以分别计算。但这种 方式不能传输支流信号,只适用于交流放大。(2)变压器耦合方式与阻容耦合放大器一样,这种方式不能传输支流信号,各级静态工作点独立。它的优点 是可以通过改变变压器的变比使前后级之间获得最佳的匹配而得到最大的功率 传输。它的缺点是体积大,工艺复杂,不利于电路集成化。现在一般应用于高 频电路中。(3)直接耦合方式集成电路多应用直接耦合方式。这种方式即可放 大交流信号,也可以放大交流信号。两级静态工作点相互影响。为了使两级都 有合适的静态工作点,对输入信号实施正常放大,可以提高第二级发射级电位。 Q2 场效应管和双极型三极管的比较(1)场效应管是多子参与导电,所以是单极型三极管;普通三极管多数载流子和少数载流子参与导电,所以是双极型 三极管。(2)因为少子容易受到温度影响,故场效应管在热稳定性和低噪声等 方面优于双极型三极管。(3)场效应管是电压控制器件,输入电阻高。双极型 三极管是电流控制器件,输入电阻较低。(4)场效应管可以在低电压,小电流 下工作。工艺简单,便于集成,适合于制造大规模集成电路。 Q3 MOS 场效应管使用的几个问题(1)因为MOS 场效应管的输入电阻很高,很容易受到外界电场的干扰,而形成较高的电压,使管子损坏。(2)MOS 管存放时,各电级短接在一起。使用时可在栅源直接接一个电阻或者接一个稳压管。(3)测量时,人体要与大地相接,与大地等电位。(4)判断电极的方法(以 N 沟道为例):将万用表调制电阻档,用黑表笔接触一脚,红表笔分别接触另

阻容耦合两级放大电路

模拟电子技术综合实验报告 姓名: 学号: 班级: 课程设计名称:阻容耦合两级放大电路 实验室(中心):电子电工实验室 指导教师: 设计完成时间:年月日

一、设计目的 一、设计目的与要求 (一)目的 1、在multisim中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ(有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈 (二)要求 1、在multisim中设计仿真一个阻容耦合两级放大电路,要求信号频率10kHZ (有效值1mv),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻和频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 二、设计任务

1、在multisim 中设计仿真一个阻容耦合两级放大电路,要求信号源频率10kHZ (有效值1mv ),电压放大倍数100。(可以用单管放大电路构成两级电路,也可以用运放构成两级电路) 2、给电路引入电压串联负反馈: (1)测量负反馈接入前后电路放大倍数、输入输出电阻和频率特性; (2)改变输入信号幅度,观察负反馈对电路非线性失真的影响。 要求得到的数据: (1)静态工作点; (2)接入负反馈前后电路放大倍数、输入输出电阻; (3)验证 F f 1 A ; (4)测试接入负反馈前后两级放大电路的频率特性; (5)测试接入负反馈前后,电路输出开始失真时对应的输入信号幅度。 三、设计方案分析 1.概述 放大电路的前级输出端通过电容接到后级输入端,成为阻容耦合方式。由于电容对滞留的阻抗为无穷大,因而阻容耦合放大电路各极之间的直流通路各不相痛,各级的静态工作点相互独立,求解或实际调试Q 点时可以按单级处理,所以电路的分析,实际和调试简单易行,而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,因此,在分立元件电路中阻容耦合方式的到非常广泛的应用。 其优点是由于电容的隔直作用,各级放大器的静态工作点相互独立,独立估算;电路的分析、设计和调试方便;电容对交流信号几乎不衰减;缺点是低频特性变差;大电容不易集成。 同时,负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。 2.两级阻容耦合及负反馈放大电路系统设计 (1)原理分析: 阻容耦合放大器(图1)是一种最常见多级放大器其电路。

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

多级放大电路习题参考答案

第四章多级放大电路习题答案3.1学习要求 (1)了解多级放大电路的概念,掌握两级阻容耦合放大电路的分析方法。 (2)了解差动放大电路的工作原理及差模信号和共模信号的概念。 (3)理解基本互补对称功率放大电路的工作原理。 3.2学习指导 本章重点: (1)多级放大电路的分析方法。 (2)差动放大电路的工作原理及分析方法。 本章难点: (1)多级放大电路电压放大倍数的计算。 (2)差动放大电路的工作原理及分析方法。 (3)反馈的极性与类型的判断。 本章考点: (1)阻容耦合多级放大电路的静态和动态分析计算。 (2)简单差动放大电路的分析计算。 3.2.1多级放大电路的耦合方式 1.阻容耦合 各级之间通过耦合电容和下一级的输入电阻连接。优点是各级静态工作点互不影响,可单独调整、计算,且不存在零点漂移问题;缺点是不能用来放大变化很缓慢的信号和直流分量变化的信号,且不能在集成电路中采用阻容耦合方式。 静态分析:各级分别计算。

