三大数学难题 史上最诡异的数学题

三大数学难题 史上最诡异的数学题

三大数学难题史上最诡异的数学题

很多数学题其中蕴藏着很深的奥秘,比较诡异有趣的数学题有芝诺悖论

问题、蚂蚁与皮筋问题、以及投宿费用计算问题等。比较难的数学题目还有

霍奇猜想、庞加莱猜想、杨-米尔斯存在性和质量缺口等。

1 最诡异最恐怖的数学题有3 个人去投宿,一晚30 元.三个人每人掏了10 元凑够30 元交给了老板.后来老板说今天优惠只要25 元就够了,拿出5 元命令服务生退还给他们,服务生偷偷藏起了

2 元,然后,把剩下的

3 元钱分给了那三个人,每人分到1 元.这样,一开始每人掏了10 元,现在又退回1 元,也就是10-1=9, 每人只花了9 元钱,3 个人每人9 元,3X9=27 元+服务生藏起的2 元=29 元,还有一元钱去了哪里?

1.这里有个误区,首先,3 人各花9 元,共27 元,27 元中的25 元老板收取了,剩余两元在服务生手里,所以“3 X 9 = 27 元+ 服务生藏起的2 元=29 元”这句话本身就错了,顺着出题人思路去走肯定掉进坑里,出不来,因此应该另辟蹊径。应该是3 X 9 = 27 元- 服务生藏起的2 元=25 元

2.首先,这道题是算法错误,此题关键是服务生的两元,在返还的5 元中

你再平均分配给三人,你看到没有,是减去二,再除3,所以是这一步错了。所以跟本就不是3×9,而应该是3×(9+2/3)。那这样的话不就是30 了吗。

3.每人花了9 元钱,三人一共花了27 元钱.这27 元里老板留下25 元,小二私自留下2 元.再加上退回的3 元钱,结果正好是30 元

1 数学界的争议:芝诺悖论这也算是物理学界的一个争议,阿基里斯与乌

龟芝诺赛跑,乌龟在阿里斯基前面先跑100 米,然后阿基里斯才开始跑。

世界十大数学难题

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 难题”之二:霍奇(Hodge)猜想 难题”之三:庞加莱(Poincare)猜想 难题”之四:黎曼(Riemann)假设 难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口 难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 难题”之八:几何尺规作图问题 难题”之九:哥德巴赫猜想 难题”之十:四色猜想 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。“千僖难题”之三:庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四:黎曼(Riemann)假设

历史上的三次数学危机

历史上的三次数学危机王方汉(武汉市第二十三中学430050) 在数学发展的过程中,人的认识是不断深化的.在各个历史阶段,人的认识又有一定的局限性和相对性.当一种/反常0现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机.许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展. 在历史上,数学曾发生过三次危机.这三次危机,从产生到消除,经历的时间各不相同,都极大地推动了数学的发展,成为数学史上的佳话. 第一次数学危机产生于公元前五世纪.那时,古希腊的毕达哥拉斯学派发现:正方形边与对角线是不可通约的,现在称之为/比达哥拉斯悖论0. /悖论0这一术语,许多中小学生恐怕是第一次见到.所谓悖论,就是指自相矛盾荒谬结论. 今天看来,两条线段不可通约,是数学中常见的合理的现象,它不过表明两条线段之比是一个无理数而已,可是,当时的古希腊人怎么会认识到这一点?!在他们眼中,各种事物的许多物理的、化学的、生物的性质都可能改变,惟其数量性质是不会变的!他们认为:万物都包含着数:数只有两种,这就是自然数和可通约的数.所以,不可通约的数是不可思议的! 第一次数学危机持续了两千多年.十九世纪,数学家哈密顿(Hamilton)、梅雷(Melay)、代德金(Dedekind)、海涅(Heine)、波雷尔(Borel)、康托尔(Cantor)和维尔斯特拉斯(Weietstrass)等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类)))实数,并建立了完整的实数理论.这样,就完全消除了第一次数学危机. 第二次数学危机是因为发现微积分方法而产生的.十七世纪,牛顿和德国数学家莱布尼兹(Leibniz,1646-1716)首创了微积分.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数y=x n的导数的: (x+v x)n=x n+n#x n-1#v x+n(n-1) 2 #x n-2#(v x)2+,+(v x)n,然后把函数的增量v y除以自变量的增量v x,得 v y v x= (x+v x)n-x n v x =n#x n-1+ n(n-1) 2 #x n-2#v x +,+nx#(v x)n-2+(v x)n-1, 最后,扔掉其中所有含v x的项,就得到函数y= x n的导数为nx n-1. 哲学家以眼光税利、思维敏捷而著称.贝克莱(Berkelg)就是这样的哲学家.他一针见血地指出:先以v x为除数,说明v x不等于零,后来又扔掉所有含v x的项,可见v x等于零,这岂不自相矛盾吗?这就是著名的/贝克莱悖论0. 现在我们知道,自变量x的增量v x是一个无穷小量.但在当时,贝克莱悖论的出现,咄咄逼人,逼得数学家们不得不认真地对待/无穷小量0,设法克服由此引起的思维上的混乱. 十九世纪,许多数学家投入到了这一工作之中,柯西(Cauchy,1789-1857)和维尔斯特拉斯的贡献最为突出.1821年,柯西建立了极限的理论,提出了/无穷小量是以零为极限但永远不为零的变量0,维尔斯特拉斯又作了进一步的改进,终于消除了贝克莱悖论,把微积分建立在坚实的极限理论之上,从而结束了第二次数学危机. 第二次数学危机的解除,与第一次数学危机的解除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除了. 一波未平,又起一波.前两次数学危机解决后不到三十年,又卷起了第三次数学危机的轩然大波. 十九世纪末和二十世纪初,德国数学家康托尔(Cantor,1845-1918)创立了集合论,初衷是为整个数学大厦奠定牢实的基础.正当人们为集合论的诞生而欣然自慰时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安.其中,英国数学家罗素(Russell,1872-1970)于1902年提出的

