实验二 控制系统的根轨迹分析与频域分析

实验二  控制系统的根轨迹分析与频域分析
实验二  控制系统的根轨迹分析与频域分析

实验二 控制系统的根轨迹分析与频域分析 一、实验目的

1、掌握如何运用计算机的MA TLAB 软件进行根轨迹分析

1、 掌握如何用计算机MA TLAB 软件工具进行系统或环节的频率特性的测试。

二、实验类型

综合性

三、实验设备

计算机

四、实验原理

频率特性函数是静态下正弦输出信号与正弦输入信号的复数符号之比。从频率特性图象上可以很方便的得到关于系统稳定性和动态特性的一些信息。因此,它是研究控制系统的一个重要工具。

五、实验内容和要求

(一)内容

1、 已知开环传递函数为s

s s s k

s H 803616)(234+++=绘出闭环系统的根轨迹,并找出根轨迹与虚轴交点处的增益k 值。 2、 已知开环传递函数为)45)(23()

3()(22+++++=

s s s s s k s H 绘出闭环系统的根轨迹。并分析系统

的稳定性。

3、 编程实现惯性环节005.0,11

)(=+=T Ts s G 的频率特性,编程实现幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和伯德图。

4、 编程实现振荡环节的频率特性。

8.0,4.0,2.0,002.0,121

)(22==++=ζζT Ts s T s G ,用MA

TLAB 软件编程仿真出振荡环节的幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和波德图,增益相位裕度的伯德图。并在同一极坐标图和伯德图中绘制不同ζ下的响应曲线。(要获得谐振峰值、谐振频率等关键点的值。)

(二)要求

1、预习根轨迹的绘制的方法,编制相应实现的MA TLAB 程序。

2、在理论上画出实验中惯性环节、振荡环节相应的幅相频率特性,对数幅频和对数相频特性,绘制奈奎斯特图和伯德图;并预先编制实现的MA TLAB 程序。

3、写出实验报告,对于内容(一)写出实现的MA TLAB 程序;给出给定系统)(s H 的根轨迹图,并分析系统的稳定性;进行实验总结;对于内容(二)给出出惯性环节、振荡环节的实现程序及各实验曲线;将实验结果同理论估计的结果相比较,若不同分析其原因;根据实验曲线能得到哪些结论(稳定性、增益方面的)。

六、注意事项

命令调用的格式不能随意改写

七、思考题

如何利用Bode 图来分析系统的增益裕度、相位裕度、及其稳定性?

自动控制根轨迹实验报告

实验三 根轨迹分析 一、实验目的: 1.熟悉零、极点对根轨迹的影响 2.组合典型环节按照题目完成相应曲线 二、实验内容 鱼鹰型倾斜旋翼飞机V-22既是一种普通飞机,又是一种直升机。当飞机起飞和着陆时,其发动机位置可以使V-22像直升机那样垂直起降,而在起飞后,它又可以将发动机旋转90度,切换到水平位置,像普通飞机一样飞行。在直升机模式下,飞机的高度控制系统如图所示。要求: (1) 概略绘出当控制器增益K1变化时的系统根轨迹图,确定使系统稳定的K1值范围; (2) 当取K1=280时,求系统对单位阶跃输入r(t)=l(t)的实际输出h(t),并确定系统的 超调量和调节时间(Δ=2%); (3) 当K1=280,r(t)=0时,求系统对单位阶跃扰动N (s )=1/s 的输出h n (t); (4) 若在R (s )和第一个比较点之间增加一个前置滤波器 G p (s)= 5 .05.15 .02 ++s s Matlab 指令如下 fenzi=[1 1.5 0.5]; fenmu=[1 0]; G1=tf(fenzi,fenmu) fenzi=[1]; fenmu=conv(conv([20 1],[10 1]),[0.5 1]); G2=tf(fenzi,fenmu) sys1=series(G1,G2) rlocus(sys1) sys2=feedback(280*sys1,1) step(sys2) sys3=feedback(G2,280*G1) step(sys3) G3=tf([0.5],[1 1.5 0.5]) sys4=series(G3,sys2) step(sys4)

