电磁屏蔽分析和应用

电磁屏蔽分析和应用
电磁屏蔽分析和应用

电磁兼容课程论文

题目名称:电磁屏蔽技术

院系名称:电子信息学院

班级:测控112

学号:201100454217

学生姓名:白凡

指导教师:魏平俊

2014年5月

摘要:随着电子产品的广泛应用以及电磁环境污染的加重,对电磁兼容性设

计的要求也越来越高,作为电磁兼容设计的主要技术之一——屏蔽技术的

研究也就愈显得重要。本文从电磁屏蔽技术原理出发,讨论了屏蔽体结构、

屏蔽技术分类、屏蔽材料的选择以及所要遵循的原则,在电子设备实施具

体的电磁屏蔽时提供了重要的依据。同时分析了电磁干扰形成的危害,介

绍了工程上解决电磁干扰问题的几种常用方法。

关键词:电磁屏蔽电磁干扰屏蔽技术

Abstract:With the wide application of electronic products as well as the electromagnetic environment pollution is aggravating, more and more is also high to the requirement of electromagnetic compatibility design, as one of the main technology of emc design - shielding technology research is more important.Based on principle of electromagnetic shielding technology, this paper discusses the structure of the shield, shielding the technical classification,

the selection of shielding materials and to follow the principle of the electronic equipment to implement specific provides an important basis for electromagnetic shielding.At the same time analyzes the harm of electromagnetic interference, this paper introduces the engineering several commonly used methods to solve the problem of electromagnetic interference. Keywords: Electromagnetic shielding, Electromagnetic interference, Shielding technology

目录

序言 (4)

1 电磁干扰 (5)

1.1 电磁干扰定义 (5)

1.2 电磁干扰分类 (5)

1.3 电磁干扰传播途径 (5)

2 电磁兼容 (5)

2.1电磁兼容定义及内涵 (5)

2.2设计思想 (6)

3 电磁屏蔽 (6)

3.1屏蔽原理 (7)

3.2电屏蔽 (7)

3.3磁屏蔽 (8)

3.4电磁屏蔽 (8)

3.4.1电磁屏蔽原理 (8)

3.4.2电磁屏蔽设计原则 (9)

参考文献: (11)

序言

在人类进入信息化的时代,随着科学的进步,电子技术的发展,辐射无孔不入,电磁干扰越来越严重。所以电磁兼容设计已经成为产品设计中十分重要的一项内容。在电子设备及电子产品中,电磁干扰能量通过传导性耦合和辐射性耦合来传输。为满足电磁兼容性要求,对传导性耦合需采取滤波技术,对辐射性耦合则需采用屏蔽技术来加以抑制。电磁屏蔽已成为解决电磁兼容问题的最重要手段之一,大部分电磁兼容问题都可以通过电磁屏蔽来解决。因此电磁屏蔽技术在生活中有很大的重要性。在利用电磁屏蔽技术的同时应该对其充分了解。本文详细讨论了电子设备的电磁屏蔽设计技术,系统地分析了电子设备电磁屏蔽的技术原理,屏蔽效能的计算方法,各种屏蔽材料的性能和应用场合,屏蔽的各种注意事项,孔眼的屏蔽效能的计算,屏蔽效能的检测以及特殊部位的特殊屏蔽措施。

目前,经过科研人员的不懈努力,我国在电磁屏蔽方面取得了显著成绩。据2009年新华网新闻报道:《解放军列装高性能屏蔽布可应对电磁武器攻击》,说我们的军队成功地研制了高性能电磁屏蔽布,目前该成果已定型列装部队,壮大了我们国家的军事力量。同年时期,华夏高科技产业创新奖评审委员会组织,对“电磁屏蔽用碳纤维复合颗粒料与复合材料的研发”项目进行了成果鉴定并通过鉴定。在生活中用到屏蔽的例子也不少见,如电子仪器设备外面的金属罩,通讯电缆外面包的铅皮,高压带电作业(500千伏带电作业用的屏蔽服),汽车外的天线,有线电视信号线,在服务区怕被人打手机,又不能关机,找个金属盒子装进去,就变成了"您拨打的用户不在服务区"等等真是屡见不鲜。

1 电磁干扰

1.1 电磁干扰定义

电磁干扰,英文名称Electromagnetic Interference,简称EMI。是干扰电缆信号并降低信号完好性的电子噪音,通常由电磁辐射发生源如马达和机器产生的。

1.2 电磁干扰分类

一般电磁干扰分为两大类:自然干扰与和人为干扰。自然干扰主要来源于大气层的天电噪声、地球外层空间的宇宙噪声。人为干扰是有机电或其他人工装置产生电磁能量干扰,其中一部分是专门用来发射电磁能量的装置,另一部分是在完成自身功能的同时附带产生电磁能量的发射。

1.3 电磁干扰传播途径

电磁干扰的传播途径有三种:辐射、感应和传导。若干扰是由干扰源辐射的电磁波传播到被干扰部件区域所造成的,称为远场辐射干扰。当干扰源与被干扰部件距离较小时,通过空间的电磁耦合会引入被干扰部件,这种传递方式称为近场感应。干扰通过干扰源和被干扰电路之间的公共阻抗而引入被干扰电路的传递方式称为传导。总之,干扰的构成主要有三个因素:干扰源、合适的干扰途径及敏感部件。