历史上三大数学危机之三

第三次数学危机 一、起因 魏尔斯特拉斯用排除无穷小量的办法来解决贝克莱悖论,而在本世纪60年代,鲁滨逊又把无穷小量请了回来,引进了超实数的概念,从而建立了非标准分析,同样也能精确地描述微积分,进而也解决了贝克莱悖论。但必须注意到,贝克莱悖论只是在相对意义下得到了解决,因为实数理论的无矛盾性归结为集合论的无矛盾性,而集合论的无矛盾性至今仍未彻底解决。 二、经过 经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。1918年,罗素把这个悖论通俗化,成为理发师悖论。罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。

罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。 产生集合论悖论的原因在于集合的辨证性与数学方法的形式特性或者形而上学的思维方法的矛盾。如产生罗素悖论的原因,就在于概括原则造集的任意性与生成集合的客观规则的非任意性之间的矛盾。 三、影响 第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。 为了解决第三次数学危机,数学家们作了不同的努力。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。 为了排除集合论悖论,罗素提出了类型论,策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗——弗伦克尔集合论公理体系,以后又经

数学史上的著名猜想之被否定的数学猜想

数学史上的著名猜想之被否定的数学猜想 过伯祥 数学史上,长时期未能解决的数学猜想特别多!并且很多都是世界级的难题,其中数论方面的问题又占多数.它们表面上是那么的浅显,好像不难解决似的,其实,若无深厚的数学功底,即使想接近它也十分困难。本章特作较多的介绍,使数学爱好者有一个初步了解.如果你有志要攻克这些猜想,就必须作好长期艰苦跋涉的思想准备. 1.被否定的数学猜想 (1)试证第五公设的漫长历程 几何是从制造器皿、测量容器、丈量土地等实际问题中产生和发展起来的. 几何学的发展历程中,有两个重大的历史性转折.其一是,大约从公元前7世纪到公元前3世纪,希腊数学从素材到框架,已经为几何学的理论大厦的建造准备了足够的条件.欧几里得在前人毕达哥拉斯、希波克拉底和欧多克斯等人的工作基础上,一举完成了统治几何学近2000年的极其伟大的经典著作《几何原本》.它使几何学发展成为一门独立的理论学科,是几何学史上的一个里程碑. 其二,也正是由于《几何原本》的问世,才带来了一个使无数人困惑和兴奋的著名问题--欧几里得第五公设问题. 在《几何原本》的第一卷中,规定了五条公设和五条公理.著名的欧几里得第五公设:“若两条直线被第三条直线所截,如有两个同侧内角之和小于两直角,则将这两直线向该侧适当延长后必定相交.”就是这五条公设中的最后一条.由于它在《几何原本》中引用得很少(直到证明关键性的第29个定理时才用到它);而且,它的辞句冗长,远不如前四条公设那样简单明了.于是给后人的印象是:似乎欧几里得本人也想尽量避免应用第五公设. 于是,一代又一代的数学家猜测:大概不用花费很多力气就能证明欧几里得第五公设.就这样,数学家们开始了试证第五公设的历程. 这是个始料未及的漫长历程!真正是前赴后继,几乎每个时代的大数学家都做过这一件工作. 然而,满以为非常简单,只不过是举手之劳的一件事,谁料历时两千年仍未解决. 第五公设问题几乎成了“几何原理中的家丑”(达朗贝尔).

