电流检测方法

电流检测方法
电流检测方法

电流检测方法

1 传统的电流检测方法

1. 1 利用功率管的RDS进行检测( RDS SENSIN G)

当功率管(MOSFET) 打开时,它工作在可变电阻区,可等效为一个小电阻。MOSFET 工作在可变电阻区时等效电阻为:

式中:μ为沟道载流子迁移率; COX 为单位面积的栅电容;V TH 为MOSFET 的开启电压。

如图1 所示,已知MOSFET 的等效电阻,可以通过检测MOSFET 漏源之间的电压来检测开关电流。

这种技术理论上很完美,它没有引入任何额外的功率损耗,不会影响芯片的效率,因而很实用。但是这种技术存在检测精度太低的致命缺点:

(1) MOSFET 的RDS本身就是非线性的。

(2) 无论是芯片内部还是外部的MOSFET ,其RDS受μ, COX ,V TH影响很大。

(3) MOSFET 的RDS随温度呈指数规律变化(27~100 ℃变化量为35 %) 。

可看出,这种检测技术受工艺、温度的影响很大,其误差在- 50 %~ + 100 %。但是因为该电流检测电路简单,且没有任何额外的功耗,故可以用在对电流检测精度不高的情况下,如DC2DC 稳压器的过流保护。

图1 利用功率管的RDS进行电流检测

1. 2 使用检测场效应晶体管(SENSEFET)

这种电流检测技术在实际的工程应用中较为普遍。它的设计思想是: 如图2 在功率MOSFET 两端并联一个电流检测FET ,检测FET 的有效宽度W 明显比功率MOSFET 要小很多。功率MOSFET 的有效宽度W 应是检测FET 的100 倍以上(假设两者的有效长度相等,下同) ,以此来保证检测FET 所带来的额外功率损耗尽可能的小。节点S 和M 的电流应该相等,以此来避免由于FET 沟道长度效应所引起的电流镜像不准确。

图2 使用场效应晶体管进行电流检测

在节点S 和M 电位相等的情况下,流过检测FET的电流IS 为功率MOSFET 电流IM 的1/ N ( N 为功率FET 和检测FET 的宽度之比) , IS 的值即可反映IM 的大小。

1. 3 检测场效应晶体管和检测电阻相结合

如图3 所示,这种检测技术是上一种的改进形式,只不过它的检测器件不是FET 而是小电阻。在这种检测电路中检测小电阻的阻值相对来说比检测FET 的RDS要精确很多,其检测精度也相对来说要高些,而且无需专门电路来保证功率FET 和检测FET 漏端的电压相等,降低了设计难度,但是其代价就是检测小电阻所带来的额外功率损耗比第一种检测技术的1/ N 2 还要小( N 为功率FET 和检测FET 的宽度之比) 。此技术的缺点在于,由于M1 ,M3 的V DS不相等(考虑VDS对IDS的影响), IM 与IS 之比并不严格等于N ,但这个偏差相对来说是很小的,在工程中N 应尽可能的大, RSENSE 应尽可能的小。在高效的、低压输出、大负载应用环境中,就可以采用这种检测技术。

图3 场效应晶体管与电阻相结合进行电流检测

2 新型的电流检测方法

在图4 中,N_DRV 为BUCK稳压器的同步管栅极驱动信号,N_DRV_DC 为N_DRV 经过1 个三阶RC低通滤波器之后滤出的直流分量,并且该直流分量为比较器的一端输入,比较器的另一端输入为一基准电压值BIAS3 ,比较器的输出LA28(数字信号,输出到芯片的控制逻辑) 为DC2DC 负载电流状态检测信号。

图4 新型电流检测方法基本原理等效架构图

该电流检测电路的作用如下:

在一个稳压器芯片中, 既包括一个DC2DC(BUCK) , 又包括一个LDO , 中载和重载时工作于PWM 模式,轻载时(约为3 mA 以下) 工作于LDO 下,而本文提出电流检

