不定积分公式大全 基本公式有哪些

不定积分公式大全 基本公式有哪些

不定积分公式大全基本公式有哪些

inx + C

∫ sinx dx = - cosx + C

∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

∫ tanx dx = - ln|cosx| + C = ln|secx| + C

∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C

∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C

∫ sec (x) dx = tanx + C

∫ csc (x) dx = - cotx + C

∫ secxtanx dx = secx + C

∫ cscxcotx dx = - cscx + C

∫ dx/(a + x ) = (1/a)arctan(x/a) + C

∫dx/√(a- x ) = arcsin(x/a) + C

∫dx/√(x+ a ) = ln|x + √(x+ a )| + C

∫dx/√(x- a ) = ln|x + √(x- a )| + C

∫√(x- a ) dx = (x/2)√(x- a ) - (a /2)ln|x + √(x- a )| + C

∫√(x+ a ) dx = (x/2)√(x+ a ) + (a /2)ln|x + √(x+ a )| + C

∫√(a- x ) dx = (x/2)√(a- x ) + (a /2)arcsin(x/a) + C

不定积分的基本公式有哪些

不定积分公式大全

Ch4、不定积分 §1、不定积分的概念与性质 1、 原函数与不定积分 定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。 ① 连续函数一定有原函数; ② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()('' x f x F C x F ==+ ③ )(x f 的任意两个原函数仅相差一个常数。 事实上,由[]0)()()()()()('2'1' 11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21 故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。 定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为?dx x f )(,?-积分号,-)(x f 被积函数,-x 积分变量。 显然C x F dx x f +=?)()( 例1、 求下列函数的不定积分 ①?+=C kx kdx ②??? ???-=+-≠++=+1 ln 11 1 1μμμμμ C x C x dx x 2、 基本积分表(共24个基本积分公式) 3、 不定积分的性质 ①[]???±=±dx x g dx x f dx x g x f )()()()( ②??≠=)0()()(k dx x f k dx x kf 例2、 求下列不定积分 ①? ?+-=++-==+--C x C x dx x x dx 11)2(11 )2(22

②? ?+=++-= =+--C x C x dx x x dx 21 )21(1 1)21(21 ③?+-=??? ? ??+--C x x dx x x arctan 3arcsin 5131522 ⑤()???++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2 ⑥????++-=+=+=C x x xdx xdx dx x x x x x x dx tan cot sec csc cos sin cos sin cos sin 2 2222222 ⑦() ??+--=-=C x x dx x dx x cot 1 csc cot 22 §2、不定积分的换元法 一、 第一类换元法(凑微分法) 1、()()()()b ax d a dx b ax d b ax f a dx b ax f +=++= +??1 ,1即 例1、求不定积分 ①()C x udu u x x xd xdx +-===???)5cos(5 1 sin 51555sin 515sin ②()()()()??+--=+-+? -=---=-+C x C x x d x dx x 8177 72116 12117121)21(212121 ③())20(arctan 111222C a x a a x a x d a x a dx +?? ? ??=+=+?? ④()() )23(arcsin 12 2 2 C a x a x a x d x a dx +?? ? ??=-=-? ? 2、()()n n n n n n dx dx x dx x f n dx x x f == --??11,1 即 例2、求不定积分 ①( )() () () C x C x x d x dx x x +--=+-+?-=---=-+??2 32 12 12 212 2 12 2 13 1 11 121112 1 1

不定积分的基本公式和运算法则直接积分法

·复习 1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ·讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。 求函数的不定积分的方法叫积分法。 例1.求下列不定积分.(1)dx x ?2 1 (2) dx x x ? 解:(1) dx x ? 21 =2121 21x x dx C C x -+-=+=-+-+? (2)dx x x ? =C x dx x +=? 25 235 2 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α 的形式,然后应用幂函 数的积分公式求积分。 二 不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 dx x g dx x f dx x g x f ???±=±)()()]()([ 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 dx x f k dx x kf ??=)()( (0≠k ) 例2 求3(21)x x e dx +-? 解 3(21)x x e d x +-?=23x dx ?+dx ?-x e dx ? = 4 12 x x x e C +-+。 注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于41()2 x x x e C '+-+=321x x e +-,所以结果是正确的。 三 直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。 例3 求下列不定积分. (1) 1)(x dx ? (2)dx x x ?+-1 122 解:(1)首先把被积函数 1)()x 化为和式,然后再逐项积分得 1)((1x dx x dx - =+-- ??