史上最惊人的15个巧合

史上最惊人的15个巧合 世界上巧合的事情有很多,在这里拿出15个比较奇怪的给大家看看。文学类巧合 1、著名的小说家、幽默作家马克吐温生于1835年,生日那天正好是哈雷彗星出现的日子。而到了1909年,哈雷彗星将要再次出现的前一年,马克吐温说:我出生的那一天,何雷彗星出现。明年它再次出现时,我希望能随着它的到来离去。结果在1910年哈雷彗星出现的那天,马克吐温辞世。 2、美国一家报纸“Oregon’s Columbian”在2000年6月28日公布了一期抽奖的得奖数字,但是他们没有准确的公布,而是写成了一组错误的数字:6855。结果在下一期的Oregon抽奖中,得奖号码正是这个号码。 3、1979年,德国的一家杂志登出了一段故事,讲的是一个名叫Wa lter Kellner的人驾驶Cessna飞机,然后在从Sardinia到Sicily途中飞机引擎故障,被迫降落到水上,然后被救起的故事。然而不久一位同样名叫Walter Kellner的奥地利人声称这篇文章剽窃了他的作品。事后才发现,原来这位奥地利的Kellner也有了同样的经历:同样的海域、飞机型号,同样的故障,只是着陆点不同:一个水上,一个陆地。 4、1898年的一位小说家写了一部灾难小说,书中有这样一段情节:一艘叫做“Titan”的货轮在一个宁静的4月晚上,在向纽约行驶的途中撞到冰山,然后船沉没,由于救生艇的缺乏,许多乘客死于水中。就在23年后的1921年,泰坦尼克号遭遇了几乎一模一样的经历。死亡的巧合。 5、1900年7月28日,意大利国王Umberto一世去饭店吃饭,恰巧这家饭店的主人也叫Umberto,而他们的妻子的名字也相同,这家饭店的开张时间与国王的登基时间也相同。更为奇怪的是,第二天,这家饭店的老板死于枪杀,而国王在同一天也被枪杀。