测电路的作用是:当其负载电流小于一定值时(此时开关稳压器处于DCM 模式下) ,LA28电平跳遍,实现PWM 模式向LDO 模式的模式切换。

图5 检测DCDC 负载电流的基本原理

图5 是DCM 模式下电感电流IL 与同步管栅极驱动信号N_DRV 的波形图。

电流互感器变比检验的简便方法(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 电流互感器变比检验的简便方法 (2021版)

电流互感器变比检验的简便方法(2021版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。例如800MW的发电机组,额定电压为20kV,额定电流为:800/(20×31/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到(需大容量调压器);其二,需要的标准电流互感器或升流器的体积大,造价

漏电流测试方法

测量接地漏电流 漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。 上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。 插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 再次切换极性,测量功率,并具有重要价值的测量。 ?决定? 另一种形式,无论附加,0.5毫安大致正常 单一故障条件(一电源线开路)测量 ?连接? 删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P连接· 2P剥离(漏电电流∵ 单一故障条件下,只有电力导线断开one 。) 壁挂2P插头插座条。 开关电源极性连接到墙上插座旋转2P半条。 交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 极性开关电源,开关电源的测量4供应断开的导线,最大测量值。 ?决定? 另一种形式连接,正常值小于1mA无关。 外部泄漏电流测量 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。3P · 2P适配器地线连接到地面的墙。 ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

直流电机测试方法和常见不良问题的分析

测试方法和常见不良问题的分析 一、测试方法 1.电机空载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),无负载时的电机每分钟转动的圈 数 (空载转速)及此时流过端子的电流 2)测试方法:使用测速计、胶轮、直流电源,如下连接, 直流电源 电机测速计 参考测试 方法:使 用电机综 合测试仪测试(但誨定范围及电机的冲片槽数,测试 数据不准) 2.负载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),额定负载时的电机每分钟转动的 圈数(负载转速)及此时流过端子的电流(负载电 流) 2)测试方法:见上图,一般选择胶轮的直径为20mm,如 果负载为M gem,则所挂舷码的重量则为M g,同时胶 轮上的圈数取决于绳子A处必须松动才行(即祛码的重 量必须全部加到轮子上才行) 3.堵转力矩和堵转电流的测试

1); “ 定义:使电机正好停止转动时的负载力矩Ts即为堵转力

矩,此时的电流即为堵转电流Is 3)一般采用两点法进行测试,选择两个负载T1及T2,测 试此负载下的nl> n2及II、12,使用下而的公式计算堵 转力矩和堵转电流: Ts=(n2Tl-nlT2)/(n2-nl) I S=(I2T1-I2T2)/(T1-T2)+(I1-I2)/(T1-T2)*T S 注意点:T1最好在最大效率点附近,而T2最好在最大 功率点附近 参考测试方法:可以采用测功计测试(不精确)或者使 用扭力计测试(较准) 4.窜动量的测试 1)定义:转子在电机中沿轴向可以松动的最大的间隙量 2)测试方法:使用百分表,电机轴前后最大窜动的位置在 百分表上显示的位置分别是A和B,则电机窜动量为B-A 电机 5.电流波形 1)定义:电机在额定电压下旋转时,流过电机两端子间的电 流的变化的波形,可以用示波器进行显示 2)测试方法:如图连接,示波器上显示的波形即为电机的电 流波形,电容一般为qf的电解电容,如果槽数为n 个,则 电机转动一周的完整的波形数为2n个

电流互感器检查变比电流电压方法

电流互感器变比检查电流法电压法 文摘根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。 不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。因此现场变比检查试验成为多年不变的项目。 电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。 从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。 电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。根据电工原理,匝数比等于电压比或电流比之倒数。因此测量电压比和测量电流比都可以计算出匝数比。 1试验方法分析 现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。 1.1电流法 1.1.1 试验原理 电流法检查电流互感器变比试验接线图如图1所示。