2 电磁兼容

2.1电磁兼容定义及内涵

所谓电磁兼容,英文名称Electromagnetic Compatibility,简称EMC。按照国

家标准术语(GB/T4765-1995)定义为:设备或系统在其他电磁环境中能正常工作,且不对该环境中的任何事物构成不必要的电磁骚扰的能力。实质上电磁兼

容包含两层意思:第一,任一电子设备或系统应具有一定的抗电磁干扰的能力,使其在电磁环境中能正常工作;第二,设备正常工作时产生的电磁干扰应抑制

在一定水平,不能对同一环境中的其他任何事物构成不能承受的电磁骚扰。

2.2设计思想

从电磁兼容的定义可以看出,电磁兼容设计应从电磁干扰特性(EMI )和电

磁耐受特性(EMS )两个方面进行考虑。从EMS 角度看,主要的干扰源有射频干

扰、静电干扰、电力干扰和自干扰。在系统设计中降低射频干扰的有效措施是

合理地利用无线电频谱。

所谓频谱利用问题包含两个方面的意思。第一是频谱的分配。无线电是稀

缺资源,为了合理使用无线电资源,国际和各国均有相关规定。第二是频谱的

节约与发掘,即采用各种技术措施以提高频谱的利用率,例如采用压缩语音频

带技术,单边带技术等,从根本目的上说都是为了提高电磁兼容能力。

在进行电磁兼容设计需要考虑的两个重要参数:(1)敏感门限电平。使系

统或设备不能正常工作的干扰临界电平称为敏感门限电平。(2)电磁兼容性安

全系数。电磁兼容性安全系数)(dB m 定义为l s P P m -=,式中s p 为以分贝表示的

设备或系统的敏感门限电平,l p 为以分贝表示的设备或系统实际接收的干扰电

平。显然从安全出发,m 越大越好,但其投资的费用也就增加。

如果设备或系统不能满足安全系数的要求,则应采取防护措施,例如合理

布局,将干扰源与敏感设备作空间隔离;或采用时间分割,也可采用时间与空

间分离;此外还可以采用频率分离和计划分离等措施,也可以直接增强系统、

系统中某些设备、设备中的某些电路或元器件的抗干扰能力。例如采用屏蔽技

术以切断近场效应或远场辐射等干扰的传递途经,采用滤波技术抑制干扰源和

消除与干扰信号间的耦合;采用良好的接地系统,减少通过公共地电阻而引起

的相互干扰。总之,可采用各种隔离干扰技术来提高电磁兼容能力。

3 电磁屏蔽

3.1屏蔽原理

屏蔽就是利用导电或导磁材料制成盒状或网状而将电场或磁场的影响限制

在某空间区域,即在某给定空间防止来自外部的电磁干扰或防止由内自外的电

磁干扰。也就是说,用铜或铝等低阻材料或导磁率高的磁性材料制成所需形状

的容器,将需要隔离的空间包围起来,这种防止电磁干扰所采取的方法称之为

屏蔽。

屏蔽的理论基础是电磁波的反射与吸收,投射到屏幕罩上的电磁能量一部

分被反射回去,另一部分被屏蔽罩吸收。屏蔽的效果一般是用屏蔽前后同一点

场强的比值来表征,称为屏蔽效能(Shielding Effectiveness ). r a tunnel inc SE SE E E dB SE +==lg

20)(

式中inc E 、tunnel E 分别称为屏蔽前后的场强,a SE 为吸收屏蔽效能,r SE 为反

射屏蔽效能。在线性电路中,由于干扰电压与干扰场强成正比,屏蔽效能又可

定义为屏蔽前后同一元件上干扰电压之比,即

)'l g (20)(B B U U dB SE = 式中B U 为屏蔽前B 点受电场干扰的电压,'B U 为屏蔽后同一点受电场干扰的电

压。

屏蔽的方法可分为三种,即防止静电耦合干扰的电磁屏蔽、防止低频磁场

干扰的磁屏蔽和防止高频电磁场的电磁屏蔽。

3.2电屏蔽

电屏蔽(Electrical Shielding )又称为静电屏蔽。它的作用是防止静电场的影

响,消除两个设备和电路之间由于分布电容耦合所产生的影响。例如有一带正

电荷Q 的导体A 置于金属盒B 中,由高斯定理不难证明,金属盒的内表面感应

产生-Q 电荷,在金属盒的外表面集结+Q 电荷,由外表面电荷所建立的电场将干

扰其他设备。如果将金属盒接地,金属盒与地等电位,盒外的+Q 流入大地,盒

内电荷产生的电场不影响其他设备的工作,也就是说金属盒使盒内电荷产生的

电力线不能到达盒外部,从而达到屏蔽的目的。

静电屏蔽最常用的材料为导电良好的铜或铝,要求不高时也采用薄钢板。

对于有源静电屏蔽,其屏蔽效果主要取决于金属壳体的接地质量。屏蔽体与地

面间的阻抗越小,屏蔽效果越好。

3.3磁屏蔽

磁屏蔽(Magnetic Shielding )是利用高导磁率材料将磁场封闭在它的厚壁之

中,一般用于10KHz 以下的低频。如果将磁干扰源屏蔽于高磁导率材料制成的

壳中,称为对外磁屏蔽或有源磁屏蔽。此时,其产生的磁力线的绝大部分将集

中于磁阻很低的壳体内,只有极少的磁力线从壳体内泄露到壳体外部。泄露的

磁通称为磁漏通,磁漏的多少取决于壳体材料的磁导率与壳体的厚度。多层磁

屏蔽可以减少磁漏。

若磁干扰源在磁壳的外部,用以防止其对磁壳内设备或电路的影响,称之

为对内磁屏蔽或无源磁屏蔽。此时因屏蔽层的磁导率很高,磁阻低,只有少量

磁力线通过磁屏蔽壳而进入壳内空间。在理想情况下,取∞=u 的材料制成屏蔽

壳,可完全隔绝外界磁场的影响,但实际上,这是难以实现的。不管是有源还

是无源磁屏蔽,都不需要将屏蔽壳接地。有时,为了消除磁屏蔽壳体内附近设

备之间的静电影响,才采取接地措施。

3.4电磁屏蔽

3.4.1电磁屏蔽原理

利用电磁能量在良导电媒质中急剧衰减的原理,根据所屏蔽的电磁波的

频率,选择透入深度小的材料,制成一定厚度(通常厚度c h πδ2=)的屏蔽罩。

但由于高频时铁磁材料的磁滞损失大,发热显著,对被保护装置不利,常采用

低磁导率的金属材料。实际上,在高频电磁场中,电场和磁场是相互依存的,

因此只要对两者之一进行屏蔽,另一方也将不复存在。一般情况下,采用非铁

磁材料的良导体金属板屏蔽罩接地方法,即可有效地屏蔽高频磁场。在不适宜用金属板作屏蔽时,可以用金属网,这时电磁波在网中的吸收损耗甚小,主要是反射损耗。网孔愈小,导线愈粗或屏蔽的空间越大,则屏蔽效果愈好。当要求100dB以上的屏蔽效果时,可采用多层金属网,将铁磁材料与非磁性良导体材料交替构成多层屏蔽的效果更好。

