预习思考题_迈克耳逊干涉仪

预习思考题_迈克耳逊干涉仪
预习思考题_迈克耳逊干涉仪

【实验题目】 迈克耳逊干涉仪的调整与使用

1.

2. 要利用迈克耳逊干涉仪观察到清晰的等倾干涉条纹,需要将仪器调整到什么状态? 转动粗动手轮,使动镜和定镜与分束板的距离相差不多,将定镜的两个微调螺栓旋到适当位置, 在A 板与透镜之间的水平与竖直方向各放一枚细针,在E 处观察,在未调整之前,看到针是双影的。调节C 和D 背后的螺丝,直到针像完全重合为止,刚出现时,是很细的直条纹(等厚干涉条纹),此时应继续调节三对螺丝,使条纹由细变粗最后成圆形。若用钠光源时,如果视场中出现的圆条纹过密或非常模糊,可通过改变C 的位置使条纹变粗变清晰。最后使在视场中能看到4~5个圆形条纹为宜。此时观察者可上下左右移动眼睛(眼睛直接观察C 镜),如果看到条纹有冒出或收缩的情况,则表示C 与D 镜的像D ’镜并不完全平行。这时可调节D 镜的竖直与水平微调螺栓消除。最后达到眼睛上下左右移动时,条纹随着眼睛一起移动,而条纹的大小不改变。这时就可以测量了。

3. 如何利用等倾条纹测量光的波长? 分束镜 补偿板 透镜

如图-1所示,钠灯发出的光经过会聚透镜L变成平行光,光束经过分光板(半反半透镜)G1一部分反射沿光路(1)传播,一部分经G1折射沿光路(2)传播:

(1) 反射后经平面镜M1反射,再次抵达分光板G1并折射;

(2) 折射后经补偿板G2(作用:增大光程差)折射再经平面镜M2反射后沿原路返回到分光板G1并被反射;

(1)、(2)两束光在G1后端汇合,由于(1)、(2)两束相干光的光程差不同导致在E处的观察者看来会产生干涉条纹。

光程差δ=2dncosi

干涉条件:

δ=2k·λ/2 相长(亮条纹)

δ= (2k+1)·λ/2 相消(暗条纹) (k=0,±1,±2…)

对亮条纹,则有δ=2d=kλ

移动动镜M1,d改变,中心处的条纹级数k也随之改变,所以2 · Δd = Δk · λ

所以只要知道Δk所对应的值N,测量出此时的Δd即可求出波长λ = 2 · Δd /N

4.钠光包含两条光谱线(相差0.6nm),用迈克耳逊干涉仪观察它的等倾干涉条纹时相应会

有什么现象?

当入射光的两种波长相差很小时,应有两组干涉条纹,波长短的干涉条纹稍密,波长长的条纹较疏。在某一级上,当光程差满足δ=k1λ1=(k2+N)λ2时,两组干涉条纹完全重叠,且条纹很清楚。而当光程差为δ1=k1λ1=(k2+1/2)λ2时,由波长为λ1的光所产生的暗环位置恰与波长为λ2的光所产生的亮环相重合,条纹的背景很亮,显得非常模糊。如果两种波长的光强相等,则视场呈现均匀照度,完全看不到条纹,这时的视见度为零。当光程继续增加时,条纹又可重叠而进入清晰区域。但干涉级差比前一次清楚时的级差增加1.再继续前进,条纹又交错而进入模糊区。

成绩(满分20 分):