电流检测电路

MAX471电流检查电路 摘要:MAX471/MAX472是MAXIM公司生产的精密高端电流检测放大器,利用该器件可以实现以地为参考的电流/电压的转换,本文介绍了用MAX471/472高端双向电流检测技术来实现对电源电流的监测和保护的方法,并给出了直流电源监测与保护的实现电路关键词:高端电流监测I/V转换MAX471 MAX472 1 电源电流检测 长期以来,电源电流的检测都是利用串联的方法来完成的。而对于磁电仪表,一般都必须外加分流电阻以实现对大电流的测量,在量程范围不统一时,分流电阻的选择也不标准,从而影响到测量精度。对于互逆电源,由于测量必须利用转换开并来实现,因而不能随机地跟踪测量和自动识别。 在教学和实验室使用的稳压电源中,为了能够进行电流/电压的适时测量,可用两种方法来实现。一种方法是彩双表法显示,此法虽好,但成本较高,同时体积也较大;另一种方法是采用V/I复用转换结构,这种方法成本低,体积小,因而为大多数电源所采用,但它在测量中需要对电压/电流进行转换显示,也不方便。那么,如何对电源进行自动监测呢?笔者

在使用中发现,稳压电源的电压在初始调节状态时,往往显示出空载,而在接入负载后,则需要适时显示负载电流,因此,利用负载电流作为监测信号来完成I/V的测量转换,可实现一种电量用两种方法表示,并可完成自动监测转换功能。 为了实现I/V的转换,笔者利用MAX271/MAX472集成电路优良的I/V转换特性、完善的高端双向电流灵敏放大器和内置检流电阻来实现对稳压电流电流的检测。 2 MAX471/MAX472的特点、功能 美国美信公司生产的精密高端电流检测放大器是一个系列化产品,有MAX471/MAX472、MAX4172/MAX4173等。它们均有一个电流输出端,可以用一个电阻来简单地实现以地为参考点的电流/电压的转换,并可工作在较宽的电压和较大的电流范围内。 MAX471/MAX472具有如下特点: ●具有完美的高端电流检测功能; ●内含精密的内部检测电阻(MAX471); ●在工作温度范围内,其精度为2%; ●具有双向检测指示,可监控充电和放电状态; ●内部检测电阻和检测能力为3A,并联使用时还可扩大检测电流范围; ●使用外部检测电阻可任意扩展检测电流范围(MAX472); ●最大电源电流为100μA; ●关闭方式时的电流仅为5μA; ●电压范围为3~36V; ●采用8脚DIP/SO/STO三种封装形式。 MAX471/MAX472的引脚排列如图1所示,图2所示为其内部功能框图。表1为 MAX471/MAX472的引脚功能说明。MAX471的电流增益比已预设为500μA/A,由于2kΩ的输出电阻(ROUT)可产生1V/A的转换,因此±3A时的满度值为3V.用不同的ROUT电阻可设置不同的满度电压。但对于MAX471,其输出电压不应大于VRS+-1.5V,对于MAX472,则不能大于VRG-1.5V。

大学物理实验多种方法测量直流电阻

用多种方法测量直流电阻 一、实验目的 1、熟悉各种电学仪器及电路技巧; 2、掌握多种方法测量直流电阻 3、巩固不确定度的评定方法 二、仪器 DH6108赛电桥综合实验仪,直流稳压电源,万用电表,电阻箱,两个待测电阻,千分尺,直流电流表,直流电压表,滑线变阻器,检流计等 三、实验原理 电阻是电磁学实验工作中的常用元件,可分为高值电阻(兆欧以上)、中值电阻(10欧~兆欧)、低值电阻(10欧以下)。测量电阻的方法有许多种,常用的如伏安法、电桥法、比较测量方法(电压比等于电阻比)。 (一)伏安法测量电阻的原理(适用于测中值电阻) 1、实验线路的比较和选择 当电流表内阻为0,电压表内阻无穷大时,下述两种测试电路的测量不确定度是相同的。 图1 电流表外接测量电路 图2 电流表内接测量电路 被测电阻的阻值为: I V R = 。 但实际的电流表具有一定的内阻,记为R I ;电压表也具有一定的内阻,记为R V 。因为R I 和R V 的存在,如果简单地用I V R = 公式计算电阻器电阻值,必然带来附加测量误差。为了减少这种附加误差,测量电路可以粗略地按下述办法选择:

比较(R/R I )和(R V /R )的大小,比较时R 取粗测值或已知的约值。如果前者大则选电流表内接法,后者大则选择电流表外接法。 如果要得到测量准确值,就必须按下(1)、(2)两式,予以修正。 即电流表内接测量时,I R I V R -= (1) 电流表外接测量时, V R V I R 11-= (2) 2、测量误差与不确定度的评定 实验使用的电压表和电流表的量程和准确度等级一定时,可以估算出U V 、U I ,再用简化公式I R I V R -= 计算时的相对不确定度 (3) 式中U R 表示测量R 的不确定度,并非指R 的电压值。 可见要使测量的准确度高,应选择线路的参数使数字表的读数尽可能接近满量程,因为这时的V 、I 值大,U R /R 就会小些。 当电压表、电流表的内阻值R V 、R I 及其不确定度大小U RI 、U RV 已知时,可用公式(1)、(2)更准确地求得R 的值,相对不确定度由下式求出: 电流表内接时: (4) 电流表外接时: (5) 这就知道由公式(1)、(2)来得到电阻值R 时,线路方案和参数的选择应使U R /R 尽可能最小(选择原则3)。 (二)惠斯通电桥测量未知电阻的原理 (适用于测中值电阻) 现代计量中直流电桥正逐步被数字仪表所替代. 以往在电阻测量中电桥起了重要作用。 惠斯通电桥(Wheatstone ,s bridge )沿用了近二百年,1833年由克里斯泰(Cheistie )首先提出,后来以惠斯通名字命名. 电桥产生的背景是: 1)在数字仪表发展之前的时期,如果用伏安法测量电阻/R V I =,需要同时准确测量电压V 和电流I ,当时0.2级模拟式电表的制造成本与价格就已经显著高于准确度约0.05% 6位旋转式电阻箱. 2)伏安法测量的条件要求较高,如0.2级电表的使用与检定的条件要求较高,对电源 2 2?? ? ??+??? ??=I U V U R U I V R ?? ????-??? ?????? ??+??? ??+??? ??=I V R I V R R U I U V U R U I I I R I V R I /1/2222????? ?-???? ?????? ??+??? ??+??? ??=V V V R I V R R I V R I V R U I U V U R U V /1/222 2

电压电流互感器的试验方法

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X 分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2

分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—

电流检测方法

电流检测方法 1 传统的电流检测方法 1. 1 利用功率管的RDS进行检测( RDS SENSIN G) 当功率管(MOSFET) 打开时,它工作在可变电阻区,可等效为一个小电阻。MOSFET 工作在可变电阻区时等效电阻为: 式中:μ为沟道载流子迁移率; COX 为单位面积的栅电容;V TH 为MOSFET 的开启电压。 如图1 所示,已知MOSFET 的等效电阻,可以通过检测MOSFET 漏源之间的电压来检测开关电流。 这种技术理论上很完美,它没有引入任何额外的功率损耗,不会影响芯片的效率,因而很实用。但是这种技术存在检测精度太低的致命缺点: (1) MOSFET 的RDS本身就是非线性的。 (2) 无论是芯片内部还是外部的MOSFET ,其RDS受μ, COX ,V TH影响很大。 (3) MOSFET 的RDS随温度呈指数规律变化(27~100 ℃变化量为35 %) 。 可看出,这种检测技术受工艺、温度的影响很大,其误差在- 50 %~ + 100 %。但是因为该电流检测电路简单,且没有任何额外的功耗,故可以用在对电流检测精度不高的情况下,如DC2DC 稳压器的过流保护。 图1 利用功率管的RDS进行电流检测