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

历史上十大最怪异科学实验

历史上十大最怪异科学实验 英国《新科学家》杂志曾列出史上“十大最怪异科学实验”《泰吾士报》网络版原引文章作者的话说:“除了怀疑惊讶和恶心,这些实验更让我发笑,但是,这其中更可能隐藏着更多信息。这些实验不是疯子的作品,而是出自诚实、勤奋但不愿意接受普通观念的科学家科。 一、迷幻大象 美国研究人员为研究迷幻药是否能抑制公象的狂暴状态,于1962年给一头大象注射了297毫克迷幻药。这一药量约为人类能承受的最大剂量的3000倍。 实验结果是,大象在怒号中倒下。尽管实验人员赶紧给大象注射了解毒剂,但它还是在不到一个小时内死去。科学家得出的结论是:“大象好像对这种药太敏感。” 二、空中恐怖 上世纪60年代的一次实验中,飞行员告诉10名参加飞行训练的水兵,飞机正在失去控制,马上要坠入大海,必需赶快填写保险单。这些水兵根本不知道他们在参加实验。主持者从匆忙填写保险单中得出结论是:对迫在眉睫的死亡的恐惧确实能让人比平时犯更多的错误。三、胳肢学笑 美国俄亥俄州安蒂奥克学院心理学教授克拉伦斯·莱乌巴上世纪30年代时提出了一种假说,他认为人在被胳肢时才学会笑,而且这种反应不是天生的。 为了验证自己的假说,他拿家人做起实验,规定家人在他在家时,被胳肢不准笑。但实验开始几个月后,他夫人被发现在逗孩子笑。他儿子7岁时,才在被胳肢时笑。但这并没阻止来乌巴的实验,他又开始拿小女儿做起了实验。 四、无头老鼠与花脸 美国明尼苏达大学的卡尼·兰迪1942年时开始研究人类有厌恶感的面部表情。他先是用木炭给志愿者的面部画上线,然后让他们闻氨水、听爵士乐、看色情读物,还让他们把手放在装满青娃的桶中。 兰迪随后让志愿者砍掉小白鼠的头。所有志愿者最初都拒绝当“屠夫”,但最终大部分人还是照做。实验结果出乎兰迪的预料,与他先前想象的不同,他最后认为那些实验者当时的表现“更象是邪教成员在为教主作出牺牲”。 五、起死回生 美国加利福尼亚大学教授罗伯特·科尼斯上世纪30年代的一个实验更是令人目瞪口呆。他研究目标是让死人复活。他尸体跷跷板上晃来晃去“以促进血液循环”与此同时,他还给尸体注射抗凝血剂和肾上腺素。 科尼斯还说服一个即将被处死的的死囚参与实验。但州地方法院禁止那个囚犯参与,理由是万一这一实验取得成功,那法院不得不判那人重获自由。 六、睡眠中学习 美国威廉-玛丽学院的劳伦斯·莱尚1942上年时做了个实验,希望能阻止男孩子们咬指甲。他在孩子们熟睡时播放“别咬指甲”的录音。然而,录音机没多久就坏了,他开始自己在孩子们的宿舍中扮演那个“播音员”。 莱尚的实验看起来与孩子不再咬指甲。但有人给出的解释是,“孩子们可能在想,如果我停止咬指甲,那个扰人美梦的怪男人可能就会走开”。 七、好色火鸡 美国宾夕法尼亚州立大学的两位学者上世纪60年代开始研究火鸡的一只母鸡模型“肢解”,来研究母鸡性行为。他们发现,“火鸡对伙伴并不挑剔”。 这两位科学家逐步把用作实验的一只火鸡模型“肢解”,来研究母火鸡到底哪里吸引公火鸡,实验中,模型火鸡的“尾巴、脚和翅膀逐渐被拿走”,但直到只剩下木棍上级头时,公火鸡依然“兴趣不减。

高考数学:世界著名数学难题

455 63 世界著名数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成 等, 从而使数学的基本理论得到空前发展。回首20世纪数学 的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫·希 尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世 界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方 向。 知识荐语: 数学是研究数量、结构、变化以及空间模型等概念的一门 基础学科,简单地说,是研究数和形的科学。在数学发展的历 史上,数学们不但证明了诸多经典的定理,还把众多谜题留给 后人。这期知识,就让我们一同走进那些著名的数学难题。 1. 四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 ? 四色猜想到底怎么回事? ? 什么是四色猜想 ? 证明四色猜想的计算机是什么名字 ? 哪里有关于四色猜想的资料 ? 请问世界上那个四色猜想的内容是什么? ? 2. 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。 ? 哥德巴赫猜想为什么被转化为证明1+1? ? 哥德巴赫猜想的内容 ? 哥德巴赫猜想难在哪里? ? 哥德巴赫猜想有什么新进展 ? 哥德巴赫猜想与1+1是什么关系?