八迈克尔逊干涉仪的调节和使用

实验15 迈克耳孙干涉仪的调节与使用 19世纪末,美国物理学家迈克尔孙(A.A.Michelson )为测量光速,依据分振幅产生双光束实现干涉的原理,设计制造了迈克尔孙干涉仪这一精密光学仪器。迈克尔孙与其合作者用这仪器完成了相对论研究中具有重要意义的“以太”漂移实验,实验结果否定了“以太”的存在,为爱因斯坦建立狭义相对论奠定了基础。 在近代物理学和近代计量科学中,迈克尔孙干涉仪不仅可以观察光的等厚、等倾干涉现象,精密地测定光波波长、微小长度、光源的相干长度等,还可以测量气体、液体的折射率等。迈克尔孙1907年获诺贝尔物理学奖。迈克尔孙干涉仪的基本原理已经被推广到许多方面,研制成各种形式的精密仪器,广泛地应用于生产和科学研究领域。近年来,美国物理学家正在用40m ×40m 的迈克尔孙干涉仪探测引力波。 1 [实验目的] 1.1了解迈克耳孙干涉仪的基本结构,学习其调节和使用方法。 1.2观察各种干涉条纹,加深对薄膜干涉原理的理解。 1.3测定激光的波长。 2 [实验仪器] 迈克耳孙干涉仪(WSM-100型),多束光纤激光器,钠光灯。 3 [仪器介绍] WSM-100型迈克耳孙干涉仪的主体结构如图16-1所示,主要由底座、导轨、拖板、定镜、读数及传动系统、附件等六个部分组成。 3.1底座 底座由生铁铸成,较重,确保证了仪器的稳定性。由三个调平螺丝9支撑,调平后可以拧紧锁紧圈10以保持座架稳定。 3.2导轨 导轨7由两根平行的长约280毫米的框架和精密丝杆6组成,被固定在底座上精密丝杆穿过框架正中,丝杆螺 距为1毫米,如图16-2所示。 3.3拖板部分 拖板是一块平板,反面做成与导轨吻合的凹槽,装在导轨上,下方是精密螺母,丝杆穿过螺母,当丝杆旋转时,拖板能前后移动,带动固定在其上的移动镜11(即M 1)在导轨面上滑动,实现粗动。M 1是一块很精密的平面镜,表面镀有金属膜,具有较高的反射率,垂直地固定在拖板上,它的法线严格地与丝杆平行。 M 1倾角可分别用镜背后面的三颗滚花螺丝13来调节,各螺丝的调节范围是有限度的,如果螺丝向后顶得过松,在移动时可能因震动而使镜面有倾角变化,如果螺丝向前顶得太紧,致使条纹不规则,严重时,有可能将螺丝丝口打滑或平面镜破损。 3.4定镜部分 图16-1 迈克耳逊干涉仪的结构示意图 图16-2 导轨结构示图

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

迈克尔逊干涉仪测He-Ne激光的波长

实验十 迈克尔逊干涉仪测He-Ne 激光的波长 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。在近代物理和计量技术中有广泛的应用。 【实验目的】 1.了解迈克尔逊干涉仪的特点,学会调整和使用。 2.学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。 【实验仪器】 WSM-100型迈克尔逊干涉仪,HNL -55700型H e -N e 激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。 【实验原理】 迈克尔逊干涉仪工作原理:如图10-1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 光源H e -N e 激光器S 发出的光经会聚透镜L 扩束后,射入G 1板,在半反射面上分成两束光:光束(1)经G 1板内部折向M 1镜,经M 1反射后返回,再次穿过G 1板,到达屏E ;光束(2)透过半反射面,穿过补偿板G 2射向M 2镜,经M 2反射后,再次穿过G 2,由G 1下表面反射到达屏E 。两束光相遇发生干涉。 补偿板G 2的材料和厚度都和G 1板相同,并且与G 1板平行放置。考虑到光束(1)两次穿过玻璃板,G 2的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M 1镜与M 2镜之间的相对位置引起的。 为清楚起见,光路可简化为图10-2所示,观察者自E 处向G 1板看去,透过G 1板,除直接看到M 1镜之外,还可以看到M 2镜在G 1板的反射像M 2',M 1镜与M 2'构成空气薄膜。事实上M 1、M 2镜所引起的干涉,与M 1、M 2'之间的空气层所引起的干涉等效。 1.干涉法测光波波长原理: 考虑M 1、M 2'完全平行,相距d 时的情况。点光源S 在镜M 1、M 2'中所成的像s '、s ''构成相距d 2的相干光源,光路如图10-3所示。设s ''到0点的距离 为h 。这种情况下,干涉现象发生在两光相遇的所有空间中,因此干涉是非定域 的。对于屏幕上任意一点P 处,设s ''到0点的距离为h 。两像光源发出的光相 遇时的光程差为δ,P 点处发生相长干涉的条件为: λ=θ-θ+=δk h d 2h 2 1cos cos (10—1) 由(10-1)式,结合图3可以看出,保持h 与d 不变,令P 点向外移动时,1θ、2θ将增大,对应级次K 将伴随δ减小,所以中央条纹的级次高。 2E 图10-1 迈克尔逊干涉仪原理图 M M '图10-3干涉光程计算 2S 图10-2 迈克尔逊干涉仪简化光路