3.4.2电磁屏蔽设计原则

(1)若波源距屏蔽金属板较近时,不仅要考虑辐射场,而且要考虑近区感应场,两者的屏蔽效能是有差别的。

(2)屏蔽罩上的孔和缝的存在是降低屏蔽效能的主要原因之一。由于孔、缝耦合可以等效为二次辐射天线,它具有方向性,且使屏蔽不均匀,即可能在某些区域的屏蔽效能会很差,因此,必须科学地设计屏蔽罩上的孔或缝。

(3)屏蔽罩具有自然谐振频率,当合适频率的干扰信号以较小的能量耦合到屏蔽罩内时会产生较大的干扰,从而出现负屏蔽效能,这在设计时必须避免此类问题。

总结与展望

总之,抑制电磁辐射干扰的最有效方法是对电磁场进行屏蔽,用导体把两个带电体之间的电力线截断,或用高导磁率的磁性材料把产生干扰磁场的物体进行屏蔽。但用于电场屏蔽的导体需要良好接地才能有效,否则,屏蔽电场的导体不但起不到屏蔽作用,反而会因为电场也会通过感应使屏蔽导体带电。另外,用导体对磁感应干扰进行屏蔽,也会产生意想不到的作用:磁力线穿过导体的时候也会产生感应电流即涡流,涡流又会产生磁场,这个新产生的磁场的方向正好与干扰磁场的方向相反,两者正好可以互相抵消。

目前,对电磁兼容 EMC 进行设计的主要方法还是靠经验或借助别人的经验,需要不断实践才会不断提高。但应用前景还是很不错的,有必要不断努力!

参考文献:

[1] 刘学观.电磁场与电磁波[M].西安电子科技大学出版社,2010(3):228-235.

[2] 郭萍. 屏蔽效能研究[D].东南大学:东南大学电磁兼容研究室,2010.

[3] 陶显芳. 电磁干扰与电磁兼容浅谈[J/OL].2010.5.9.

[4] 高小刚. 电磁兼容技术与动态展望[J/OL].2011.1.17.

[5] 李辉. 电磁兼容问题解决方案[J/OL]. 2010.8.16

电磁屏蔽一般可分为三种

电磁屏蔽一般可分为三种 :静电屏蔽、静磁屏蔽和高频电磁场屏蔽。三种屏蔽的目的都是防止外界的电磁场进入到某个需要保护的区域中,原理都是利用屏蔽对外场的感应产生的效应来抵消外场的影响。 但是由于所要屏蔽的场的特性不同,因而对屏蔽壳材料的要求和屏蔽效果也就不相同。 一、静电屏蔽 静电屏蔽的目的是防止外界的静电场进入需要保护的某个区域。 静电屏蔽依据的原理是:在外界静电场的作用下导体表面电荷将重新分布,直到导体内部总场强处处为零为止。接地的封闭金属壳是一种良好的静电屏蔽装置。如图所示,接地的封闭金属壳把空间分割成壳内和壳外两个区域,金属壳维持在零电位。根据静电场的唯一性定理,可以证明:金属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布无关。当壳外电荷分布变化时,壳层外表面上的电荷分布随之变化,以保证壳内电场分布不变。因此,金属壳对内部区域具有屏蔽作用。壳外的电场仅由壳外的带电体和金属壳的电位以及无限远处的电位所确定,与壳内电荷分布无关。当壳内电荷分布改变时,壳层内表面的电荷分布随之变化,以保证壳外电场分布不变。因此,接地的金属壳对外部区域也具有屏蔽作用。在静电屏蔽中,金属壳接地是十分重要的。当壳内或壳外区域中的电荷分布变化时,通过接地线,电荷在壳层外表面和大地之间重新分布,以保证壳层电势恒定。从物理图像上看,因为在静电平衡时,金属内部不存在电场,壳内外的电场线被金属隔断,彼此无联系,因此,导体壳有隔离壳内外静电相互作用的效应。 如果金属壳未完全封闭,壳上开有孔或缝,也同样具有静电屏蔽作用。在许多实际应用中,静电屏蔽装置常常是用金属丝编织成的金属网代替闭合的金属壳,即使一块金属板,一根金属线,亦有一定的静电屏蔽作用,只是屏蔽的效果不如金属壳。 在外电场的作用下,电荷在导体上的重新分布,在10-19秒数量级时间内就可完成,因此对低频变化的电场,导体上的电荷有足够长的时间来保证内部

不同材质金属板电磁屏蔽效果的对比分析要点

郑州大学毕业设计(论文) 题目:不同材质金属板电磁屏蔽效果的对比分析指导教师:职称:讲师 学生姓名:学号: 专业: 院(系): 完成时间: 2013年5月20 日

不同材质金属板电磁屏蔽效果的对比分析 摘要高导电性材料在电磁波的作用下将产生较大的感应电流。这些电流按照楞次定律将削弱电磁波的透入。采用的金属网孔愈密,直到采用整体的金属板(壳),屏蔽的效果愈好,但所费材料愈多。 本文主要使用XFDTD仿真软件编写基于FDTD算法的计算机仿真程序,计算出了喇叭天线工作时在铜金属板以及与铁,铝金属板屏蔽下电场强度分布,重点记录了距离端口60cm 平面的电磁参数,以此观察分析不同材质金属板的屏蔽效能,为金属板的电磁屏蔽应用提供科学的理论依据和定量的数据。 关键词屏蔽效能金属板时域有限差分算法喇叭天线电磁波传播模型 Abstact Shielding effectiveness is characterized the attenuation of electromagnetic waves on shield。Because of the high conductive material will be generated a large induction current under the action of electromagnetic waves。These currents according to Lenz's law will weaken the penetration of electromagnetic waves。The metal mesh is more dense, he better the shielding effectt, until the the overall metal shell, but the more charge material used. The this thesis make use of XFdtd simulation of copper metal plate, as well as iron, aluminum metal plate in an electromagnetic field environment。Through the comparison of different materials, thickness, and the source distance parameter, analysis the performance impact of metal shielding. Key Words:Shielding effectiveness Metal plate Finite difference time domain algorithm Horn antenna electromagnetic wave propagation model