自控实验报告实验三 线性系统的根轨迹

实验三 线性系统的根轨迹 一、实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、实验报告 1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。 2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。 3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K 值,确定闭环系统稳定的范围。 4.写出实验的心得与体会。 三、实验内容 请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。 一、 ) 136)(22()(2 2 ++++=s s s s s K s G 1、程序代码: G=tf([1],[1,8,27,38,26]); rlocus (G); [k,r]=rlocfind(G) G_c=feedback(G,1); step(G_c) 2、实验结果:

-8-6 -4 -2 24 6 8 Root Locus Real Axis I m a g i n a r y A x i s selected_point = -8.8815 + 9.4658i k = 1.8560e+04 r = -10.2089 + 8.3108i -10.2089 - 8.3108i 6.2089 + 8.2888i 6.2089 - 8.2888i Time (seconds) A m p l i t u d e selected_point = -9.5640 - 7.6273i k = 1.3262e+04 r = -9.5400 + 7.6518i -9.5400 - 7.6518i 5.5400 + 7.6258i 5.5400 - 7.6258i Time (seconds) A m p l i t u d e

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

根轨迹分析实验报告

. 课程名称:控制理论乙指导老师:成绩: 实验名称:控制系统的根轨迹分析实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握用计算机辅助分析法分析控制系统的根轨迹 2.熟练掌握Simulink仿真环境 二、实验内容和原理 1.实验内容 一开环系统传递函数为 k(s?2)?s)G(22(s?4s?3)绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2.实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k)从零变到无穷大时,死循环系统特征方程的根在s平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设等。pzmap,rlocus,rlocfind计也具有指导意义。在MATLAB中,绘制根轨迹有关的函数有:3.实验要求 (1)编制MATLAB程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。三、主要仪器设备 仿真环境simulink计算机一台以及matlab软件,四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G = s + 2 ------------------------------- s^4 + 8 s^3 + 22 s^2 + 24 s + 9 Continuous-time transfer function. >> figure

00实验三 基于MATLAB的根轨迹绘制与性能分析

实验四基于MATLAB的根轨迹绘制与性能分析 [实验目的] 1.掌握MATLAB下的根轨迹绘制方法; 2.学会利用根轨迹进行系统分析。 [实验指导] 1.根轨迹作图函数(命令):rlocus( ) 调用格式: ①rlocus(sys) 或rlocus(num,den) ②rlocus(sys,k) ①②画根轨迹图,①变化参量(一般是根轨迹增益)范围系统自动给出; ②变化参量(一般是根轨迹增益)范围在程序中给出; ③r=rlocus(sys) ④ [r,k]=rlocus(sys) ③④不画根轨迹图,③返回闭环根向量;④返回闭环根向量(r)和变化参量(k)。 2.根与根轨迹增益的求取 ⑴在根轨迹上点击,可得到该点的根值和对应的根轨迹增益值。 ⑵使用计算给定根的根轨迹增益的函数(命令):rlocfind( ) 调用格式: ①[k,poles]=rlocfind(sys) ②[k,poles]= rlocfind(sys,p) 使用方法:

①首先,当前根轨迹已绘出。运行该命令时,在根轨迹图中显示出十字光标,当用户选择其中一点时,其相应的增益由k 记录,与增益相关的所有极点记录poles 中;同时,在命令行窗口显示出来。 ②事先事先给出极点p ,运行该命令时,除了显示出该根对应的增益以外,还显示出该增益对应的其它根。 3.开环零点极点位置绘图函数(命令): pzmap( ) 调用格式: ① pzmap(sys) ② [p,z]=pzmap(sys) 函数功能: 给定系统数学模型,作出开环零点极点位置图。 ① 零点极点绘图命令。零点标记为“+”,极点标记为“o”。 ② 返回零点极点值,不作图。 4.根轨迹渐进线的绘制 当根轨迹渐进线与实轴的交点σa 已求出后,可得到方程11()n m a K s σ-=--, 这是根轨迹渐进线的轨迹方程。 将1()() n m a K G s s σ-= -作为一个开环传递函数,录入到MATLAB 中,再使用根 轨迹作图函数(命令)rlocus( ),生成的轨迹就是原根轨迹的渐进线。 5.举例 例1:开环传递函数1 ()(1)(2) K G s s s s =++绘制其闭环根轨迹。 程序: >> z=[];p=[0,-1,-2];k=1;sys=zpk(z,p,k);rlocus(sys) 运行结果:

MATLAB的根轨迹分析

基于MA TLAB 的根轨迹分析 一.实验目的: 1.学习利用MATLAB 的语言绘制控制系统根轨迹的方法。 2.学习利用根轨迹分析系统的稳定性及动态特性。 二.实验内容: 1.应用MATLAB 语句画出控制系统的根轨迹。 2.求出系统稳定时,增益k 的范围。 3.分析系统开环零点和极点对系统稳定性的影响。 三.实验步骤 1.给定某系统的开环传递函数G(s)H(s)=k/s(s*s+4s+16),用MATLAB 与语言绘出该系统的根轨迹。 程序如下: num=[1]; den=[1,4,16,0]; G=tf(num,den) G1=zpk(G) Z=tzero(G) P=pole(G) pzmap(num,den); title('pole-zero Map') rlocus(num,den) 根轨迹如图 -12-10-8-6-4 -2024-10-8 -6 -4 -2 024 6 8 10 Root Locus Real Axis I m a g i n a r y A x i s

结论:由上图可知增益k 的取值范围:0

自动控制原理-线性系统的根轨迹实验报告

线性系统的根轨迹 一、 实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、 实验容 1. 请绘制下面系统的根轨迹曲线。 ) 136)(22()(22++++=s s s s s K s G ) 10)(10012)(1()12()(2+++++=s s s s s K s G )11.0012.0)(10714.0()105.0()(2++++= s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的围。 2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并 观察增加极、零点对系统的影响。 三、 实验结果及分析 1.(1) ) 136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: num=[1];

den=[1 8 27 38 26 0]; rlocus(num,den) [r,k]=rlocfind(num,den) grid xlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus') 运行结果: 选定图中根轨迹与虚轴的交点,单击鼠标左键得: selected_point = 0.0021 + 0.9627i k = 28.7425 r = -2.8199 + 2.1667i -2.8199 - 2.1667i -2.3313 -0.0145 + 0.9873i

根轨迹分析实验报告

课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 控制系统的根轨迹分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验容和原理(必填) 三、主要仪器设备(必填) 四、操作法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握用计算机辅助分析法分析控制系统的根轨迹 2. 熟练掌握Simulink 仿真环境 二、实验容和原理 1. 实验容 一开环系统传递函数为 22) 34()2()(+++=s s s k s G 绘制出此闭环系统的根轨迹,并分析系统的稳定性。 2. 实验原理 根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k )从零变到无穷大时,死循环系统特征程的根在s 平面上的轨迹。因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。在MATLAB 中,绘制根轨迹有关的函数有:rlocus ,rlocfind ,pzmap 等。 3. 实验要求 (1)编制MATLAB 程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。 (2)在Simulink 仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab 软件,simulink 仿真环境 四、实验源代码 >> A=[1 2]; >> B=conv([1 4 3],[1 4 3]); >> G=tf(A,B) G = s + 2 ------------------------------- s^4 + 8 s^3 + 22 s^2 + 24 s + 9 Continuous-time transfer function. >> figure >> pzmap(G)

自动控制原理-线性系统的频域分析实验报告

自动调节系统频域分析 班级11081801 学号1108180135 姓名王佳炜 日期2014.1.5

线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2 +-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