迈克尔逊干涉仪实验报告精品

1 2 1 2 1 2 1 2 1 2 实验目的: 1) 学会使用迈克尔逊干涉仪 2) 观察等倾、等厚和非定域干涉现象 3) 测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源 S 出 发的光经过称 45。 放置的背面镀银的半透玻璃板 P 1 被分成互相垂直的强度几乎相等的两束光, 光 路 1 通过 M 1 镜反射并再次通过 P 1 照射在观察平 面 E 上,光路 2 通过厚度、折射率与 P 1 相同的玻 璃板 P 2 后由 M 2 镜反射再次通过 P 2 并由 P 1 背面的 反射层反射照射在观察平面 E 上。图中平行于 M 的M ' 是M 经 P 反射所成的虚 1 2 2 1 像,即 P 到 M 与 P 到 M ' 的光程距离相等,故从 P 到M 的光路可用 P 到M ' 等 价替代。这样可以认为 M 与 M ' 之间形成了一个空气间隙, 这个空气间隙的厚度 可以通过移动 M 1 完成,空气间隙的夹角可以通过改变 M 1 镜或 M 2 镜的角度实现。 当 M 与M ' 平行时可以在观察平面 E 处观察到等倾干涉现象,当 M 与M ' 有一 1 2 1 2 定的夹角时可以在观察平面 E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当 θ =0 时的光程差 δ 最大,即圆心所对应的

1 2 1 2 干 涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心 “冒出” ;若 d 减小时,圆环逐渐 缩小, 最后“淹没”在中心处。 每“冒” 出或“ 缩”进一个干涉环,相应的光程差改变了一个波长, 也就是 M 与 M ’ 之间距离 变化了半个波长。 若将 M 与 M ’ 之间距离改变了 △d 时,观察到 N 个干涉环变化,则 △d=N 由此可测单色光 的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到 随着动镜 M 1 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即 反衬度从最大到最小再到最大的周期性变化, 利用这一特性, 可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1) )观察非定域干涉条纹 1) 通过粗调手轮打开激光光源, 调节激光器使其光束大致垂直于平面反光镜 M 2 入射,取掉投影屏 E ,可以看到两排激光点 2) 粗调手轮移动 M 1 镜的位置,使得通过分光板分开的两路光光程大致相等 3) 调节M 1 、M 2 镜后面的两个旋钮, 使两排激光点重合为一排,并使两个最 亮的光点重合在一起。此时再放上投影屏 E ,就可以看到干涉条纹。 4) 仔细调节 M 、 M 镜后面的两个旋钮,使 M 与 M ' 平行,这时在屏上可 以看到同心圆条纹,这些条纹为非定域条纹。 5) 转动微调手轮,观察干涉条纹的形状、疏密及中心“吞” 、“吐”条纹随光程差 改变的变化情况。