电磁屏蔽技术

《电磁屏蔽技术》 1. 电磁屏蔽的目的 电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改 2. 区分不同的电磁波 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波、和平面波 电磁波的波阻抗Z定义为:电磁波中的电场分量E与磁场分量H的比值: Z W W = E / H 电磁波的波阻抗电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关 距离辐射源较近时,波阻抗取决于辐射源特性若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω 电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽 3. 度量屏蔽性能的物理量——屏蔽效能 屏蔽体的有效性用屏蔽效能(SE)来度量屏蔽效能的定义如下: SE=20lg(E/E) (dB) 21式中:E=没有屏蔽时的场强 E 有屏蔽时的场强=2 1. 如果屏蔽效能计算中使用的是磁场强度,则称为磁场屏蔽效能,如果屏蔽效能计算中使用的是电场强度,则称为电场屏蔽效能屏蔽效能的单位是分贝(dB),下表是衰减量与分贝的对应关系: 屏蔽前屏蔽后衰减量屏蔽效能 20dB 90% 1 0.1 40dB 99% 1 0.01 60dB 1 99.9% 0.001 80dB 1 99.99% 0.0001 100dB 0.00001 99.999% 1 以下,军用设备机箱的屏蔽效能一般要达到40dB一般民用产品机箱的屏蔽效能在屏蔽

电磁屏蔽原理

利用这个特性,可以达到屏蔽电磁波,同时实现一定实体连通的目的。方法是,将波导管的截止频率设计成远高于要屏蔽的电磁波的频率,使要屏蔽的电磁波在通过波导管时产生很大的衰减。由于这种应用中主要是利用波导管的频率截止区,因此成为截止波导管。截止波导管的概念是屏蔽结构设计中的基本概念之一。常用的波导管有圆形、矩形、六角形等,它们的截止频率如下: 矩形波导管的截止频率:f c=15×109 /l式中:l是矩形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 圆形波导管的截止频率:f c=17.6×109 /d式中:d是圆形波导管的内直径,单位是cm,f c的单位是Hz。 六角形波导管的截止频率:f c=15×109 /w式中:w是六角形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 截止波导管的吸收损耗:落在波导管频率截止区内的电磁波穿过波导管时,会发生衰减,这种衰减称为截止波导管的吸收损耗,截止波导管的吸收损耗计算公式如下 A=1.8×f c×t×10-9(1-(f/f c)2)1/2(dB) 式中:t是截止波导管的长度,单位是cm,f 是所关心信号的频率(Hz),f c是截止波导管截止频率(Hz)。如果所关心的频率f远低于截止波导管截止频率(f﹤f c/5),则公式化简为:A=1.8×f c×l×10-9 (dB) 圆形截止波导管:A=32t/d(dB) 矩形(六角形)截止波导管: A=27t/l (dB) 从公式中可以看出,当干扰的频率远低于波导管的截止频率使,若波导管的长度增加一个截面最大尺寸,则损耗增加将近30分贝。 截止波导管的总屏蔽效能:截止波导管的屏蔽效能由吸收损耗部分加上前面所讨论的孔洞的屏蔽效能不能满足屏蔽要求时,就可以考虑使用截止波导管,利用截止波导管的深度提供的额外的损耗增加屏蔽效能。 16. 截止波导管的注意事项与设计步骤 1)绝对不能使导体穿过截止波导管,否则会造成严重的电磁泄漏,这是一个常见的错误。 2)一定要确保波导管相对于要屏蔽的频率处于截止状态,并且截止频率要远高于(5倍以上)需要屏蔽的频率。设计截止波导管的步骤如下所示: A) 确定需要屏蔽的最高频率F max和屏蔽效能SE B) 确定截止波导管的截止频率F c,使f c≥5F max C) 根据F c,利用计算F c的方程计算波导管的截面尺寸d D) 根据d和SE,利用波导管吸收损耗公式计算波导管长度t 说明: 在屏蔽体上,不同部分的结合处形成的缝隙会导致电磁泄漏。因此,在结构设计中,可以通过增加不同部分的重叠宽度来形成一系列“截止波导”,减小缝隙的电磁泄露。这时,截止波导的截面最大尺寸可

电磁屏蔽技术基础知识

Thalez Group 电磁屏蔽技术基础知识

目录 1.电磁屏蔽的目的 2.区分不同的电磁波 3.度量屏蔽性能的物理量——屏蔽效能 4.屏蔽材料的屏蔽效能估算 5.影响屏蔽材料的屏蔽效能的因素 6.实用屏蔽体设计的关键 7.孔洞电磁泄漏的估算 8.减少缝隙电磁泄漏的措施 9.电磁密封衬垫的原理 10.电磁密封衬垫的选用 11.常用电磁密封衬垫的比较 12.电磁密封衬垫使用的注意事项 13.电磁密封衬垫的电化学腐蚀问题 14.与衬垫性能相关的其它环境问题 15.截止波导管的概念与应用 16.截止波导管的注意事项与设计步骤 17.面板上的显示器件的处理 18.面板上的操作器件的处理 19.通风口的处理 20.线路板的局部屏蔽 21.屏蔽胶带的作用和使用方法

电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰。另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰。电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰。在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。 一.电磁屏蔽的目的 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波和平面波。 电磁波的波阻抗ZW 定义为: 电磁波中的电场分量E与磁场分量H的比值: ZW = E / H 电磁波的波阻抗与电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。 距离辐射源较近时,波阻抗取决于辐射源特性。若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波。若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波。 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高。 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意。例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽。 二. 区分不同的电磁波