不定积分最全公式

常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx d x=shx+c; 19) ∫thx dx=ln(chx)+c; 1.∫adx = ax+C (a 为常数) 2.∫sin(x)dx = -cos(x)+C 3.∫cos(x)dx = sin(x)+C 4.∫tan(x)dx = -log e |cos(x)|+C = log e |sec(x)|+C

5. ∫cot(x)dx = log e |sin(x)|+C 6. ∫sec(x)dx = log e |sec(x)+tan(x)|+C 7. ∫sin 2(x)dx = 1 (x-sin(x)cos(x))+C 2 = 1 x - 1 sin(2x)+C 2 4 9. ∫cos 2(x)dx = 1 (x+sin(x)cos(x))+C 2 = 1 x + 1 sin(2x)+C 2 4 11.∫tan 2(x)dx = tan(x)-x+C 12.∫cot 2(x)dx = -cot(x)-x+C 13.∫sin(ax)sin(bx)dx = sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b) 14.∫sin(ax)co s(bx)dx = - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b) 15.∫cos(ax)cos(bx)dx = sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b) 16.∫xsin(x)dx = sin(x)-xcos(x)+C 17.∫xcos(x)dx = cos(x)+xsin(x)+C 18.∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C 19.∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C 20.∫e x dx = e x +C 21. ∫ a dx = a log |x| (a 为常数) x

不定积分最全公式

不定积分最全公式-CAL-FENGHAI.-(YICAI)-Company One1

常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2)dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2)dx=arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c; 1.∫adx = ax+C (a 为常数) 2.∫sin(x)dx = -cos(x)+C 3.∫cos(x)dx = sin(x)+C 4.∫tan(x)dx = -log e|cos(x)|+C = log e|sec(x)|+C

5. ∫cot(x)dx = log e |sin(x)|+C 6. ∫sec(x)dx = log e |sec(x)+tan(x)|+C 7. ∫sin 2(x)dx = 1 (x-sin(x)cos(x))+C 2 = 1 x - 1 sin(2x)+C 2 4 9. ∫cos 2(x)dx = 1 (x+sin(x)cos(x))+C 2 = 1 x + 1 sin(2x)+C 2 4 11. ∫tan 2(x)dx = tan(x)-x+C 12. ∫cot 2(x)dx = -cot(x)-x+C 13. ∫sin(ax)sin(bx)dx = sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b) 14. ∫sin(ax)cos(bx)dx = - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b) 15. ∫cos(ax)cos(bx)dx = sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b) 16. ∫xsin(x)dx = sin(x)-xcos(x)+C 17. ∫xcos(x)dx = cos(x)+xsin(x)+C 18. ∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C 19. ∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C 20. ∫e x dx = e x +C 21. ∫a dx = a log |x| (a 为常数) x

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

不定积分公式大全 基本公式有哪些

不定积分公式大全基本公式有哪些 inx + C ∫ sinx dx = - cosx + C ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C ∫ tanx dx = - ln|cosx| + C = ln|secx| + C ∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C ∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C ∫ sec (x) dx = tanx + C ∫ csc (x) dx = - cotx + C ∫ secxtanx dx = secx + C ∫ cscxcotx dx = - cscx + C ∫ dx/(a + x ) = (1/a)arctan(x/a) + C ∫dx/√(a- x ) = arcsin(x/a) + C ∫dx/√(x+ a ) = ln|x + √(x+ a )| + C ∫dx/√(x- a ) = ln|x + √(x- a )| + C ∫√(x- a ) dx = (x/2)√(x- a ) - (a /2)ln|x + √(x- a )| + C ∫√(x+ a ) dx = (x/2)√(x+ a ) + (a /2)ln|x + √(x+ a )| + C ∫√(a- x ) dx = (x/2)√(a- x ) + (a /2)arcsin(x/a) + C 不定积分的基本公式有哪些