数学史上的三次数学危机的成因分析

江西科技师范学院学年论文 数学史上的三次数学危机的成因分析 吕少珍(数学与应用数学 20081444)指导老师:王亚辉 摘要从哲学上来看,矛盾是无处不在的,即便是以确定无疑著称的数学也不例外。数学常常被人们认为是自然科学中发展的最完善的一门学科,它是自然中最基础的学科,是所有科学之父,没有数学,就不可能有其他科学的产生。但在数学的发展史中,却经历了三次危机,本文回顾了数学史上三次危机的产生和发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。 关键词:数学危机;无理数;微积分;无穷小量 1第一次数学危机 1.1背景 第一次危机发生在公元前580—568年之间的古希腊,当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知。数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派是一个宗教、政治、学术合一且组织严密,带有浓厚宗教色彩的学派,这个学派进行了大量的教学研究,并取得了众多的数学发现。在当时他们一致认为“数”的中心地位随时可见,他们还提出了“万物皆数”这一论断。后期毕达哥拉斯学派成员费洛罗斯将这一观点清晰表达为:“人们所知道的一切事物都包含数;因此,没有数就既不可能表达,也不可能理解任何事物。”世界上的万物和现象都只能通过数才能加以解释,唯有通过数和形,才能把握宇宙的本性,他们还指出“万物都可以归结为整数之比”并且相信宇宙的本质就在于这种“数的和谐”。 1.2 起源 1.2.1 “万物都可以归结为整数之比” 比较两条线段a与b的长度,当b恰好是a的正整数r倍时,我们可以直接用a作为这两条线段的共同度量单位。当b不是a的正整数倍时,我们就要去找第三条线段d,使得a可以正好分成d的正整数倍,同时b也可以分成d的正整数倍,我们可以假设a的长度是d的m倍,b的长度是d的n倍,这时,我们说d就是a与b的度量单位,并说线段a与b是可公约或可公度的。这个过程相当于用比较短的线段当尺子去量长的,如果一次量尽,则度量结束;如果一次量不尽,就用余下的那段线段作为新的尺子去量那个比较短的线段,如果量尽,度量结束,且度量单位就是那段余下的线段;如果还是量不尽,就用再余下的那段线段作为新的尺子去量之前余下的那一段…如此下去,直到量尽,度量结束,且度量单位就是最后余下的那段线段。对于任意两条线段,毕达哥拉斯学派的成员相信上面的操作过程总会在进行了有限步之后结束,他们相信,只要有耐心总能找到那个度量单位的。所以,任何两个同类量都是可通约的,即万物都归结为整数之比 1.2.2 希帕索斯悖论 希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈

数学史上的三大危机

数学史上的三大危机 无理数危机、无穷小是零危机和悖论危机 无理数的发现-第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?-第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续性就实行微分,不考虑导数及积分的存有性以及函数可否展成幂级数等等。 直到19世纪20年代,一些数学家才比较注重于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到韦尔斯特拉斯、戴德金和康托的工作结束,中间经历了

数学史上一个大恩怨的真相

数学史上一个大恩怨的真相 数学史上这个著名的大恩怨许多人在中学学习解方程 时都听老师讲过。故事说,文艺复兴时期意大利数学家塔塔利亚发现了三次方程的解法,秘而不宣。一位叫卡当的骗子把解法骗到了手,公布出来,并宣称是他自己发现的。塔塔利亚一气之下向卡当挑战比赛解方程,并大获全胜,因为塔塔利亚教他时留了一招。不过,至今这些公式还被称作卡当公式,而塔塔利亚连名字都没有留下来,塔塔利亚只是一个外号,意大利语意思是“结巴”。网上广为流传的一篇《数学和数学家的故事》一文就是这么介绍的。 然而,这个流行版本从总体到细节都是错误的。塔塔利亚不仅留下了名字(其真名叫尼科洛·方塔纳),而且也留下了有关这一争执的著作。后人对此事的看法在很大程度上就是受塔塔利亚一面之词的影响。 塔塔利亚与卡当之间并未进行过数学比赛,和塔塔利亚比赛的另有其人。在当时的意大利,两个数学家进行解题比赛成了风气,方式是两人各拿出赌金,给对方出若干道题,30天后提交答案,解出更多道题的人获胜,胜者赢得全部赌金。塔塔利亚很热衷于参加这种比赛,并多次获胜。 当时经常出现的比赛题目是三次方程,因为三次方程的解法还未被发现。意大利博洛尼亚数学家费罗发现了三次方程的一种特殊形式“三次加一次”的解法,临死前传给了学生