电磁屏蔽材料的研究与发展展望

电磁屏蔽材料的研究与发展展望 ******** *** 摘要:电磁屏蔽是对干扰源或感受器(敏感设备、电路或组件)进行屏蔽,能有效地抑制干扰并提高电子系统或设备的电磁兼容性。因此屏蔽是电子设备结构设计时必须考虑的重要内容之一,是利用屏蔽体阻止或减少电磁能量传输的一种措施,是抑制电磁干扰最有效的手段。本文简述了研究电磁屏蔽材料的重要意义与屏蔽机制,讨论了电磁屏蔽金属材料的发展趋势。 关键词:电磁屏蔽;屏蔽材料;屏蔽机制;屏蔽效能 引言:随着电子工业的发展和电子设备的高度应用,电磁辐射被认为是继水污染、噪音污染、空气污染的第四大公害,它造成的电磁干扰不仅影响人们的正常生活,而且日益威胁国家的军事机密。尤其是在软杀伤武器——电磁波突现的现代化战场上,当电磁波穿透军事设备的敏感器件时,可能致使对方雷达迷茫、无线电通讯指挥系统失效、导弹火炮等武器失控。这种破坏力极大的电磁武器可能成为未来战场上重要的作战手段,因此,研究高性能的电磁屏蔽材料以提高各种武器平台的防护能力是各国军事领域的一项重大任务。此外,电磁辐射也给人们的身体健康带来了严峻的挑战。各种通讯设备、网络以及家用电器所发射的电磁波可能诱发各种疾病,如睡眠不足、头晕、呕吐,严重的甚至可能诱发癌症、心血管病等。因此,电磁屏蔽材料的研究开发是近年来治理电磁环境的重要方法。 常用的电磁屏蔽材料有金属材料和高分子复合材料等。金属类材料能够作为主要的电磁屏蔽材料是由于其具有良好的导电性(铜、铝、镍等)和较高的磁导率(坡莫合金、铁硅合金等), 当电磁能流通过金属材料时,其主要的屏蔽机制(反射衰减R 和吸收衰减A)能够有 效地反射、吸收电磁波,衰减电磁能量,从而达到较好的屏蔽效果。大多数高分子材料的导电性能较金属差,这在很大程度上降低了高分子材料的电磁屏蔽效能。因此,为了提高高分

电磁屏蔽基本原理

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

PCB电磁屏蔽详解

PCB电磁屏蔽详解 电磁兼容中的屏蔽技术 屏蔽是利用屏蔽体来阻挡或减少电磁能传输的一种重要的防护手段。屏蔽技术用来抑制电磁噪声沿着空间的传播,即切断辐射电磁噪声的传播途径,通常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的“场”相互隔离。 屏蔽作为电磁兼容控制的重要手段,可以有效的抑制电磁干扰。电磁干扰能量通过传导性耦合和辐射性耦合来进行传输。为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI 滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。目前的各种电子设备,尤其是军用电子设备,通常都采用屏蔽技术解决电磁兼容中的问题。 屏蔽按其机理可分为电场屏蔽,磁场屏蔽和电磁屏蔽。 电场屏蔽 电场的屏蔽是为了抑制寄生电容耦合(电场耦合) , 隔离静电或电场干扰。 寄生电容耦合: 由于产品内的各种元件和导线都具有一定电位, 高电位导线相对的低电位导线有电场存在, 也即两导线之间形成了寄生电容耦合。通常把造成影响的高电位叫感应源, 而被影响的低电位叫受感器。实际上凡是能幅射电磁能量并影响其它电路工作的都称为感应源(或干扰源),而受到外界电磁干扰的电路都称为受感器。

静电防护的方法:建立完善的屏蔽结构,带有接地的金属屏蔽壳体可将放电电流释放到地;内部电路如果要与金属外壳相连时,要用单点接地,防止放电电流流过内部电路;在电缆入口处增加保护器件;在印制板入口处增加保护环(环与接地端相连)。 磁场屏蔽 磁场屏蔽是抑制噪声源和敏感设备之间由于磁场耦合所产生的干扰。磁场屏蔽主要是依赖高导磁材料所具有的低磁阻对磁通起到分路的作用,使得屏蔽体内部的磁场大大减弱。如图8-14所示 图4磁场的被动屏蔽 图8-14 磁场屏蔽 射频磁屏蔽是利用良导体在入射高频磁场作用下产生涡流,并由 涡流的反磁通抑制入射磁场。常用屏蔽材料有铝、铜及铜镀银等。 电磁屏蔽 电磁屏蔽是解决电磁兼容问题的重要手段之一,大部分电磁兼容问题都可以通过电磁屏蔽来解决。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需对电路做任何修改。

电磁屏蔽原理及应用

电磁屏蔽的原理及应用 摘要:阐述了电磁屏蔽材料的屏蔽原理。介绍了电磁屏蔽材料的发展现状,其中较为详细地介绍了表层导电型屏蔽材料以及填充复合型屏蔽材料。 关键词:电磁屏蔽,危害,屏蔽原理,研究现状 AbStraCt The harms of electromagnetic radiation to electric equipment, fuel, animals and human were intoduced, andthe mechanism of electromagnetic shielding materials and its development was summarized. Key words electromagnetic radiation, shielding, harm, mechanism, development 近几十年来,随着各种电器的普及,电子计算机、通讯卫星、高压输电网和一些医用设备等的广泛应用,由此带来的电磁辐射污染也越来越严重。为此,必须进行电磁屏蔽。 1、电磁屏蔽原理 电磁屏蔽,实际上是为了限制从屏蔽材料的一侧空间向另一侧空间传递电磁能量。电磁波传播到达屏蔽材料表面时,通常有3种不同机理进行衰减:一是在入射表面的反射衰减;二是未被反射而进入屏蔽体的电磁波被材料吸收的衰减;三是在屏蔽体部的多次反射衰减。电磁波通过屏蔽材料的总屏蔽效果可按下式计算: SE=R+A+B (1) 式中:SE为电磁屏蔽效果,dB; R为表面单次反射衰减;A为吸收衰减;B为部多次

反射衰减(只在A<15dB情况下才有意义)。 一般来说,电屏蔽材料衰减的是高阻抗的电场,屏蔽作用主要由表面反射R 来决定,吸收衰减A则不是主要的。所以,电屏蔽可以用比较薄的金属材料制作;而磁屏蔽体的衰减主要由吸收衰减A决定,反射衰减R不是主要的。根据电磁学的有关知识,可分别得出A, R, B的计算公式: (2) A与电磁波的类型(电场或磁场)无关,只要电磁波通过屏蔽材料就有吸收,它与材料厚度成线性增加,并与材料的电导率及磁导率有关。 反射衰减R不仅与材料的表面阻抗有关,同时也与辐射源的类型及屏蔽体到辐射源的距离有关。对于远场源(平面波辐射源): (3) 对于近场源: 磁场: (4) 电场 (5) 金属屏蔽材料一般都比较薄,A也比较小,通常考虑部多次反射衰减B。在此情况下,部多次反射衰减B。在此情况下,部反射甚至可以发生多次, 形成多次反射。用“多次反射修正项”B来表示这种衰减。 对于近场源:

EMI电磁屏蔽原理-导论

在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。 屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。 屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效 能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强1(1)和加入屏 蔽体后,辐射干扰源传输到空间同一点(P)的场强2(2)之比,用dB(分贝)表示。 图1 屏蔽效能定义示意图 屏蔽效能表达式为(dB) 或(dB)

工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源。由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的远近场及波阻抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。 图2 两类基本源在空间所产生的叠加场 远近场的划分是根据两类基本源的场随1/r(场点至源点的距离)的变化而确定的, 为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同。 表1 两类源的场与传播特性 波阻抗为空间某点电场强度与磁场强度之比,场源不同、远近场不同,则波阻抗 也有所不同,表2与图3分别用图表给出了的波阻抗特性。

电磁屏蔽分析和应用

电磁兼容课程论文 题目名称:电磁屏蔽技术 院系名称:电子信息学院 班级:测控112 学号:201100454217 学生姓名:白凡 指导教师:魏平俊 2014年5月

摘要:随着电子产品的广泛应用以及电磁环境污染的加重,对电磁兼容性设 计的要求也越来越高,作为电磁兼容设计的主要技术之一——屏蔽技术的 研究也就愈显得重要。本文从电磁屏蔽技术原理出发,讨论了屏蔽体结构、 屏蔽技术分类、屏蔽材料的选择以及所要遵循的原则,在电子设备实施具 体的电磁屏蔽时提供了重要的依据。同时分析了电磁干扰形成的危害,介 绍了工程上解决电磁干扰问题的几种常用方法。 关键词:电磁屏蔽电磁干扰屏蔽技术 Abstract:With the wide application of electronic products as well as the electromagnetic environment pollution is aggravating, more and more is also high to the requirement of electromagnetic compatibility design, as one of the main technology of emc design - shielding technology research is more important.Based on principle of electromagnetic shielding technology, this paper discusses the structure of the shield, shielding the technical classification, the selection of shielding materials and to follow the principle of the electronic equipment to implement specific provides an important basis for electromagnetic shielding.At the same time analyzes the harm of electromagnetic interference, this paper introduces the engineering several commonly used methods to solve the problem of electromagnetic interference. Keywords: Electromagnetic shielding, Electromagnetic interference, Shielding technology

常见的电磁屏蔽材料有哪些

常见的电磁屏蔽材料有哪些? 电磁屏蔽即利用屏蔽材料阻隔或衰减被屏蔽区域与外界的电磁能量传播。电磁屏蔽的作用原理是利用屏蔽体对电磁能流的反射、吸收和引导作用,其与屏蔽结构表面和屏蔽体内部感生的电荷、电流与极化现象密切相关。屏蔽按其原理分为电场屏蔽(静电屏蔽和交变电场屏蔽)、磁场屏蔽(低频磁场和高频磁场屏蔽)和电磁场屏蔽(电磁波的屏蔽)。通常所说的电磁屏蔽是指后一种,即对电场和磁场同时加以屏蔽。 屏蔽效果的好坏用屏蔽效~g(SE,Shielding effectiveness)来评价,它表现了屏蔽体对电磁波的衰减程度。屏蔽效能定义为屏蔽前后该点电磁场强度的比值,即:SE=2OIg(Eo/Es)或SH=2Olg(HdHs)式中:、分别为屏蔽前该点的电场强度与磁场强度,、分别为屏蔽后该点的电场强度与磁场强度。对屏蔽效果的评价是根据屏蔽效能的大小度量的。 按照屏蔽作用原理,屏蔽体对屏蔽效能的贡献分为3部分:(1)屏蔽体表面因阻抗失配引起的反射损耗;(2)电磁波在屏蔽材料内部传输时,电磁能量被吸收引起传输损耗或吸收损耗;(3)电磁波在屏蔽材料内壁面之间多次反射引起的多次反射损耗。由此可以得到影响材料屏蔽效能的3个基本因素,即材料的电导率、磁导率及材料厚度。这也是屏蔽材料研究本身所必须关注的问题和突破口。当然,对于电磁屏蔽体结构,其屏蔽效能还与结构、形状、气密性等有关,对于具体问题,还需要考虑被屏蔽的电磁波频率、场源性质等。○1□a 常见的屏蔽材料

电屏蔽指的是对电场(E场)的屏蔽,它通常可选用的屏蔽材料种类比较多,如下: 1一、导电弹性体衬料(导电橡胶) 每种导电橡胶都是由硅酮、硅酮氟化物、EPDM或者碳氟化物-硅氟化物等粘合剂及纯银、镀银铜、镀银铝、镀银镍、镀银玻璃、镀银铅或炭颗粒等导电填料组成。 由于这些材料含有银,包装和存储条件应与其他含银元件相似,它们应当存储在塑料板中,例如聚酯或者聚乙烯,远离含硫材料。标准形状有:实体O形条、空心O形条、实体D形条、空心D形条、U行条、矩形条、中空矩形条、中空P形条、通道条以及模制导电橡胶成形件、模制的D-形圈/O-形圈、各种法兰、I/O衬垫。 特点:在20M-20GHz的范围内可达90 dB-120dB,纯银颗粒的甚至可达到120dB以上。能起到屏蔽和环境密封的作用,安装方便,适用于通讯、医疗、军品、航空等场合。 二、EMI导电泡棉衬料 导电泡棉是把导电编制套缠绕在采用聚氨基甲酸乙脂或EPDM构成的泡绵芯上,导电编制套通常是由镀银镍尼龙、铝泊或者Monel丝(镍铜合金)Ferrex(镀锡包铜钢丝)组成,有良好的导电性。符合阻燃等级(UL94-V0),具有好的 弹性和柔韧性等机械性能。导电泡棉衬垫具有良好的屏蔽性能,遇到电波时,则会根据其物体的性质而进行反射、吸收、提供极佳的屏蔽效果。并且具有极高的性价比,是目前最新的、也是应用最广的