控制系统的根轨迹分析

实验四 控制系统的根轨迹分析 一. 实验目的: 1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。 2. 学习利用根轨迹分析系统的稳定性及动态特性。 二. 实验内容: 1. 应用MATLAB 语句画出控制系统的根轨迹。 2. 求出系统稳定时,增益K 的范围。 3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。 4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。(实验方法参考实验二) 5. 分析系统开环零点和极点对系统稳定性的影响。 三. 实验原理: 根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。假定某闭环系统的开环传递函数为 ) 164)(1()1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。 b=[1 1]; %确定开环传递函数的分子系数向量 a1=[l 0]; %确定开环传递函数的分母第一项的系数 a2=[l -1]; %确定开环传递函数的分母第二项的系数 a3=[l 4 16]; %确定开环传递函数的分母第三项的系数 a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。 p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。 [k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应

MATLAB的根轨迹分析法及重点习题

4.1某系统的结构如题4-1图所示,试求单位阶跃响应的调节时间t s ,若要求t s =0.1秒,系统的反馈系数应调整为多少? 解:(1)由系统结构图可知系统闭环传递函数为: 100 ()100()1001()()1001*G s s s G s H s s a a s Φ=== +++ 在单位阶跃函数作用下系统输出为: 12100 ()()()(100)100k k C s R s s s s a s s a =Φ= =+++ 为求系统单位阶跃响应,对C(s)进行拉斯反变换: 10 21001001001001 lim ()lim 1001001 lim (100)()lim 11 ()(100)1 ()(1) s s s a s a at k sC s s a a k s a C s s a C s as a s a c t e a →→→-→--=== +=+==- =- +=- 根据定义调节时间等于响应曲线进入5%误差带,并保持在此误差带内所需要的最短时间,且根据响应系统单位阶跃响应的函数表达式可以看出系统单位阶跃响应的稳态值为 1 a ,因此: 10010011()(1)0.950.051 ln 20 1001 =0.1ln 20=0.3s 10 s s at s at s s c t e a a e t a a t --= -=?=?== 因为题中,所以 (2)若要求t s =0.1秒,则有: 1 ln 20=0.1 100=0.3s t a a = ? 即:若要求调节时间缩小为0.1秒,则需将反馈环节的反馈系数调整为0.3。

4.2已知二阶系统的阶跃响应曲线如题4.2图所示,该系统为单位负反馈系统,试确定其开环传递函数。 解:根据系统阶跃响应曲线可以看出: 峰值时间=0.1s p t ,超调量 1.3-1 %= 100%30%1 σ?=; 根据课本中对典型二阶系统222 ()2n n n s s s ωζωωΦ=++暂态性能指标的推导计算可知: %p t e σ-= =结合本题已知阶跃响应曲线可知: 0.1(1)%30% (2) p t e σ-= === 由式(2)可知: 0.3ln 0.30.3832 cot =0.3832 =arccot 0.3832=69.0332=cos =0.3578 e ζ?ζ?ζ?-=?-=?= =即: 将ζ带入式(1)中可得: 0.1 p n t ω= = 回顾题意对于典型二阶系统其闭环传递函数为222 ()2n n n s s s ωζωωΦ=++,且系统为单位负反馈系统,所以系统开环传递函数和闭环传递函数之间满足如下关系: 2222 2 22 2 2211 ()()121211211131.8851 ===224.0753n n n n n n n n n G s s s s G s s G s s G G s s s s ωζωζωωωζωωωζωΦ==Φ==+++++++++,因为:所以:,

自动控制原理(系统根轨迹分析)

武汉工程大学自动控制原理实验报告 专业班级:指导老师: 姓名:学号: 实验名称:系统根轨迹分析 实验日期:2011-12-01 第三次试验 一、实验目的 1、掌握利用MATLAB精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB仿真软件(版本6.5或以上) 实验内容

1.根轨迹的绘制 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。 图3.2 闭环系统一

图3.3 闭环系统一 的根轨迹及其绘制 程序 注意:在这里,构成系统s ys 时,K 不包括在其中,且要使分子和分母中s最高

次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。图 3.4 给出了函数 r locfind 的用法。 2.实验内容 图3.5 闭环系统二 1) 对于图 3.5 所示系统,编写程序分别绘制当 (1) G(s)= )2(+s s K , (2) G(s)= ) 4)(1(++s s s K ,