1. 2 使用检测场效应晶体管(SENSEFET) 这种电流检测技术在实际的工程应用中较为普遍。它的设计思想是: 如图2 在功率MOSFET两端并联一个电流检测FET ,检测FET 的有效宽度W 明显比功率MOSFET 要小很多。功率MOSFET 的有效宽度W 应是检测FET 的100 倍以上(假设两者的有效长度相等,下同) ,以此来保证检测FET 所带来的额外功率损耗尽可能的小。节点S 和M 的电流应该相等,以此来避免由于FET 沟道长度效应所引起的电流镜像不准确。 图2 使用场效应晶体管进行电流检测 在节点S 和M 电位相等的情况下,流过检测FET的电流IS 为功率MOSFET 电流IM 的1/ N ( N 为功率FET 和检测FET 的宽度之比) , IS 的值即可反映IM 的大小。 1. 3 检测场效应晶体管和检测电阻相结合 如图3 所示,这种检测技术是上一种的改进形式,只不过它的检测器件不是FET 而是小电阻。在这种检测电路中检测小电阻的阻值相对来说比检测FET 的RDS要精确很多,其检测精度也相对来说要高些,而且无需专门电路来保证功率FET 和检测FET 漏端的电压相等,降低了设计难度,但是其代价就是检测小电阻所带来的额外功率损耗比第一种检测技术的1/ N 2还要小( N 为功率FET 和检测FET 的宽度之比) 。此技术的缺点在于,由于M1 ,M3 的V DS不相等(考虑VDS对IDS的影响), IM 与IS 之比并不严格等于N ,但这个偏差相对来说是很小的,在工程中N 应尽可能的大, RSENSE应尽可能的小。在高效的、低压输出、大负载应用环境中,就可以采用这种检测技术。

电流互感器检测项目及试验

、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换 成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏?几百千伏,标准二次电压通常是100V和100V/两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培?几万安培,标准二次电流通常有5A、1A、0.5A等。 1. 电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为①。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通①的关系为: 图1.1电压互感器原理 2. 电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通①也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。

即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3. 互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2 或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图 1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4. 电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2 )电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3 )电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次 绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5. 电压互感器型号意义 第一个字母:J —电压互感器。

超全的常用测试电流检查方法

指针式直流电流表 数值式万用表能测交直流 电流一电压转换,A/D转换,显示

钳流表非接触式,交直流精度较上面仪器要低些霍尔原理 电流探头配合示波器使用,用于观察电流波形交直流霍尔原理

-gkongi.Eom 常用的用于测量电流的仪表,显示出来的电流大小大多是有效值。 有效值也指均方根值,其物理意义:一个交流电流和一个直流电流作用在同一电阻上,若在相同的时间内它们所产生的热量相等,则交流电流的有效值I等于该直流电流值。假设 交流信号的周期为T: T 2 2MT 2 由P 0i (t)Rdt=l RT I 勺〒0i (t)dt 显然,直流电流的有效值和平均值是相等的。 平均值: 1 T I i(t)dt 显然正负对称的交流信号平均值为0 T o 另种定义: 1 T I |i(t) |dt 全波整流之后的平均值 波形系数K F定义:信号的有效值与平均值(全波整流后的值)之比,K F -。 I 显然,不同类型信号的波形系数不同。 波峰系数Kp定义:信号的峰值与有效值之比,Kp “ F表为一些常见信号的一些参数