Sana 光纤端面干涉仪

SANA自动非接触式光纤端面干涉仪 操作手册 版本号 V.2.1 深圳市维度科技有限公司 2010.6

第一章概述 Sana 光纤端面干涉仪是维度科技自主开发的拥有专利技术的一款高性能低价格的自动非接触式光纤端面干涉仪。它能够准确快速的测量出光纤连接器的曲率半径(ROC), 顶点偏移(Apexoffset),光纤高度(FiberHeight)及APC光纤连接器的研磨角度与键度误差;同时立体展现光纤连接器的表面几何状况。 Sana光纤端面干涉仪分为干涉仪主机和Sana干涉测量软件两个部分,随干涉仪还配有一台式商用PC机。 Sana干涉仪主机采用的是650nm的高功率LED窄带光源,能够使用户方便快捷的得到干涉图像。 随机配有两个干涉夹具(2.5mm通用型,1.25mm通用型)能够测量几乎所有的光纤连接器。2.5mm通用型干涉夹具可以测量FC/PC、SC/PC、ST/PC、E2000/PC、DIN、FC/APC、SC/APC等光纤连接器;1.25mm 通用型可以测量LC/PC、MU/PC、LC/APC等光纤连接器。在APC与PC互相转换时不需要更换夹具也不需要对软件校准,只需将角度调节杆调节到相应的角度就可以,使用起来方便快捷。 测量软件的卓越准确性、测量结果的高重复性和界面直观容易操作的特点给测量带来前所未有的便利。初始测量前需要进行校准,在进入校准界面后应用“旋转6点法”进行校准,六点校准完成后软件会自动给出硬件的偏差值,按一下补偿“OK”钮软件对该偏差进行补偿。终端用户不需要对硬件进行调整即可达到校准的目的。 测量时只要点击“测量”按钮就可完成一次测量。当前测量值及历史4次测量值显示在分析图的下方。用户还可根据需求选择是否保存测量结果。如果用户选择自动保测量结果方式软件会将测量值储存在excel 表格中,并根据用户选择的标准(IEC、Telicordia、或者用户自定义标准)判断是否合格。测量完成后软件将光纤连接器的表面几何状况还原出来以三维图的形式显示,并给出等高图和表面粗糙度图使用户直观地认知光纤连接器的表面状况。 主要特点: 1、测量结果的高重复性、准确性; 2、方便直观的软件硬件操作性能; 转换测量PC连接器与APC连接器时不需更换夹具与校准 校准时软件自动补偿硬件偏差,不需要对硬件调整 3、拥有专利技术,干涉夹具锁紧准确,操作方便。独有的APC浮动定位技术使测量APC光 纤连接器的准确性达到前未有的精度; 4、生成三维图及分析图能够直观反映光纤连接器的细节; 5、生成的报告和数据报表格式为Excel,便于文件的管理和打印; 6、与市场同类产品相比具有价格上的绝对优势。

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长 〔引课:〕 在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种: 在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢? ***************************** 迈克尔逊干涉仪 ***************************** ***注意*** 本实验只利用迈克尔逊干涉仪测量等倾干涉图像 〔正课:〕 实验目的与要求 迈克尔逊干涉仪的构造 迈克尔逊干涉仪的原理 迈克尔逊干涉仪的使用 实验原理 1.迈克尔逊干涉仪的构造 等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理 (1) 光路图 图30—2 迈克尔逊干涉仪光路图 光源S发出的光到达分光板 1 G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着 1 M前进,光束(2)经过 2 G后向着 2 M前进,这两束光分别在 1 M和2 M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算 1M 和2M ˊ平行时(1M ⊥ 2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间 为空气,折射率n =1,故光程差 θδcos 2d =。 并且有: θδcos 2d == ?? ? ? ?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…) 对光程差δ作进一步的分析: 图30—4 非定域等倾干涉