费奥。费奥的数学水平其实很差,得到费罗的秘传之后便吹嘘自己能够解所有的三次方程。塔塔利亚也自称能够解三次方程,于是,两人在1535年进行了比赛。塔塔利亚给费奥出了30道其他形式的三次方程,把费奥给难住了。费奥则给塔塔利亚出了30道清一色的“三次加一次”方程题,认定塔塔利亚也都解不出来。塔塔利亚在接受费奥挑战的时候,的确还不知道如何解这类方程题。据说,是在最后一天的早晨,塔塔利亚在苦思冥想了一夜之后,突然来了灵感,发现了解法,用了不到两个小时就全部解答了。塔塔利亚欣喜若狂,宽宏大量地放弃了费奥交的赌金。 当时担任米兰官方数学教师的卡当听说了此事,通过他人转告塔塔利亚,希望能够知道解法,遭到塔塔利亚的拒绝。于是卡当直接给塔塔利亚写信,暗示可以向米兰总督推荐塔塔利亚。 在威尼斯当穷教师的塔塔利亚一见有高升的机会,态度大变,于1539年3月动身前往米兰,受到卡当的热情招待。在卡当苦苦哀求,并向上帝发誓绝不泄密后,塔塔利亚终于向卡当传授了用诗歌暗语写成的解法。而卡当把“武林秘笈”拿到手,也并没有对塔塔利亚翻脸。然而,像许多泄密者一样,塔塔利亚马上就后悔了。他无心再在米兰求发展,匆忙赶回威尼斯。在那一年,卡当出版了两本数学著作,塔塔利亚都细细研读,一方面很高兴卡当没有在著作中公布三

最恐怖最诡异的20大未解之谜!

最恐怖、最诡异的20大未解之谜! 地球到今天大约有46亿年的历史了,世界之大,无奇不有,每天都有非常不可思议的事情发生着,这个世界远非人类想象中的那么简单,有着太多太多匪夷所思的事情一直困扰着我们,而下面这些人类至今未解的谜团就是最好的诠释。 【第1谜】西西里岛木乃伊之谜 在巴勒莫,19世纪的男性尸体僵硬地列队而立。将近2000名死者就安歇在这里,或挂在墙上,或摆在椅子上,或躺在陈旧的棺木里。有些神父对这种保存尸体寄托哀思的方式心怀不安,把其中一些从地下墓穴里运出掩埋到墓地里。没人知道埋了多少,也没人知道这种干尸究竟有多少具。这让人不免疑惑:为什么会有人这么做?把腐化的尸体拿来展览用意何在? 【第2谜】日本自杀森林之谜 日本富士山风景区的青木原森林(Aokigahara Forest)是一处人迹罕至的自杀地。当局每年在这里会发现多达100具人的尸体,这还不算没有被发现的尸体。

至于为何这么多人在这处森林结束自己的生命,仍是个谜。 【第3谜】诡异佛像之谜 诡异佛像之谜 在汶川地震中,北川一个庙里竟有这种诡异现象。整个庙都倒塌了,旁边剩下的这个菩萨像居然毫发未伤! 【第4谜】画作中的上帝之脸 名为“神圣经文和绘画之镜世界基金会”的组织宣称,他们利用镜子在意大利着名艺术大师达·芬奇的一些知名作品中发现隐藏有圣经人物头像和宗教符号。 【第5谜】郭亮隧道之谜 它被人惊称为“世界第九大奇迹,位于河南太行山区,此隧道开有30多个“窗户”,从“窗户”往下看便是万丈深渊。 最重要的是,这条隧道诞生是个现代版“愚公移山的”故事,郭亮人没有用任何机械,历时5年,硬是在绝壁中一锤一锤凿去了2.6万立方米石方。

最新史上最难的全国高考理科数学试卷

创难度之最的1984年普通高等学校招生全国统一考试理科数学试题 (这份试题共八道大题,满分120分 第九题是附加题,满分10分,不计入总分) 一.(本题满分15分)本题共有5小题,每小题选对的得3分;不选,选错或多选得负1分1.数集X = {(2n +1)π,n 是整数}与数集Y = {(4k ±1)π,k 是整数}之间的关系是 ( C ) (A )X ?Y (B )X ?Y (C )X =Y (D )X ≠Y 2.如果圆x 2+y 2+Gx +Ey +F =0与x 轴相切于原点,那么( C ) (A )F =0,G ≠0,E ≠0. (B )E =0,F =0,G ≠0. (C )G =0,F =0,E ≠0. (D )G =0,E =0,F ≠0. 3.如果n 是正整数,那么)1]()1(1[8 1 2---n n 的值 ( B ) (A )一定是零 (B )一定是偶数 (C )是整数但不一定是偶数 (D )不一定是整数 4.)arccos(x -大于x arccos 的充分条件是 ( A ) (A )]1,0(∈x (B ))0,1(-∈x (C )]1,0[∈x (D )]2 ,0[π∈x 5.如果θ是第二象限角,且满足,sin 12sin 2cos θ-=θ-θ那么2 θ ( B ) (A )是第一象限角 (B )是第三象限角 (C )可能是第一象限角,也可能是第三象限角 (D )是第二象限角 二.(本题满分24分)本题共6小题,每一个小题满分4分