线性系统的频域分析-自动控制

实验三·线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 22 ()2n n n G s s s ωζωω=++ 绘制出6n ω=,0.1ζ =,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 2.系统的开环传递函数为 210 ()(51)(5)G s s s s =-+ 228(1) ()(15)(610) s G s s s s s += +++ 4(/31) ()(0.021)(0.051)(0.11) s G s s s s s += +++ 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 3.已知系统的开环传递函数为21()(0.11) s G s s s += +。求系统的开环截止频率 穿越频率、幅值裕度和相位裕度。应用频率稳定判据判定系统的稳定性。 三、实验内容及分析 1. 系统1:2 22 ()2n n n G s s s ωζωω=++中6n ω=,(1)0.1ζ=时 Matlab 文本如下: num=[36 0 0]; den=[1 1.2 36]; w=logspace(-2,3,100); bode(num,den,w) Grid 得到图像:

同理,得到其他值情况下的波特图:ξ=0.3时 ξ=0.5时 ξ=0.8时

ξ=2时 从上面的图像中可以看出:随着ξ的不断增大,波特图中震荡的部分变得越来越平滑。而且,对幅频特性曲线来说,其上升的斜率越来越慢;对相频特性曲线来说,下降的幅度也在变缓。 2. 开环传递函数1:210 ()(51)(5) G s s s s = -+ 奈奎斯特图函数及图像如下: num=[0 10]; den=[conv([5,-1],[1,5]),0,0]; [z,p,k]=tf2zp(num,den); p

自动控制原理线性系统的频域分析实验四

武汉工程大学实验报告专业电气自动化班号指导教师 姓名同组者无

M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Frequency (rad/sec) 当3.0=ζ时,程序如下: num=[0 0 36];den=[1 3.6 36];w=logspace(-2,3,100);bode(num,den,w) grid M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Bode Diagram Frequency (rad/sec) 当5.0=ζ时,程序如下: num=[0 0 36];den=[1 6 36];w=logspace(-2,3,100);bode(num,den,w) grid

M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g )Frequency (rad/sec) 当8.0=ζ时,程序如下: num=[0 0 36];den=[1 9.6 36];w=logspace(-2,3,100);bode(num,den,w) grid M a g n i t u d e (d B ) 10 1010101010P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 当2=ζ时,程序如下: num=[0 0 36];den=[1 24 36];w=logspace(-2,3,100);bode(num,den,w) grid

自动控制原理线性系统的频域分析实验报告

实验四 专业 自动化 班号 03班 指导教师 陈艳飞 姓名 胡波 实验名称 线性系统的频域分析 实验日期 第 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

控制系统的根轨迹分析

实验报告 课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________ 实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验十一 控制系统的根轨迹分析 一、实验目的 1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。 2、熟练掌握 Simulink 仿真环境。 二、实验原理 1、根轨迹分析方法 所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特 征方程的根就是闭环传递函数的极点。 根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性 当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K 值就是临界稳定开环增益。 (2) 稳态性能 开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能 当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。 同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。 专业:_____________________ 姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

自动控制系统的时域频域分析报告

摘要......................................................................... I 第一早绪论 (1) 1.1自动控制理论发展概述 (1) 1.2Matlab 简介............................. 2 第二早控制系统的时域分析与校正...... 2 2.1概述 (2) 2.2一阶系统的时间响应及动态性能 (3) 2.3二阶系统的时间响应及动态性能 (4) 2.4高阶系统的阶跃响应、动态性能及近似 (11) AVV ------- * 第二早控制系统的频域分析与校正 (13) 3.1概述 ................................ . (13) 3.2频率特性的表示方法.................. .. (14) 3.3频率特性的性能指标.................. .. (15) 3.4典型环节的频率特性.................. .. (17) 第四章结论 (23) 课程设计总结 (24) 参考文献 (25) 附录 (26)