光纤马赫-曾德干涉

马赫-曾德光纤干涉实验 光纤传感器是20世纪70年代中期发展起来的一种新型传感器,它是光纤和光通讯技术迅速发展的产物。光纤马赫-曾德干涉仪(MZI)是一种功能型光纤传感器,它在光纤技术中常用作相位、频率等的调制解调器。 一、实验目的 1.学习光纤 马赫-曾德(Mach-Zenhder ) 干涉原理 2.掌握利用马赫-泽德光纤干涉仪对压力和温度的测量。 二、实验器材 OFKM-Ⅳ型多功能全光纤干涉仪,He-Ne 激光器 三、实验原理 1.光纤传感器基本工作原理 光纤 马赫-曾德(Mach-Zenhder ) 干涉仪结构与原理如图 1所示。光源发出的光经过耦合器(DC1),将光束一分为二,光纤一臂为信号臂,另一臂为参考臂。经过耦合器 DC2 进行干涉,干涉光照到探测器上,光强表达式分别为 )(cos 1t B A I Φ+= (1) )(cos 2t B A I Φ-= (2) 在通过对干涉信号相位的获得来推知作用在信号臂上的外界物理量的变化。 2.马赫-曾德光纤温度传感器工作原理 激光束从激光器发出后经分束器分别送入长度基本相同的两条光纤, 而后将两根光纤输出端汇合在一起,产生干涉光, 从而出现了干涉条纹。当一条光纤臂温度相对另一条光纤臂的温度发生变化时, 两条光纤中传输光的相位差发生变化, 从而引起干涉条纹的移动。干涉条纹的数量能反映出被测温度的变化。光探测器接收到干涉条纹的变化信息, 并输入到适当的数据处理系统, 最后得到测量结果。 长度为 L 的光纤中传播光波的相位Φ nL k 00+Φ=Φ (3) 其中0Φ 为光进入光纤前的初始相位, 0k (00/2λπ=k ,0λ为真空中波长)为传播常数, n 为光纤的折射率;L 为光纤的长度。 图1 光纤Mach-Zenhder 干涉仪原理图

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

实验6-5-迈克尔逊干涉仪的原理与使用

实验6—5 迈克尔逊干涉仪的原理与使用 一.实验目的 (1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。 (2).观察各种干涉条纹,加深对薄膜干涉原理的理解。 (3).学会用迈克尔逊干涉仪测量物理量。 二.实验原理 1.迈克尔逊干涉仪光路 如图所示,从光源S 发出的光线经半射镜 的反射和透射后分为两束光线,一束向上 一束向右,向上的光线又经M 1 反射回来, 向右的光线经补偿板后被反射镜M2反射回来? 在半反射镜处被再次反射向下,最后两束光线在 观察屏上相遇,产生干涉。 2.干涉条纹 (1).点光源照射——非定域干涉 如图所示,为非定域干涉的原理图。点S1是光源 相对于M1的虚像,点S 2’是光源相对于M2所成 的虚像。则S1、S2`所发出的光线会在观察屏上形 成干涉。 当M1和M2相互垂直时,有S1各S2`到点A 的 光程差可近似为: i d L cos 2=? ① 当A 点的光程差满足下式时 λk i d L ==?cos 2 ② A 点为第k级亮条纹。 由公式②知当i 增大时c osi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条纹的级次是最高的 (2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。 ①.M 1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干涉 ②.M 1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。当M1与M2夹角很小,且入射角也很小时,光程差可近似为 )21(2)2sin 1(2cos 222 i d i d i d L -≈-=≈?③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。 3.定量测量 (1).长度及波长的测量 由公式②可知,在圆心处i =0 0, cosi=1,这时 λk d L ==?2 ④ 从数量上看如d减小或增大N 个半波长时,光程差L ?就减小或增大N 个整波长,对应

迈克尔逊干涉仪实验报告

实验目的: 1)学会使用迈克尔逊干涉仪 2)观察等倾、等厚和非定域干涉现象 3)测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏 实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源S 出发的光经过称。45放置的背面镀银的半透玻璃板1P 被分成互相垂直的强度几乎相等的两束光,光 路1通过1M 镜反射并再次通过1P 照射在观察平 面E 上,光路2通过厚度、折射率与1P 相同的玻 璃板2P 后由2M 镜反射再次通过2P 并由1P 背面 的反射层反射照射在观察平面E 上。图中平行于1M 的'2M 是2M 经1P 反射所成的虚像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等价替代。这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。当1M 与' 2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的干

涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。 若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d =N 由此可测单色光的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1)观察非定域干涉条纹 1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点 2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等 3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。此时再放上投影屏E ,就可以看到干涉条纹。 4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与' 2M 平行,这时在屏上可以看到同心圆条纹,这些条纹为非定域条纹。 5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