不定积分基本公式

第二节 不定积分的基本公式和直接积分法(Basic Formula of Undefined Integral and Direct Integral ) 课 题:1. 不定积分的基本公式 2. 不定积分的直接积分法 课堂类型:讲授 教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。 教学重点:不定积分的基本公式 教学难点: 直接积分法 教 具:多媒体课件 教学方法: 教学内容: 一、不定积分的基本公式 由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。 导数的基本公式 ( )1222()01 ()1()()ln 1(ln )(sin )cos (cos )sin (tan )sec (cot )csc (sec )sec tan (csc )csc cot (arcsin )1 (arctan )1(arccos )1 (cot )1x x x x C x x x e e a a a x x x x x x x x x x x x x x x x x x x x arc x ααα+'='='=+'='='='='=-'='=-'='=-'= '= +'='=- +21 (log )ln a x x x a '= 不定积分的基本公式 ( ) 1 22 2011ln ln ||cos sin sin cos sec tan csc cot sec tan sec csc cot csc arcsin arctan 1x x x x dx C dx x C x x dx C a e dx e C a a dx C a dx x C x xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x C x C dx x C x αα α+==+=+≠-+=+=+=+=+=-+=+=-+=+=-+=+=++????????????? ?2arccos arc cot 11 log ln a x C dx x C x dx x C x a =-+=-++=+???

不定积分的基本公式

不定积分的基本公式 The Standardization Office was revised on the afternoon of December 13, 2020

不定积分 一. 求不定积分与求导数或微分互为逆运算。( 'F )()(x f x = 或 dx x f x dF )()(= ?+=C x F x d x f )()()( ) 1. [] ' )(?dx x f ' )(x f = 或 ?=dx x f dx x f d )()( 2. ?'F C x F dx x +=)()( 或 C x F x dF +=?)()( 3. ??=dx x f a dx x af )()( )0(≠a 二.基本积分公式 1. ?+=C kx kdx 是常数)k ( 2. ?n x 1 1+=+n x dx n C + )1(-≠n 3. C x x dx +=? ||ln 4. C x x dx +=+?arctan 12 5. C x x dx +=-? arcsin 12 6. ?+=C x xdx sin cos 7. ?+-=C x xdx cos sin 8. C x xdx x dx +==??tan sec cos 2 2 9. ??+-==C x xdx x dx cot csc sin 22 10. ?+=C x xdx x sec tan sec 11. ?+-=C x xdx x csc cot csc 12. C e dx e x x +=? 13. C a a dx a x x +=?ln 14. C x xdx +-=?|cos |ln tan 15. C x xdx +=?|sin |ln cot 16. C x x xdx ++=?|tan sec |ln sec 17. C x x xdx +-=?|cot csc |ln csc 18. C a x a x a dx +=+? arctan 12 2 19. C a x a x a a x dx ++-=-?||ln 212 2 C x a x a a x a dx +-+=-?||ln 2122 20. C a x dx x a +=-?arcsin 122 21. C a x x a x dx +±+=±?||ln 222 2 22. C b ax a dx b ax ++=+?||ln 1 1 23. C x dx x +=?21 24. C x dx x +-=? 112 可能用到的公式: (1) ???+-=+?+-=+1 1111)1(1n dx n dx n dx n n n n (2) 32233 33b ab b a a b a +++=+)( (3)))((2233b ab a b a b a +±=± (4)x x 22sec 1tan =+ x x 22csc 1cot )5(=+ 2 22112cos ,122sin ,tan )8(1 sec cos )7(1csc sin 6t t t t t +-= +===?=?ααααααα则设)(

不定积分的基本公式

不定积分的基本公式 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

不定积分 一. 求不定积分与求导数或微分互为逆运算。('F )()(x f x =或 dx x f x dF )()(=?+=C x F x d x f )()()() 1. [] ' )(?dx x f ' )(x f =或?=dx x f dx x f d )()( 2.?'F C x F dx x +=)()(或C x F x dF +=?)()( 3.??=dx x f a dx x af )()()0(≠a 二.基本积分公式 1.?+=C kx kdx 是常数)k ( 2.?n x 1 1+=+n x dx n C +)1(-≠n 3.C x x dx +=?||ln 4.C x x dx +=+?arctan 12 5.C x x dx +=-? arcsin 12 6.?+=C x xdx sin cos 7.?+-=C x xdx cos sin 8.C x xdx x dx +==??tan sec cos 22 9.??+-==C x xdx x dx cot csc sin 22 10.?+=C x xdx x sec tan sec 11.?+-=C x xdx x csc cot csc 12.C e dx e x x +=? 13.C a a dx a x x +=?ln 14.C x xdx +-=?|cos |ln tan 15.C x xdx +=?|sin |ln cot 16.C x x xdx ++=?|tan sec |ln sec 17.C x x xdx +-=?|cot csc |ln csc 18.C a x a x a dx +=+?arctan 122 19.C a x a x a a x dx ++-=-?||ln 2122 20.C a x dx x a +=-?arcsin 122 21.C a x x a x dx +±+=±?||ln 222 2 22.C b ax a dx b ax ++=+?||ln 1 1 23.C x dx x +=?21 24.C x dx x +-=? 112 可能用到的公式: (1) ???+-=+?+-=+1 1111)1(1n dx n dx n dx n n n n