1.已知圆柱的侧面展开图是边长为2与4的矩形,求圆柱的体积 答:.84π π或 2.函数)44(log 25.0++x x 在什么区间上是增函数? 答:x <-2. 3.求方程2 1 )cos (sin 2=+x x 的解集 答:},12|{},127|{Z n n x x Z n n x x ∈π+π -=?∈π+π= 4.求3)2| |1 |(|-+x x 的展开式中的常数项 答:-205.求1 321lim +-∞→n n n 的值 答:0 6.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必计算) 答:!647?P 三.(本题满分12分)本题只要求画出图形 1.设???>≤=, 0,1,0,0)(x x x H 当当画出函数y =H (x -1)的图象 2.画出极坐标方程)0(0)4 )(2(>ρ=π -θ-ρ的曲线 解(1) (2)

盘点数学史上24道智力经典名题

盘点数学史上24道智力经典名题 同学们,你们知道数学史上有哪些经典名题吗?查字典数学网为大家推荐的数学史上24道智力经典名题,小朋友们不妨开动脑筋,动手做一做吧! 1.遗嘱传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3。结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢? 2.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?” 3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10

件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我 7 / 1 的金箱、银箱中原来各有多少件手饰? 4.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨班达依尔。这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。算算看,国王应给象棋发明人多少粒麦子? 5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。他发现:每一个大于或等于6的偶数,都可以写成两个素数的和(简称“1+1”)。如:10=3+7,16=5+11等等。他检验了很多偶数,都表明这个结论是正确的。但他无法从理论上证明这个结论是对的。1748年他写信给当时很有名望的大数学家欧拉,请他指导,欧拉回信说,他相信这个结论是正确的,但也无法证明。因为没有从理论上得到证明只是一种猜想,所

历史上那些惊人的巧合

龙源期刊网 https://www.360docs.net/doc/4814208554.html, 历史上那些惊人的巧合 作者:阿诺 来源:《小学教学研究·新小读者》2014年第09期 马克·吐温是美国著名作家,他于1835年哈雷彗星回归的那天出生,于1910年哈雷彗星 再次回归的那天去世。他在1909年就曾这样预言过,当时他说:“1835年我随着哈雷彗星的回归来到这个世界,明年哈雷彗星将再次回归,我预计我会随它而去。” 19世纪时,著名的恐怖小说家埃德加·爱伦·坡曾写过一本书,名叫《阿瑟·戈登·皮姆的故事》。这本书讲述了4名海难幸存者乘坐一只无遮挡的小船,在海上漂泊多日后,决定杀死并吃掉其中那个名叫理查德·帕克的船舱侍者的故事。几年后,1884年,“木樨(xī)草”号游艇 失事沉没,船上只有4个人幸存,他们乘着一只无遮挡的小船,在海上漂泊了很多天。最终,船上3名较为年长的船员杀死并吃掉了船舱侍者,而这名船舱侍者的名字也叫理查德·帕克。 接下来是美国的两位开国元勋托马斯·杰弗逊和约翰·亚当斯的故事。杰弗逊起草了《独立宣言》后,把草稿拿给亚当斯过目,后者(与本杰明·富兰克林一起)对其进行了修改和加工。大陆会议于1776年7月4日通过了这份文件。令人惊讶的是,杰弗逊和亚当斯于1826年7月4日双双辞世,距离《独立宣言》的签署日期正好过去50年。 意大利国王翁贝托一世来到意大利蒙扎的一家小餐馆用晚膳。当餐馆老板正为国王点餐时,国王发现自己与老板的相貌和身材都极为相似,他们简直就是双胞胎。两人开始谈论彼此的相似之处,结果交谈之中又发现了更多的相似点。两人于同年同月同日出生在同一个地方——都于1844年3月14日出生于意大利都灵。在国王与玛格丽特王后成婚的那天,餐馆老板也迎娶了一位名叫玛格丽特的女士。而这家餐馆老板开店的日子也恰好是翁贝托国王加冕成为意大利国王的那一天。1900年7月29日,翁贝托国王听说那位餐馆老板于当天死于一次颇为蹊跷的枪击事件,就在他对此表示遗憾之时,人群中的一名无政府主义者暗杀了他。 (选自《新东方英语·中学生》)