动态分析:一般采用微变等效电路法。两级阻容耦合放大电路的电压放大倍数为: 其中i2L1r R =。 多级放大电路的输入电阻就是第一级的输入电阻,输出电阻就是最后一级的输出电阻。 2.直接耦合 各级之间直接用导线连接。优点是可放大变化很缓慢的信号和直流分量变化的信号时,且适宜于集成;缺点是各级静态工作点互相影响,且存在零点漂移问题,即当0i =u 时0o ≠u (有静态电位)。引起零点漂移的原因主要是三极管参数(I CBO ,U BE ,β)随温度的变化,电源电压的波动,电路元件参数的变化等。 3.2.2差动放大电路 1.电路组成和工作原理 差动放大电路由完全相同的两个单管放大电路组成,两个晶体管特性一致,两侧电路参数对称,是抑制直接耦合放大电路零点漂移的最有效电路。 2.信号输入 (1)共模输入。两个输入信号的大小相等、极性相同,即ic i2i1u u u ==。在共模输入信号作用下,电路的输出电压0o =u ,共模电压放大倍数0c =A 。 (2)差模输入。两个输入信号的大小相等、极性相反,即id i2i12 1u u u =-=。在共模输入 信号作用下,电路的输出电压o1o 2u u =,差模电压放大倍数d1d A A =。 (3)比较输入。两个输入信号大小不等、极性可相同或相反,即i2i1u u ≠,可分解为共模信号和差模信号的组合,即: 式中u ic 为共模信号,u id 为差模信号,分别为: 输出电压为: 3.共模抑制比 共模抑制比是衡量差动放大电路放大差模信号和抑制共模信号的能力的重要指标,定义为A d 与A c 之比的绝对值,即: 或用对数形式表示为:

电子专业技术实验报告阻容耦合放大电路

电子技术实验报告阻容耦合放大电路

————————————————————————————————作者:————————————————————————————————日期:

学生实验报告 系别电子工程系课程名称电子技术实验 班级实验名称阻容耦合放大电路 姓名实验时间2011年 3 月16 日 学号指导教师 报告内容 一、实验目的和任务 1.学习放大电路频率特性的测量方法; 2. 观察电路元件参数对放大电路频率特性的影响; 3.进一步熟练掌握和运用放大电路主要性能参数(如静态工作点参数、放大倍数、输入电阻、输出电阻)的测试方法; 4.巩固多级放大电路的有关理论知识。 二、实验原理介绍 本实验采用的电路如图3-1所示。 1.中频段的电压放大倍数 在图3-1电路中的中频段,耦合电容和旁路电容可以当作交流短路,三极管的电容效应可以忽略不计。此时,考虑后级放大电路对前级放大电路所构成的负载效应时,也 R作为前级放大电路的负载,则前级放大电路的电压放就是将后级放大电路的输入电阻 2i

大倍数为 ef be i c i O u R r R R U U A )1() //(121 111ββ++-== (3-1) 其中,2i R 是后级放大电路的输入电阻,222212////be B B i r R R R =,后级放大倍数为 be l c O O u r R R U U A )//(2212β-== (3-2) 全电路的电压放大倍数为 211 1u u O O i O i O um A A U U U U U U A === (3-3) 2.低频段和高频段的电压放大倍数 在低频段和高频段,放大电路的电压放大倍数是一个复数,它是频率的函数,其模值与相角都随频率变化。 (1)单级放大电路在低频段和高频段的电压放大倍数 在低频段,三极管的电容效应可以忽略不计,但是耦合电容和旁路电容的容抗较大,它们的交流压降不能忽略。电压放大倍数用下式表示: f f j A L um UL -= ? 1A (3-4) 其中,L f 是放大电路的下限频率。 在高频段,耦合电容和旁路电容的阻抗非常小,它们的交流压降很小,可以忽略,可作交流短路处理,但三极管的电容效应对电路性能的影响则必须考虑。电压放大倍数可用下式表示: H Um UH f f j A += ? 1A (3-5) 其中,H f 是放大电路的上限频率。 (2)多级放大电路在低频段和高频段的电压放大倍数 多级放大电路的电压放大倍数等于各级放大电路电压放大倍数的乘积: ??=? ? ? ? 321u A A A A u u u (3-6)

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

小信号阻容耦合放大电路设计

郑州科技学院 《Multisim10电子仿真实验与设计》报告 题目小信号阻容耦合放大电路设计 学生姓名杨春城 专业班级 10级电子科学与技术二班 学号201031051 院(系)电气工程学院 指导教师刘林阴 完成时间2013年09月09日

目录 1小信号阻容耦合放大电路设计 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3设计说明 (1) 1.4设计静态工作点并计算元件参数 (2) 2 仿真设计 (2) 2.1搭建实验电路 (2) 2.2仿真分析 (3) 3分析研究 (6) 3.1问题分析 (6) 3.2放大电路动态性能指标的检测 (7) 4总结 (9)