用迈克尔逊干涉仪测水的折射率

物理实验设计性实验 实验题目:用迈克尔逊干涉仪测水的折射率班级: 实验日期:年月日

用迈克尔逊干涉仪测量液体的折射率 实验课题及任务 《用迈克尔逊干涉仪测量液体的折射率》实验课题任务是:根据液体的折射率比空气大,当一个光路中加有液体时,其光程差'l 会发生改变,根据这一的光学现象和给定的仪器,设计出实验方案,测定水的折射率。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测量液体的折射率》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵根据实验用的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶用最小二乘法求出水的折射率n。 ⑷实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 改装过迈克尔逊干涉仪、专用水槽及配件、激光器。 学时分配 教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验; 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求用纸质版(电子版用电子邮件发送到指导教师的电子邮箱里)供教师修改。

原始数据记录:实验台号:

用迈克尔逊干涉仪测水的折射率 实验题目: 用迈克尔逊干涉仪测水的折射率 总体设计方案思路或说明: 本实验介绍了用迈克逊干涉仪测量液体折射率的方法,原理简单。在干涉仪导轨上平放一方形玻璃容器,内装待测液体,动镜铅垂地浸没在液体中。通过测出动镜在液体内的移动量及其相应的干涉条纹变化数,就能计算液体的折射率,有较高的测量精度。本实验分析了干涉仪上分光板的反射光通过空气、玻璃、液体,由反射镜反射后出现的多个反射光点,只有通过对这些反射光点的调节,才能得出干涉条纹并符合计算公式的要求。 实验目的: 1、了解改装过的迈克尔逊干涉仪的原理,结构及调整方法。 2 、学会用改装过的迈克尔逊干涉仪测量水的折射率。 实验仪器: 迈克尔逊干涉仪、专用水槽及配件、激光器。 实验原理: 1、仪器介绍 图中1M 和2M 为两平面反射镜,1M 可在精密导轨上前后移动,而2M 是固定的。分光板1G 是一块平行平面板,板的第二面(近补偿板2G )涂以半反射膜,它和反射镜1M 图1 成45°角。2G 是一块补尝板,其厚度及折 射率1G 完全相同,且与1G 完全相同,它的作用是使光束(2)和光束(1)一样以相同的入射状态,分别经过厚度和折射率相同的玻璃板三次。从而1G 和 2P 对两束光的折射影响抵消,白光实验时,光路(1)分光镜色散的影响可消除。单色光实验时,条纹形

迈克耳逊干涉仪的使用-大学物理试验-长江大学

超声声速的测量 声波是在弹性介质中传播的一种机械波。振动频率在20 ~ 20000Hz的声波为可闻声波,频率超过20000Hz的声波称为超声波。对于声波特性(如频率、波长、波速、相位等)的测量是声学技术的重要内容。声速的测量在声波定位、探伤、测距中有广泛的应有。在石油工业中,常用声波测井获取孔隙度等地层信息,在勘探中常用地震波勘测地层剖面寻找油层。测量声速最简单的方法之一是利用声速与振动频率f和波长λ之间的关系(即u fλ =)来进行的。 由于超声波具有波长短、能定向传播等特点,所以在超声波段进行声速测量是比较方便的。本实验就是测量超声波在空气中的传播速度。超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的是利用压电效应和磁致伸缩效应。在实际应用中,对于超声波测距、定位测液体流速、测材料弹性模量、测量气体温度的瞬间变化等方面,超声波传播速度都有重要意义。 一、教学目的 1、掌握用驻波法和相位比较法测量空气中的声速。 2、加深对驻波和振动合成理论知识的理解,了解超声压电换能器的结构和 原理。 3、进一步掌握信号源和示波器的使用,培养综合使用仪器的能力。 二、教学要求 1、实验三小时完成。 2、了解超声压电换能器的结构和原理; 3、进一步掌握信号源和示波器的使用; 4、用驻波法测出超声波的频率和波长,并计算出声速; 5、用相位比较法测出超声波的频率和波长,并计算出声速; 6、对实验结果进行评价,写出合格的实验报告。