知道了波形系数和波峰系数之后,对特定信号可以很容易的进行不同值之间的转换。实际上,直接获取信号的有些仪表就利用了这一转换原理进行有效值的测量。 一.直接测量法 在被测电电路中串入适当量程的电流表,让被测电流流过电流表,从表上直接读取被测 电流值。 中学实验室里常用的直流电流表是指针式磁电系电流表,它由灵敏电流计(俗称表头)改装而成。灵敏电流计主要由永磁铁、可动线圈、螺旋弹簧(游丝)和指针刻度盘等组成。如下图: 图2-1电流计原理图 当线圈通以电流时,线圈的两边受到安培力,设导线所处位置磁感应强度大小为B线 框长为L、宽为d、匝数为n,当线圈中通有电流时,则安培力的大小为:F=nBIL。安培 力对转轴产生的力矩:M仁Fd= nBILd。不论线圈转到什么位置,它的平面都跟磁感线平行, 安培力的力矩不变。在这一力矩的作用下,线圈就会顺时针转动。当线圈转过0角时(指针偏角也为0),两弹簧相应地会产生阻碍线圈转动的扭转力矩M2 (M2=k 0,胡克定律)。

各种电流检测方式的比较

浅谈电流检测方式 一、检测电阻+运放 优势: 成本低、精度较高、体积小 劣势: 温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT和PT就是特殊的变压器。基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号)工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性 模块型霍尔电流传感器 模块型霍尔电流传感器分开环模式与闭环模式。 开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。 开环模式的结构原理见下图 根据检测量程的需求,一般分为以下两种绕线模式,左图为小量程的结构图,右图为大量程的结构图。 闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

常用的电流互感器检测电路分析

常用的电流互感器检测电路分析 在高频开关电源中,需要检测出开关管、电感等元器件的电流提供给控制、保护电路使用。电流检测方法有电流互感器、霍尔元件和直接电阻取样。采用霍尔元件取样,控制和主功率电路有隔离,可以检出直流信号,信号还原性好,但有μs级的延迟,并且价格比较贵;采用电阻取样价格非常便宜,信号还原性好,但是控制电路和主功率电路不隔离,功耗比较大。 电流互感器具有能耗小、频带宽、信号还原性好、价格便宜、控制和主功率电路隔离等诸多优点。在Push-Pull、Bridge等双端变换器中,功率变压器原边流过正负对称的双极性电流脉冲,没有直流分量,电流互感器可以得到很好的应用。但在Buck、Boost等单端应用场合,开关器件中流过单极性电流脉冲;原边包含的直流分量不能在副边检出信号中反映出来,还有可能造成电流互感器磁芯单向饱和;为此需要对电流互感器构成的检测电路进行一些改进。 2 电流互感器检测单极性电流脉冲的应用电路分析根据电流互感器磁芯复位方法 的不同,可有两种电路形式:自复位与强迫复位。自复位在电流互感器原边电流脉冲消失后,利用激磁电流通过电流互感器副边的开路阻抗产生的负向电压实现复位,复位电压大小与激磁电流和电流互感器开路阻抗有关。强迫复位电路在原边直流脉冲消失期间,外加一个大的复位电压,实现磁芯短时间内快速复位。 电流互感器检测电路 常用的电流互感器检测电路如图1(a)所示。 图1(b)表示原边有电流脉冲时的等效电路,电流互感器简化为理想变压器与励磁电感m模型,s为取样电阻。 当占空比<时,在电流互感器原边电流脉冲消失后,磁芯依靠励磁电流流过采样电阻s产生负的伏秒值,实现自复位〔如图1(d1)~(i1)所示〕,由于采样电阻s很小,所以负向复位电压较小;当电流脉冲占空比很大时(>,复位时间很短,没有足够的复位伏秒值,使得磁芯中直流分量d增大,有可能造成磁芯逐渐正向偏磁饱和〔如图1(d2)~(i2)所示〕,失去检测的作用,所以自复位只能应用于电流脉冲占空比<的场合。