摘要

第一章绪论 1.1自动控制理论发展概述 自动控制理论是在人类征服自然地生产实践活动中孕育、产生,并随 着社会生产和科学技术的进步而不断发展、完善起来的。 早在古代,劳动人民就凭借生产实践中积累的丰富经验和对反馈概念的直观认识,发明了许多闪烁控制理论智慧火花的杰作。我国北宋时代苏 颂和韩公廉利用天衡装置制造的水运仪象台,就是一个按负反馈原理构成 的闭环非线性自动控制理论;1681年Dennis Papin发明了用做安全调节 装置的锅炉压力调节器;1765年俄国人普尔佐诺夫发明了蒸汽锅炉水位调节器。 1788年,英国人瓦特在他发明的蒸汽机上使用了离心调速器,解决了蒸汽机的速度控制问题,引起了人们对控制技术的重视。之后,人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。 1868年,英国物理学家麦克斯韦通过对调速系统线性常微分方程的建立与分析,解释了瓦特速度控制系统中出现的不稳定问题,开辟了用数 学方法研究控制系统的途径。此后,英国数学家劳斯和德国数学家古尔维茨独立的建立了直接根据代数方程的系数判别系统稳定性的准则。这些方 法奠定了经典控制理论中时域分析法的基础。 1932年,美国物理学家乃奎斯特研究了长距离电话信号传输中出现的失真问题,运用了复变函数理论建立了以频率特性为基础的稳定性判据,奠定了频率响应法的基础。随后伯德和尼克尔斯进一步将频率响应法加以发展,形成了经典控制理论的频域分析法。 之后,以传递函数作为控制系统的数学模型,以时域分析法、频域分析法为主要分析设计工具,构成了经典控制理论的基本框架。到20世纪60年代初,一套以状态方程作为描述系统的数学模型,以最优控制和卡尔曼滤波为核心的控制系统分析、设计的新原理和方法基本确定,现代控 制理论应运而生。控制理论目前还在向更深、更广阔的领域发展,在信息

第4章-根轨迹分析法-参考答案

习题 4.1 已知下列负反馈的开环传递函数,应画零度根轨迹的是:(A) A *(2)(1)K s s s -+ B *(1)(5)K s s s -+ C *2(31)K s s s -+ D *(1)(2) K s s s -- 4.2 若两个系统的根轨迹相同,则有相同的:(A) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应 4.3 己知单位负反馈控制系统的开环传递函数为 * ()()(6)(3)K G s H s s s s = ++ (1) 绘制系统的根轨迹图(*0K <<∞); (2) 求系统临界稳定时的*K 值与系统的闭环极点。 解:系统有三个开环极点分别为10p =、23p =-、36p =-。 系统有3条根轨迹分支,分别起始于开环极点,并沿渐进线终止于无穷远。 实轴上的根轨迹区段为(],6-∞-、[]3,0-。 根轨迹的渐近线与实轴交点和夹角分别为 ()()36 33a σ-+-==-,() (0) 321 (1)3 (2)3 a k k k k π ?ππ ?=?+?===???-=? 求分离点方程为 111036 d d d ++=++ 经整理得2660d d ++=,解方程得到1 4.732d =-、2 1.268d =-。显然分离点位于实轴上 []3,0-间,故取2 1.268d =-。 求根轨迹与虚轴交点,系统闭环特征方程为 32*()9180D s s s s K =+++= 令j s ω=,然后代入特征方程中,令实部与虚部方程为零,则有 [][]2* 3 Re (j )(j )190 Im (j )(j )1180 G H K G H ωωωωωωω?+=-+=??+=-+=?? 解之得 *00K ω=??=? 、*162 K ω?=±??=?? 显然第一组解是根轨迹的起点,故舍去。根轨迹与虚轴的交点为s =±,对应的根轨迹增益*162K =为临界根轨迹增益。根轨迹与虚轴的交点为临界稳定的2个闭环极点,第 三个闭环极点可由根之和法则求得 1233036λλλλ--=++=+ 解之得39λ=-。即当*162K =时,闭环系统的3 个特征根分别为1λ= 、 2λ=-39λ=-。系统根轨迹如图4.1所示。

相关文档
最新文档