1小信号阻容耦合放大电路设计 1.1设计目的 通过小信号阻容耦合放大电路仿真设计来讨论单元电路的一般分析、设计、元器件选取与调试的思路、流程、技巧和方法。 1.2设计要求 试设计一个工作点稳定的小信号单元放大电路。要求: |Av|>40,Ri>1k,Ro>3k?,fL<100Hz,fH>100kHz,电路的 Vcc=+12V,Rl=3k?,Vi=10Mv,Rs=600?. 1.3设计说明 1、选定电路形式 选用如图5.1.1所示的基极分压式工作点稳定的小信号共射放大单元电路。 图5.1.1 共射放大电路

2、选用三极管 因设计要求f H>100kHz,f H的指标要求较高。一般来说,三极管的f T越大C b’e、C b‘c越小,f H越高。故选定三极管为9013,其I CM=500mA,V(BR)CEO20V,P CM=625mW,f T150MHz,I CEO0.1uA,h FE(β)为60200。对于小信号电压放大电路,工程上通常要求β的数值应大于A v的数值,故取β=60。 1.4设计静态工作点并计算元件参数 ICQ<26β/(Ri-rbb’)=1.95mA,取ICQ=1.5mA, Re=(VBQ-VBEQ)/ICQ=(3-0.6)/1.5k ?=1.6k ?,Re=1.6k ? Rb2=βVBQ/(510)I1=(1224) k ?,取Rb2=20k ? Rb1=Rb2(Vcc-VBQ)/VBQ=20(12-3)/3=60k ?,取Rb1=56k ?. Rbe=rbb’+26β/ICQ=1240 ?,RL’=|Av|rbe/β=0.827k ? Rc=RLRL’/(RL-RL’)=1.14k ?,取Rc=1.2k ?. Cb2=Cb1>(310)/ ω(Rs+rbe)=(2.68.6) μF。取Cb2=Cb1=10μF。 Ce>(13)/[ ω(Re//(RS+rbe)/ β)]=(53~159) μF,取Ce=100μF。 2 仿真设计 2.1搭建实验电路 在Multisim 10电路实验窗口,按上述设计参数搭建小信号共射放大电路,如图5.1.2所示。

多级阻容耦合放大器的设计与仿真

通信与信息工程学院电子设计与制作课程设计 班级:电子信息工程1201 姓名: 学号:1207050117 指导教师: 设计时间: 2014.6.30———2014.7.4成绩: 评 通信与信息工程学院 二〇一四年

多级阻容耦合放大器的设计与仿真一.设计目的 1.能够较全面的巩固和应用“模拟电子技术”课程中的基本理论和基本方法。并初步掌握电路设计的基本流程(设计-仿真-pcb板制作) 2.能灵活的应用各种元器件或者标准集成电路实现规定的电路。 3.培养独立思考,独立准备资料,独立设计模拟电子电路系统的能力 4.培养独立设计能力,熟悉EDA工具的使用,比如Multisim系列(仿真分析) 5. 培养书写综合设计实验报告的能力。 二.设计内容和要求 1.电路性能指标 已知条件: (1)电源电压VCC=12V; (2)负载电阻RL=2KΩ; (3)输入信号为Vi=4mv,f=1KHZ的正弦波电压,信号源内阻Rg很小可忽略 技术指标: (1)放大器不失真输出电压VO≥1000mv,即放大器电压增益∣AV∣≥500 (2)△f=300Hz~80KHz (3)放大器工作点稳定. 2. 原理简述

阻容耦合放大器是多级放大器中最常见的一种,两级之间通过耦合电容及下级输入电阻连接,故称为阻容耦合,由于电容有隔直作用,使前、后级的直流工作点互相不影响,各级放大电路的静态工作点可以单独计算和调整。每一级放大电路的电压放大倍数为输出电压与输入电压之比,其中,第一级的输出电压即为第二级输入电压. 三.方案论证 采用三极管 采用三极管的级联方式组成多级放大电路。三极管又可以分为三种放大电路:共射,共集和共基极放大电路。三种电路各有各自的特点。 (1)采用三级放大电路。阻容耦合放大器是多级放大器中最常见的一种,两级之间通过耦合电容及下级输入电阻连接,故称为阻容耦合,由于电容有隔直作用,使用前、后级的直流工作点互相不影响,各级放大电路的静态工作点可以单独计算。每一级放大电路的电压放大倍数为输出电压Uo与输入电压Ui之比,其中,第一级的输出电压Uo1 即为第二级输入电压Uo2,所以两级放大电路的电压放大倍数为 A V =*1A V A V2*A V3. (2)采用三级管三级管具有功率放大的作用。根据实验的要求,本设计最终采用了三极管设计的方案。电路由两级放大电路级联组成,第一级为射级输出器,第二级采用同样的放大电路通过电容耦合连接起来。第三级采用共射级电路。采用射极跟随输出,防止失真,用以

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

相关文档
最新文档