电流电压检测方法

电流电压检测方法 一,电压检测 1电压检测相对比较简单,电压传感器并接在待测电压的线端就行。 0.1V以上的精度的话比较简单,简单芯片就可以,比较器。或电压跟随器;放大器来满足精度不够的问题,不同的放大器有不通的精度A) 以下为电压范围检测,输出状态: 常用器件:LM358,TL431等 B) 使用分压电路,将0--100V转换成0—5V ,然后通过ADC取样转换成数字信号,1024或更高位。精度在10-3方,这种办法可以测定连续线性电压。

常用芯片AD536、AD637、LTC1966、LTC1967、LTC1968等等。 C)高精度一般采用专门的ADC转换芯片,带有专用接口。常见于 0.05V以上的精度,要考虑到漂移。常用专门芯片转换,ADC转换 芯片。可以对连续的线性电压进行取样检测。 常用芯片如CS1232 ADC 0808/0809 ,AD574A , ADS1110, MAX4080/MAX4081 INA270 INA271 注意:电压电流转换的时候,根据需要为了防止干扰,有带隔离的芯片。 二,电流检测 电流检测分为接触与非接触式, 接触式:互感检测法、电阻检测法; 非接触式:霍尔电流传感器等 电流检测,实际上也依赖电压检测,再计算出电流。 1、交流互感检测法。损耗低。互感检测法,一般用在高电压大电

流场合(交流)。当主绕组流过大小不同电流时,副绕组就感应出相应的高低不同的电压。将互绕组的电压数值读出,就可计算出流经主绕组的电流。比如变压器中常用。为了减少损耗,常采用电流互感器检测。在电流互感器检测电路的设计中,要充分考虑电路拓扑对检测效果的影响,综合考虑电流互感器的饱和问题和副边电流的下垂效应,以选择合适的磁芯复位电路、匝比和检测电阻。电流互感器检测在保持良好波形的同时还具有较宽的带宽,电流互感器还提供了电气隔离,并且检测电流小损耗也小,检测电阻可选用稍大的值,如一二十欧的电阻

电流互感器变比检验的简便方法通用版

操作规程编号:YTO-FS-PD192 电流互感器变比检验的简便方法通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

电流互感器变比检验的简便方法通 用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。例如800MW的发电机组,额定电压为20kV,额定电流为:800/(20×31/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

电流互感器检查变比方法

电流互感器 变比检查 电流法 电压法 文摘根据电流互感器的等值电路图,讨论了 2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。 不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误 (大多是抽头引错)。因此现场变比检查试验成为多年不变的项目。 电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。 从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。 电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。根据电工原理,匝数比等于电压比或电流比之倒数。因此测量电压比和测量电流比都可以计算出匝数比。 1 试验方法分析 现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。 1.1 电流法

ACS712电流检测

电流检测方法介绍 一、串电阻检测 优点:电路结构清晰,成本低,实时性好,精度较高; 缺点:温漂较大,无隔离效果,量程较大时,需要分多个挡来处理结果,容易受GND地的干扰; 总结:一般的产品都可以用该方案解决。实际调试过程中,信号容易受地线干扰,通过PCB合理的布局跟软件的滤波处理,能解决干扰的问题。另外,当电流量程较大时,需要做两级甚至两级以上的处理(原因:采样电阻小,小电流的时候,信号很难采集到;采样电阻曾大时,大电流的时候超过运放的电压) 二、电流互感器检测 电磁式电流互感器优点:结构简单可靠,寿命较长,便于维护。价格较低。 电磁式电流互感器缺点:重量大。不能用于高频检测。精度较低。 三、其他检测方式(这里不做详细介绍) AVAGO的光耦隔离放大器。 TI的电容式隔离放大器 ADI的西格玛德尔塔式隔离放大器。 四、基于霍尔感应原理的电流检测专用芯片(ACS712为例讲解) 1)命名说明:ACS712ELCTR-20A-T为例 A Allegro CS current sensor 712 part number