世界经典数学名题

鸡兔同笼 《孙子算经》卷下第31题叫?鸡兔同笼?问题,也是一道世界数学名题。?有一群野鸡和兔子关在同一个笼子里,头数是35,脚数是94。问野鸡和兔子的数目各是多少??这个题目编得很有趣,如果35只动物全是鸡,就应该有70只脚;如果全是兔,就应该有140只脚,而题中却说共有94只脚,给人一种左右为难的印象。其实,解题关键也正在这里,假设35只动物全是鸡,则共有70只脚,与题中?脚数是94?相比较,还差24只脚,将1只兔看作是鸡,脚数就会相差2,有多少只兔被看作是鸡了呢?24 2=12。算到这里,答案也就呼之欲出了。 清朝时,作家李汝珍把这类问题写进了小说《镜花缘》中。书中有这样一个情节,一座楼阁到处挂满了五彩缤纷的大小灯球,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个。一位才女把大灯看作是头,小灯看作是脚;把一种灯球看作是鸡,把另一种看作是兔,运用?脚数的一半减头数得兔数,头数减兔数得鸡数?的算法,很快就算出了一大二小的灯是120盏,一大四小的灯是240盏,赢得了一片喝彩声。伴随古代中外文化交流,鸡兔同笼问题很快就漂洋过海流传到了日本。不过到了日本之后,鸡变成了仙鹤,兔变成了乌龟,鸡兔同笼变成了赫赫有名的?鹤龟算?。 狗跑与兔跳 行程问题是中小学里常见的一类数学应用题,也是一类很古老的数学问题。在我国古代数学名著《九章算术》里,收集了很多这方面的题目如书中第6章第14题:?狗追兔子。兔子先跑100步,狗只追了250步便停了下来,这时它离兔子只有30步的距离了。问如果狗不停下来,还要跑多少步才能追上兔子??这道追及问题编得很有趣,它没有直接告诉狗与兔的?速度差?,反而节外生枝地让狗在追及过程中停了下来,数量关系显得扑朔迷离。2000年前,我们的祖先解决这类问题已经很有经验了,所以书中只是简单地说,用(250 30)作除数,用(100-30)作被除数,即可算出题目的答案。 世界各国人民都很喜爱解答这类问题,一本公元8世纪时在欧洲很流行的习题集中,也记载了一个狗与兔的追及问题:?狗追兔子,兔子在狗前面100英尺。兔子跑7英尺的时间狗可以跑9英尺,问狗跑完多少英尺才能追上兔子??相传

(整理)数学史上的三次危机.

数学史上的三次危机 张清利 第一次数学危机 在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。这是数学史上的一个里程碑。毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。后来,又发现数轴上还存在许多点也不对应于任何有理数。因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。 例如, ,22,8,6,2等都是无理数。无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。 第一次数学危机表明,当时希腊的数学已经发展到这样的阶段: 1. 数学已由经验科学变为演绎科学; 2. 把证明引入了数学; 3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有 更加重要的地位。这种状态一直保持到笛卡儿解析几何的诞生。 中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。即算术阶段。希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。 在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。 总之,第一次数学危机是人类文明史上的重大事件。 无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。而毕达哥拉斯学派的比例和相似形的全部理论都是建立在这一假设之上的。突然之间基础坍塌了,已经建立的几何学的大部分内容必须抛弃,因为它们的证明失效了。数学基础的严重危机爆发了。这个“逻辑上的丑陋”是如此可怕,以致毕达哥拉斯学派对此严守秘密。据说,米太旁登的帕苏斯把这个秘密泄漏了出去,结果他被抛进了大海。还有一种说法是,将他逐出学派,并为他立了一个墓,说他

100个历史上最有名的数学难题

100个历史上最有名的数学难题 第01题阿基米德分牛问题archimedes' problema bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。问这牛群是怎样组成的? 第02题德·梅齐里亚克的法码问题the weight problem of bachet de meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。问这4块砝码碎片各重多少? 第03题牛顿的草地与母牛问题newton's problem of the fields and cows a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?

第04题贝韦克的七个7的问题berwick's problem of the seven sevens 在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢? 第05题柯克曼的女学生问题kirkman's schoolgirl problem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次? 第06题伯努利-欧拉关于装错信封的问题the bernoulli-euler problem of the misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。

相关文档
最新文档