三、教学重点和难点 1、重点:理解驻波法和位相法测声波波长的原理。 2、难点:掌握用驻波法和相位比较法测超声波波长的方法。 四、讲授内容(约20分钟) 1、实验原理? 让同学们理解测声速的实验公式u f λ=;产生驻波的条件(两列在同一直线上沿相反方向以相同速度传播的相干波);实验中由压电陶瓷换能器S 1(产生 超声波)、S 2(反射与输出)两端面间距离满足来实现。 位相法测声波波长的原理是移S 2可得系列12 i i L L λ+-=与声源同位相或反相位的位置;将S 2输出信号与S 1的激励信号同时输入示波器的x 、y 轴方向,进行振动合成;选择相位差分别为(21)n ?π?=+和2n ?π?=时的李萨如图形(直线)来观测超声波波长。 2、分析压电换能器的工作原理。 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部主要结构由两个压电晶片和一个共振板构成。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、为什么先要调整换能器系统处于谐振状态?怎样调整谐振频率? 首先要让同学们理解产生谐振(共振)的条件(调信号源频率等于换能器固有频率),在谐振状态下换能器能发出较强的超声波便于测量。 谐振状态的调节:粗调频率使S 1指示灯亮;移动S 2同时细调频率,使示波器上出现的正弦波振幅最大。 4、利用本实验给出的仪器,能否用双显法测量超声波波长? 可利用双显法,把接线头的信号与发射头的激励信号输入Y 1、Y 2通道,同时显示图形并比较,移动接收头S 2寻找同位相点的位置(波形完全重合),测超声波的波长。 2 n L n λ=

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪(实验报告) 一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 ①用He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板P1和P2上后就将光分成了两束分别射到M1 和M2 上,反射后通过P1 、P2 就可以得到两束相关光,此时就会产生干涉条纹。 ②产生干涉条纹的条件,如图2 所示,B 、C 是两个相干点光源,则到A 点的光程差δ =AB-AC=BCcosi , 若在A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数) ,因为i 和k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k? 。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜P1 上,并调节激光的反射光照射到激光筒上。 2、调节M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。没有的话重复2 、3 步骤,直到产生同心圆的干涉条纹图案。 4、微调M2是干涉图案处于显示屏的中间。 5、转动微量读数鼓轮,使M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进30 次则记一次数据,共记录10 次数据即d0、d1 (9) 6、关闭激光电源,整理仪器,处理数据。 五、实验数据处理 数据记录: 数据处理: Δd0=d5-d0=0.05202mm??????? Δd1=d6-d1=0.05225mm Δd2=d7-d2=0.04077mm??????? Δd3=d8-d3=0.04077mm Δd4=d9-d4=0.05071mm Δd(平均)=(Δd0+Δd1+Δd2+Δd3+Δd4)/5 =0.047304mm

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

《用迈克尔逊干涉仪测量玻璃折射率》

评分:大学物理实验设计性实验实验报告 实验题目:用迈克尔逊干涉仪测量玻璃的折射率 班级:电信06-1 姓名:林清伟学号:21 指导教师:方运良 茂名学院技术物理系大学物理实验室 实验日期:2007年11月29 日

《用迈克尔逊干涉仪测玻璃片折射率》实验提要 实验课题及任务 《用迈克尔逊干涉仪测玻璃片厚度》实验课题任务是:根据玻璃的折射率比空气大,当玻璃片加到一个光路中时,必产生一光程差l ?,这个光程差会造成中央条纹会发生位移的现象,根据这一特定的光学现象和给定的仪器,设计出实验方案,测定玻璃的折射率。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测玻璃片的折射率》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按撰写科学论文的要求写出完整的实验报告。 设计要求 ⑴ 通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵ 选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶ 测量5组数据,测量玻璃的折射率n 。 ⑷ 应该用什么方法处理数据,说明原因。 ⑸ 实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 有关提示 若用白光作光源,在一般情况下,不出现干涉条纹。进一步分析还可看出,在2M 、1'M 两面相交时,交线上0=d ,但是由于1、2两束光在半反射膜面上的反射情况不同,引起不同的附加光程差,故各种波长的光在交线附近可能有不同的光程差。因此,用白光作光源时,在2M 、1'M ,两面的交线附近的中央条纹可能是白色明条纹,也可能是暗条纹。在它的两旁还大致对称的有几条彩色的