常用微积分公式大全

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分

下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

分析:将按三次方公式展开,再利用幂函数求积公式. 解: (为任意常数) 例4 求不定积分. 分析:用三角函数半角公式将二次三角函数降为一次. 解: (为任意常数) 例5 求不定积分. 分析:基本积分公式表中只有 但我们知道有三角恒等式: 解:

(完整版)不定积分的基本公式

不定积分 一. 求不定积分与求导数或微分互为逆运算。( 'F )()(x f x = 或 dx x f x dF )()(= ?+=C x F x d x f )()()( ) 1. [] ' )(?dx x f ' )(x f = 或 ?=dx x f dx x f d )()( 2. ?' F C x F dx x +=)()( 或 C x F x dF +=?)()( 3. ??=dx x f a dx x af )()( )0(≠a 二.基本积分公式 1. ?+=C kx kdx 是常数)k ( 2. ?n x 1 1 +=+n x dx n C + )1(-≠n 3. C x x dx +=?||ln 4. C x x dx +=+?arctan 12 5. C x x dx +=-? arcsin 12 6. ?+=C x xdx sin cos 7. ?+-=C x xdx cos sin 8. C x xdx x dx +==??tan sec cos 2 2 9. ??+-==C x xdx x dx cot csc sin 2 2 10. ?+=C x xdx x sec tan sec 11. ?+-=C x xdx x csc cot csc 12. C e dx e x x +=? 13. C a a dx a x x +=?ln 14. C x xdx +-=?|cos |ln tan 15. C x xdx +=?|sin |ln cot 16. C x x xdx ++=?|tan sec |ln sec 17. C x x xdx +-=?|cot csc |ln csc 18. C a x a x a dx +=+?arctan 122 19. C a x a x a a x dx ++-=-?||ln 2122 C x a x a a x a dx +-+=-?||ln 2122 20. C a x dx x a +=-? arcsin 12 2 21. C a x x a x dx +±+=±? ||ln 222 2 22. C b ax a dx b ax ++=+?||ln 11 23. C x dx x +=? 21 24. C x dx x +-=?1 12 可能用到的公式: (1) ???+-=+?+-=+1 1111)1(1n dx n dx n dx n n n n (2) 3 2 2 3 3 33b ab b a a b a +++=+)( (3)))((2 2 3 3 b ab a b a b a +±=±μ (4)x x 2 2 sec 1tan =+ x x 22csc 1cot )5(=+ 2 2 2 112cos ,122sin ,tan )8(1 sec cos )7(1csc sin 6t t t t t +-=+===?=?ααααααα则设)(

几个不定积分的推导公式

常见积分推导公式 一、 二、 C + x-1 + xarcsinx = ) x- d(1 x-1 1 2 1 + xarcsinx = dx ) x- (1 x - xarcsinx = arcsinxdx 2 2 2 2 ? ? ? 三、 C + tanx = - tanx + C + x = dx cosx cosx - tanx + C + x = dsinx cosx 1 - cosx sinx + C + x = cosx 1 sinxd C + x = C + x + dcosx (cosx) sinx - = dx + dx (cosx) (sinx) = dx (cosx) ] (cosx) + [(sinx) = (cosx) dx = dx (secx) 2 2 2 2 2 2 2 2 x ? ? ? ? ? ? ? ? ? ? ? ? ? ? + 四、cscx=1/sinx C x x x) x- d( x) x- ( dx x) x- ( x) x- x( xdx+ - = = =? ? ?cot csc ln cot csc cot csc 1 cot csc cot csc csc csc

五、 cotx sinx cosx d dx (sinx) x)''-sinx(cos cosx(sinx)dx (sinx) (sinx)+(cosx)dx (sinx)1dx (cscx)222 22 2=?? ? ??====?????