金属网屏蔽电磁波原理

金属网可以屏蔽电磁波传播的原理是什么? 首先,不是衍射。 我们都做过直流电路实验,导线就是金属,也就谈不上屏蔽(静电屏蔽是指接地 金属罩,屏蔽静电场)。电磁波辐射,是关于时变电磁场的问题,导体对其影响大不相同 如果利用趋肤效应,解释的实际上是金属板屏蔽电磁场原理。 ?对于一个金属板(良导体),电磁波从一面辐射而来,大部分能量被反射,小部分能量进入金属,该电磁波会随进入金属的深度成e指数衰减(能量转化为表面电流),当金属层过薄时,电磁波就会穿透金属层继续传播。对于同一频率电磁波,电导率越高,衰减越快。对于相同金属材料,电磁波频率越高,衰减越快。 ?定义:趋肤深度,电磁波传输一个趋肤深度的距离后,振幅衰减到原来的 36.8%,能量衰减到13.5%。对于相同金属材料,电磁波频率越高,趋肤深度越 小。 ?例:10GHz电磁波。银,电导率 6.173e7(S/m),趋肤深度6.4e-7(m),即0.64微米;1GHz电磁波,趋肤深度20.24e-7(m),即2.24微米。【1】 那么,同材料的金属板,频率越高,趋肤深度越小,对辐射防御能力是越强

回归正题,金属网屏蔽电磁场原理,(趋肤效应解释波导也有用到,不是重点)先说矩形波导,四壁是金属,电磁波在波导中的介质中传播。金属网实际上就是下图中许许多多的矩形波导叠放组合在一起,z方向长度再缩短些就 是了。 为何电磁波不会从金属网的窟窿中穿透呢?对于金属网,每一个网孔都是一个波导。借用光的粒子说,电磁波像弹球一样,进入网孔波导后,来回在金属壁上反弹,曲折前进。【2】 ?为满足金属壁这一边界条件下的Maxwell方程,对于相同规格的矩形波导,频率越低(波长越大),theta越大;当波长大于等于截止波长时,theta=90。,电磁波只上下弹跳,不前进了。 ?截止波长=2a (a为上上图中的矩形波导长边),若孔径指半径,孑L径=a/2,则波长大于4倍孔径的电磁波就会被屏蔽。“金属网孔形式若为矩形整齐排列,金属网孔径小于电磁波波长的1/4时,则电磁波不能透过金属网”有相当

电磁屏蔽技术和电磁场屏蔽分析

电磁屏蔽技术和电磁场屏蔽分析-电场屏蔽-磁场屏蔽 电磁屏蔽是解决电磁兼容问题的重要手段之一.大部分电磁兼容问题都可以通过电磁屏蔽来解决.用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改. 1 选择屏蔽材料 屏蔽体的有效性用屏蔽效能来度量.屏蔽效能是没有屏蔽时空间某个位置的场强E1与有屏蔽时该位置的场强E2的比值,它表征了屏蔽体对电磁波的衰减程度.用于电磁兼容目的的屏蔽体通常能将电磁波的强 度衰减到原来的百分之一至百万分之一,因此通常用分贝来表述屏蔽效能,这时屏蔽效能的定义公式为: SE = 20 lg ( E1/ E2 ) (dB) 用这个定义式只能测试屏蔽材料的屏蔽效能,而无法确定应该使用什么材料做屏蔽体.要确定使用什么材料制造屏蔽体,需要知道材料的屏蔽效能与材料的什么特性参数有关.工程中实用的表征材料屏蔽效能的公式为: SE = A + R (dB) 式中的A称为屏蔽材料的吸收损耗,是电磁波在屏蔽材料中传播时发生的,计算公式为: A=3.34t(fμrσr) (dB) t = 材料的厚度,μr = 材料的磁导率,σr = 材料的电导率,对于特定的材料,这些都是已知的.f = 被屏蔽电磁波的频率. 式中的R称为屏蔽材料的反射损耗,是当电磁波入射到不同媒质的分界面时发生的,计算公式为: R=20lg(ZW/ZS) (dB) 式中,Zw=电磁波的波阻抗,Zs=屏蔽材料的特性阻抗. 电磁波的波阻抗定义为电场分量与磁场分量的比值:Zw = E / H.在距离辐射源较近(<λ/2π,称为近场区)时,波阻抗的值取决于辐射源的性质、观测点到源的距离、介质特性等.若辐射源为大电流、低电压(辐射源电路的阻抗较低),则产生的电磁波的波阻抗小于377,称为低阻抗波,或磁场波.若辐射源为高电压,小 电流(辐射源电路的阻抗较高),则波阻抗大于377,称为高阻抗波或电场波.关于近场区内波阻抗的具体计算公式本文不予论述,以免冲淡主题,感兴趣的读者可以参考有关电磁场方面的参考书.当距离辐射源较远 (>λ/2π,称为远场区)时,波波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω. 屏蔽材料的阻抗计算方法为: |Z S|=3.68×10-7(fμr/σr) (Ω)

电磁屏蔽性结构设计规范

《电磁屏蔽性结构设计规范》摘录 一.定义:在有屏蔽体时,被屏蔽空间内某点的场强与没有屏蔽体时该点场强的比值。以dB为单位表示 ;一般低频段比高频段高10~15,也可写成30~1000MHz:20 dB。