迈克耳逊干涉仪的使用(教学指导书)

迈克耳逊干涉仪的使用(教学指导) 迈克耳逊干涉仪是根据光的干涉原理制成的一种精密光学仪器,它是一种分振幅双光束干涉仪。迈克耳逊和他的合作者曾用这种干涉仪进行了三项著名的实验:迈克耳逊-莫雷实验,为爱因斯坦创立相对论提供了实验依据;镉红线的发现实现了长度单位的标准化;由干涉条纹视见度随光程变化的规律,可推断光谱线的精细结构。 迈克耳逊干涉仪用途很广:观察干涉现象,研究许多物理因素(如温度、压强、电场、磁场等)对光传播的影响,测波长、测折射率等。 一、教学目的 1、学习调节使用迈克耳逊干涉仪。 2、用迈氏干涉仪测He-Ne激光的波长。 3、观察钠光、白光的等倾和等厚干涉现象。 二、教学要求 1、实验三小时完成。 2、了解迈克耳逊干涉仪的结构、原理,学会它的调节和使用方法。 3、观察、认识、区别等倾干涉和等厚干涉。 4、测量干涉纹移动的数目(每50环)所对应的动镜的坐标位置。 5、计算出He-Ne激光的波长,并对实验结果进行评价,写出合格的实验报告。 三、教学重点和难点 1、重点:掌握迈氏干涉的干涉原理。 2、难点:干涉环的调节。

四、讲授内容(约20分钟) (采用问答、讨论方式进行) 1、实验原理? (见黑板上原理图示、右图2)从面光源S 发出的光束射向分光板G 1,被G 1分成振幅大致相等的反射光1和透射光2,光束1被动镜M 1再次反射回并穿过G 1;光束2穿过补偿片G 2后 被定镜M 2反射回,二次穿过G 2达到G 1,并被膜反射;最后两束光是频率相同、振动方向相同、光程差恒定即位相差恒定的相干光,它们在相遇空间产生干涉条纹(非定 域干涉)。 2、分光板G 1的作用?在哪个表面上分光?补偿板G 2的作用?对它有什 么要求? G 1的作用使分出来的两束光的振幅大致相等。在G 1板的镀银面上分光。G 2 补偿光程,使 两束光不产生光程差。G 2与G 1用同种材料做成,厚度相同,平行放置。 3、单色点光源等倾干涉条纹是怎样形成的? (用投影仪投示或见黑板示非定域干涉光路图---如上图2示)用短焦矩透镜会聚后发散,可视为点光源S ,点光源S 经M 1、M 2反射后相当于由两个虚光源S 1′、S 2′发出的相干光束,但S 1′和S 2′间的间距为M 1到M 2的虚像M 2′的距离d 的两倍,即S 1′S 2′=2d ,虚光源S 1′、S 2′发出的球面波在它们相遇的空间(非定域)处处相干。考虑到θ较小,通过计算可得出两相干光束的光程差为δ=2dcos θ,由干涉明纹条件:δ=2dcos θ=k λ, d 、 λ一定时,θ相同则k 同,即同一级次的干涉条纹为分布在锥角为θ的圆锥底面上的同心圆环……等倾干涉条纹。 且在环心处:θ=0,光程差最大,δ=2d =k λ, 干涉级次最高。 图2点光源非定域干涉 θ M 2 G 1 G 2 M 2

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报 告 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

迈克耳逊干涉仪 一. 实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二. 实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三. 实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。 如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚

干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M ′2之间的距离为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M ′2平行,则各处d 相同,可得等倾干涉。系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d 增加 则中心“冒出”一个条纹,反之d 减小 则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N 与d 的变化量△d 之间有下列关系 根据该关系式就可测量光波波长λ或长度△d 。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为: 当,时V=1,此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差为,且由关系算出谱线的精细结构。 四. 实验结果计与分析 钠光的平均波长 次数 初读数 d 1(mm ) 末读数 d 2(mm ) △d=|d 1-d 2| (mm) (nm) (nm) 1 其中λ=2*Δd/100,根据λ0=; = E=% 钠光的精细结构:

相关文档
最新文档