多因式拆分公式 相信大家都不会陌生,经常遇见含有这些分式的积分类型,现在说说有哪些技巧可以简单应付。一个真分式:分子的次数< 分母的次数 我们把一个真分式拆解为几个小分式,通常第一步会先把分母进行因式分解,然后按照那个因式分裂为小分式 对于小分式,分子的次数总会比分母的次数少1次方:deg(分子) = deg(分母) - 1 例如分母是二阶ax^2+bx+c,则分子为Ax+B 若分母是一阶ax+b,则分子为常数A 不过,对于高阶极点来说,小分式的个数 = 分母的因式个数 例如(x + 5)^3,因式为(x + 5)^3,(x + 5)^2,(x + 5),共三个因式 (x^2+4)^4,因式为(x^2+4)^4,(x^2+4)^3,(x^2+4)^2,(x^2+4),共四个因式

不定积分基本公式和运算法则直接积分法

-复习1原函数的定义。2 不定积分的定义。3不定积分的性质。4 不定积分的几何意义。 ?引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算 问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ?讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以函数的的形式。 求函数的不定积分的方法叫积分法。 例1?求下列不定积分?(1)Adx (2)X I xdx .1 -2 + . 解:(1). 2dx =x'dx =兰C---亠C X -2 - 1 x 3 2 5 (2).x、xdx = x2dx =2x2 C ' 5 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为数的积分公式求积分。X〉的形式,然后应用幕函

不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 [f (x) — g (x)]dx 二 f (x)dx — g (x)dx 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 kf (x)dx = k f (x)dx ( k = 0) 3 x 例 2 求(2x 1 -e )dx 解 (2x 3 1-e" )d )=2 x 3dx + dx - e x dx 1 4 x =x x —e C 。 2 注 其中每一项的不定积分虽然都应当有一个积分常数, 但是这里并不需要在每一项后面加上 一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和 C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于(-x 4 ^e x C) = 2x 3 ? 1 - e x ,所以结果是正确的。 2 三直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被 积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结 果,这样的积分方法叫直接积分法。 例3 求下列不定积分 解: (1)首先把被积函数('XFX-1 化为和式,然后再逐项积分得 vx (、x 1)( x 1

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定 积分基本方法 Prepared on 22 November 2020

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '=二、基本积分公式 1. 1d (111)x x x C μμμμ+= + =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+? 6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 21d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+

不定积分的基本公式

不定积分 一.求不定积分与求导数或微分互为逆运算。(F (A ) = f(x)或JF(A ) = f(x)dx j/(x)J(x) = F(x) + C ) (d 工 0) 二?基本积分公式 可能用到的公式: cscxcotxdx = -cscx + C cotxdx = lii I sinxI + C (5) cot 2 x+ 1 = esc 2 x secxdx = lii Isecx + tanxl + C 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 1. [[= /(x) 或 jJ fWdx = f(x)dx 2. j F (x)dx = F(x) + C j clF(x) = F(x) + C 3. ^kdx= kx+C 伙是常数) 17. cscxdx = In I cscx-cotxl + C x 1' dx = -—+c (心 _1) /? + 1 冷=In I x I +C J x f = arctanx + C J 1 + 2 cosxdx = s\nx + C sin xdx = -cosx + C dx cos* x =fcsc 2 xdx = -cotx + C sirr x 」 secxtan,\zAv = secx + C 18. 19. r dx 1 x 小 - --- r = — arc tan — + C 对 a a =丄 Ini 匕 l+C J -cr 2a x + a r dx 1 …+ x , _ (1) (2) 1 1 -----------:zz> n(n +1) n n + 1 dx (a+b)3 =a 3 +3a 2 b + 3ab 2 + 2 dx (3) / 士b‘ =(a±b)(a 2 +ab + b 2 ) tanAzZr = -In I cosxl + C (4) tan" x + 1 = sec" x tan x + 24. -+ C x = e x +C Jc In a

相关文档
最新文档