E 温度等级, Allegro温度等级常用的 S(-20~85) E(-40~85) K(-40~125) L(-40~150) LC 封装 TR 包装,TR为卷带盘装 20A 量程 T 符合环保要求 2)ACS712主要特点 ●80KHZ带宽 ●总输出误差为1.5% ●采用小型贴片SOIC8封装 ● 1.2mΩ内部电阻 ●左侧大电流引脚(PIN1-4)与右侧低电压引脚(PIN5-8)最小绝缘 电压为2100V ●5V单电压工作 ●出厂时精准校准 ●该器件不可应用于汽车领域 3)原理与应用领域 原理与简介:该芯完全基于霍尔感应的原理设计,由一个精确的低偏移线性霍尔传感器电路与位于接近IC表面的铜箔组成(如下图所示),电流流过铜箔时,产生一个磁场,霍尔元件根据磁场感应出一个线性的电压信号,经过内部的放大、滤波、斩波与修正电路,输出一个电压信号,该信号从芯片的第七脚输出,直接反应出流经铜箔电流的大小。ACS712根据尾缀的不一样,量程分为三个规格:±5A、±20A、±30A。输入与输出在量程范围内为良好的线性关系,其系数Sensitivity分别为,185 mV/A、100 mV/A、66mV/A。因为斩波电路的原因,其输出将加载于0.5*Vcc上。ACS712的Vcc电源一般建议采用5V。输出与输入的关系为Vout=0.5Vcc+Ip*Sensitivity。一般输出的电压信号介于0.5V~4.5V之间。 典型的应用:电机领域,载荷检测和管理,开关电源领域,和各种电子产品过电流故障保护。

如何测直流电流

如何测试直流电流 测直流电流相对测直流电压方法要麻烦一些,测直流电压是并联测试方法,把万用表打到直流电压档,红表笔放在直流电源正极,黑表笔放在直流电源负极上就可以测试电压了。测试直流电流是一种串联测试方法,把测试档设置为直流电流档,红表笔要移到电流插孔。(说明:万用表上电流表针插孔一般两个,一插孔是测试mA(毫安)和uA(微安)级,另一插孔是测试A(安培)级别,一般万用表最大电流量程是10A,测试前要预估电流多大再测),表笔不能直接接在电源正负极之间,直接接正负极会造成短路。必须要在正负极中间串入设备或者串入负载电阻才能测电流,电压充电源正极流向设备,再流过万用表,再回到地。测试出来的电流是设备工作电流,或者是负载电阻工作电流。如下图所示: 大家常说产品的功耗多大,就是测试产品的电压和电流,电压乘电流就是功率。P=UI,初中物理学的基础知识。一般测试设备电流,串个万用表到电源正极或者串到电源负极就可以测出电流了。但是要测电源适配器的功率有多大,比如常见的5V/2A适配器,计算出来是10W,那这个适配器是合格适配器吗?功率有10W吗?那就需要测试电源的电压和电

流两个指标。测试方法,用两个万用表外加1个电阻,一个万用表来监测电压,另外一个万用表来监测电流,电阻一般采用0-5欧姆15瓦可调电阻,即可以测出电压电流。如果电压5V(电压可以±5%误差),电流2A是合格的适配器。如果电流2A,电压超出±5%范围的误差,比如低于4.75V或者高于5.25V那这个适配器就是个不合格的适配器。 检测适配器是否合格,比较老的方法就是用电压表和电流表外加1个可调电阻或者电阻丝来检测适配器是不是虚标容量,一般公司会购买比较贵的电子负载仪。如下图,这种仪器一般价格在2-3000,甚至价格有更贵上几万的都不等,一般普通用户还是买不起。 作者原来工作需要,经常要检测适配器的电压电流,检测适配器的质量,开始是用比较老的方法,采用电阻来测试功率,后来有次在论坛上看到有人DIY自己制作的电子负载测试电压电流,可以省除各种不同规格,不同型号,不同尺寸的电阻了,可以用一个电位器调电流,用一个电压电流表头可以一目了然的监测这些数据。

相关文档
最新文档