四.紧固方式 缝隙搭边深度值超过30mm时,作用不明显;推荐缝隙搭边深度:15~25mm。 五.局部开孔 定义:数量不多的开孔 根据经验:开口最大尺寸小于电磁波波长的1/20时,屏蔽效能20 dB;开口最大尺寸小于电磁波波长的1/50时,屏蔽效能30 dB。 例如:屏蔽效能为20 dB/1GHz时,局部开孔的最大尺寸应小于15mm。 一.提高缝隙的屏蔽效能可采取以下几种措施:增加缝隙深度、减小缝隙的最大长度尺寸、减小缝隙中紧固点的间距、增强基材的刚性和表面光洁度。 二.影响穿孔金属板屏蔽效能的最大因素是开孔的最大尺寸,其次是孔深,影响最小的是孔间距。 三.针对电缆穿透问题,可采取:在电缆出屏蔽体时增加滤波,或采用屏蔽电缆,同时屏蔽电缆屏蔽层与屏蔽体之间要良好电接触。 四.屏蔽方案 1.机柜屏蔽:成本较高,由于缺陷较多,屏蔽效能一般不能做到太高。 2.插箱/子架屏蔽:对于屏蔽电缆的接地和增加滤波都比较方便,适合大量出线的产品。 3.单板/模块屏蔽:结构复杂,成本较高,对散热不利。 4.单板局部屏蔽:在无线产品中较常见,主要通过安装屏蔽盒实现,实现较容易。 原则上,最靠近辐射源的屏蔽措施是最有效和最经济的;一般说,屏蔽需求导致结构件成本增加10%~20%左右。 五.缝隙屏蔽设计 1.紧固点连接缝隙 屏蔽效能最主要的影响因素是缝隙的最大尺寸和缝隙深度,减小紧固点间距、增加连接零件刚性。 2.增加缝隙深度 单排紧固时缝隙深度超过30mm后屏蔽效能差别就不明显,一般推荐值为15~25mm。增加缝隙深度可采取一些迷宫或嵌入式结构,或采用双排紧固点方式(最好将两排紧固点错开分布)。 3.紧固点间距 下表是按照DKBA0.460.0031屏蔽效能测试方法得出的单排紧固点缝隙在不同间距下的屏蔽效能,测试样品T=1.5mm,大小600×600mm。在选择紧固点间距时应该参照该表推荐数据,并根据实际结构形式进行一定的调整5~10mm。

电磁屏蔽基本原理

电磁屏蔽基本原理标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

电磁屏蔽的几大技术解析

电磁屏蔽的几大技术解析 1.电磁屏蔽的目的 电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰。另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰。电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰。在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。 2.区分不同的电磁波 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波、和平面波。 电磁波的波阻抗ZW定义为:电磁波中的电场分量E与磁场分量H的比 值:ZW=E/H 电磁波的波阻抗电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。 距离辐射源较近时,波阻抗取决于辐射源特性。若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波。若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波。 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。 电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高。 注意:近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意。例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽。 3.度量屏蔽性能的物理量——屏蔽效能 屏蔽体的有效性用屏蔽效能(SE)来度量。屏蔽效能的定义如下: SE=20lg(E1/E2)(dB)

电磁屏蔽门

赛科门控 电磁屏蔽门材料选择 选择使用什么种类电磁密封衬垫时要考虑四个因素:屏蔽效能要求、有无环境密封要求、安装结构要求、成本要求。按机理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽。 2 磁场屏蔽 磁场屏蔽通常是指对直流或低频磁场的屏蔽,其效果比电场屏蔽和电磁场屏蔽要差的多。【屏蔽机理】:主要是依靠高导磁材料所具有的低磁阻,对磁通起着分路的作用,使得屏蔽体内部的磁场大为减弱。【设计要点】: a、选用高导磁材料,如坡莫合金; b、增加屏蔽体的厚度;以上均是为了减小屏蔽体的磁阻; c、被屏蔽的物体不要安排在紧靠屏蔽体的位置上,以尽量减小通过被屏蔽物体体内的磁通; d、注意屏蔽体的结构设计,凡接缝、通风空等均可能增加屏蔽体的磁阻,从 而降低屏蔽效果。 e、对于强磁场的屏蔽可采用双层磁屏蔽体的结构。 对要屏蔽外部强磁场的,则屏蔽体的外层选用不易饱和的材料,如硅钢;而内 部可选用容易达到饱和的高导磁材料,如坡莫合金等。 反之,如果要屏蔽内部强磁场时,则材料的排列次序要到过来。 在安装内外两层屏蔽体时,要注意彼此间的绝缘。当没有接地要求时,可用绝 缘材料做支撑件。若需接地时,可选用非铁磁材料(如铜、铝)做支撑件。 3 电磁场屏蔽电磁场屏蔽是利用屏蔽体阻止电磁场在空间传播的一种措施。 【电磁场屏蔽的机理】: a、当电磁波到达屏蔽体表面时,由于空气与金属的交界面上阻抗的不连续,对入射波产生的反射。这种反射不要求屏蔽材料必须有一定的厚度,只要求交界面上的不连续; b、未被表面反射掉而进入屏蔽体的能量,在体内向前传播的过程中,被屏蔽材料所衰减。也就

是所谓的吸收; c、在屏蔽体内尚未衰减掉的剩余能量,传到材料的另一表面时,遇到金属-空气阻抗不连续的交界面,会形成再次反射,并重新返回屏蔽体内。这种反射在两个金属的交界面上可能有多次的反射。总之,电磁屏蔽体对电磁的衰减主要是基于电磁波的反射和电磁波的吸收。 【吸收损耗】不同的材料、不同的材料厚度对于电磁波的吸收效果不一样.可根据材料吸收损耗的列线图得出。【反射损耗】分为三类:低阻抗磁场、高阻抗电场、平面波场。 其中低阻抗磁场和高阻抗电场的反射损耗列线图计算方法相同,与金属材料、频率及辐射源到屏蔽体的距离有关。 对于平面波,波阻抗为一常数,而与辐射源到屏蔽体的距离无关,在列线图中只需连接金属材料和感兴趣的频率就可求出此时的反射损耗值。 4 实际的电磁屏蔽体【结构材料】 a、适用于底板和机壳的材料大多数是良导体,如铜、铝等,可以屏蔽电场,主要的屏蔽机理是反射信号而不是吸收。 b、对磁场的屏蔽需要铁磁材料,如高导磁率合金和铁。主要的屏蔽机理是吸收而不是反射。 c、在强电磁环境中,要求材料能屏蔽电场和磁场两种成分,因此需要结构上完好的铁磁材料。屏蔽效率直接受材料的厚度以及搭接和接地方法好坏的影响。 d、对于塑料壳体,是在其内壁喷涂屏蔽层,或在汽塑时掺入金属纤维。 必须尽量减少结构的电气不连续性,以便控制经底板和机壳进出的泄漏辐射。提高缝隙屏蔽效能的结构措施包括增加缝隙深度,减少缝隙长度,在结合面上加入导电衬垫,在接缝处涂上导电涂料,缩短螺钉间距离等。 【搭接】 a、在底板和机壳的每一条缝和不连续处要尽可能好的搭接。最坏的电搭接对壳体的的屏蔽效

相关文档
最新文档