高中物理新课标人教版优秀教案 动能和动能定理

高中物理新课标人教版优秀教案 动能和动能定理
高中物理新课标人教版优秀教案 动能和动能定理

7 动能和动能定理

整体设计

动能定理是本章教学重点,也是整个力学的重点,《课程标准》要求“探究恒力做功与物体动能变化的关系.理解动能和动能定理,用动能定理解释生活和生产中的现象”.因此,在实际教学中要注重全体学生的发展,改变学科本位的观念,注重科学探究,提倡学习方式的多样化、强调过程和方法的学习,以培养学生的“创新意识、创新精神和实践能力”为根本出发点,激励学生“在教学过程中的主动学习和探究精神”,调动学生学习的主动性、积极性,促进其个性全面健康地发展和情感态度与价值观的自我体现.

在实际学习中学生对动能概念的理解较为容易,能够掌握外力对物体做的功与物体动能的变化之间的定性关系,能够理论推导它们之间的定量关系,但真正从深层次理解存在困难.在前几节的学习中,学生已经建立了一种认识,那就是某个力对物体做功一定对应着某种能量形式的变化.本节就来寻找动能的表达式.因为有前几节的基础,本节可以放手让学生自己去推理和定义动能的表达式.让学生经过感性认识到理性认识的过程,教学的起始要求不能太高,要循序渐进,从生活中众多实例出发,通过分析、感受真正体验动能定理的内涵.通过实例分析、实验设计、器材选择、动手操作、教师演示等环节,让每一位同学都积极参与课堂教学,每一位同学都能享受成功的喜悦.

动能定理是一条适用范围很广的物理定理,但教材在推导这一定理时,由一个恒力做功使物体的动能变化,得出力在一个过程中所做的功等于物体在这个过程中动能的变化.然后逐步扩大几个力做功和变力做功及物体做曲线运动的情况.这个梯度是很大的,为了帮助学生真正理解动能定理,教师可以设置一些具体的问题,让学生寻找物体动能的变化与哪些力做功相对应.

教学重点

理解动能的概念;会用动能的定义式进行计算.

教学难点

1.探究功与物体速度变化的关系,知道动能定理的适用范围.

2.会推导动能定理的表达式.

课时安排

1课时

三维目标

知识与技能

1.理解动能的概念.

2.熟练计算物体的动能.

3.会用动能定理解决力学问题,掌握用动能定理解题的一般步骤.

过程与方法

1.运用演绎推导方式推导动能定理的表达式,体会科学探究的方法.

2.理论联系实际,学习运用动能定理分析解决问题的方法.

情感态度与价值观

1.通过演绎推理的过程,培养对科学研究的兴趣.

2.通过对动能和动能定理的演绎推理,使学生从中领略到物理等自然学科中所蕴含的严谨的逻辑关系,反映了自然界的真实美.

教学过程

导入新课

视频导入

利用大屏幕投影展示风力发电与龙卷风的视频片断,让学生观察、自主提问、分组探讨.

教师引导参考问题:1.风力发电是一种重要的节能方法,风力发电的效率与哪些因素有关?

2.龙卷风给人类带来了极大的灾难,龙卷风为什么具有那么大的能量呢?

故事导入

传说早在古希腊时期(公元前200多年)阿基米德曾经利用杠杆原理设计了投石机,它能将石块不断抛向空中,利用石块坠落时的动能,打得敌军头破血流.

同学们思考一下,为了提高这种装置的杀伤力,应该从哪方面考虑来进一步改进?学习了本节动能和动能定理,就能够理解这种装置的应用原理.

问题导入

英国传统跑车的代表品牌莲花也是以制造小排量、车体极度轻量化的速度机器而著称.一辆莲花Elise,排量只有1.8 L,由于重量只有675 kg,却可以创造出百公里加速5.9 s的惊人纪录.

使莲花跑车速度达到100 km/h需要对它做多少功?如果这一过程是以恒定的额定功率实现的,那么该车发动机的额定功率大约应是多少?

推进新课

一、动能的表达式

功是能量转化的量度,每一种力做功对应一种能量形式的变化.重力做功对应于重力势能的变化,弹簧弹力做功对应于弹簧弹性势能的变化,前几节我们学习了重力势能的基本内容.“追寻守恒量”中,已经知道物体由于运动而具有的能叫做动能,大家举例说明哪些物体具有动能.

参案:奔驰的汽车、滚动的足球、摆动的树枝、投出的篮球等运动的物体都具有动能.

教师引导:重力势能的影响因素有物体的质量和高度,今天我们学习的动能影响因素有哪些?通过问题启发学生探究动能的影响因素.

学生思考后总结:汽车运动得越快,具有的能量越多,应该与物体的速度有关;相同的速度,载重货车具有的能量要比小汽车具有的能量多,应该与物体的质量有关.即动能的影响因素应该是物体的质量和速度.

问题:如何验证物体的动能与物体的质量和速度的关系?

演示实验:让滑块A从光滑的导轨上滑下,与木块B相碰,推动木块做功.

1.让同一滑块从不同的高度滑下,可以看到:高度大时滑块把木块推得远,对木块做的功多.

2.让质量不同的木块从同一高度滑下,可以看到:质量大的滑块把木块推得远,对木块做的功多.

师生总结:物体的质量越大,速度越大,它的动能就越大.即质量、速度是动能的两个影响因素.

问题:动能到底跟质量和速度有什么定量的关系呢?动能的表达式是怎样的?

情景设置一:大屏幕投影问题

一架飞机在牵引力的作用下(不计阻力),在起飞跑道上加速运动,速度越来越大,问:

1.飞机的动能如何变化?为什么?

2.飞机的动能变化的原因是什么?

3.牵引力对飞机所做的功与飞机动能的变化之间有什么关系?

学生讨论并总结回答:

1.在起飞过程中,飞机的动能越来越大,因为飞机的速度在不断增大.

2.由于牵引力对飞机做功,导致飞机的动能不断增大.

3.据功能关系:牵引力做了多少功,飞机的动能就增大多少.由于牵引力所做的功和动能变化之间的等量关系,我们可以根据做功的多少,来定量地确定动能.

情景设置二:大屏幕投影问题,可设计如下理想化的过程模型:

设某物体的质量为m ,在与运动方向相同的恒力F 的作用下发生一段位移l,速度由v 1增加到v 2,如图所示.

提出问题:

1.力F 对物体所做的功是多大?

2.物体的加速度是多大?

3.物体的初速度、末速度、位移之间有什么关系?

4.结合上述三式你能综合推导得到什么样的式子?

推导:这个过程中,力F 所做的功为W=Fl

根据牛顿第二定律F=ma

而212

2v v -=2al,即l=a

v v 22122- 把F 、l 的表达式代入W=Fl,可得F 做的功W=a

v v ma 2)(2122- 也就是W=21222

121mv mv - 根据推导过程教师重点提示: 1.

2

1mv 2是一个新的物理量. 2.2221mv 是物体末状态的一个物理量,2121mv 是物体初状态的一个物理量,其差值正好等于合力对物体做的功.合力F 所做的功等于这个物理量的变化,所以在物理学中就用这个物理量表示物体的动能.

总结:1.物体的动能等于物体质量与物体速度的二次方的乘积的一半.

2.动能的公式:E k =2

1mv 2. 3.动能的标矢性:标量.

4.动能的单位:焦(J ).

教师引导学生分析动能具有瞬时性,是个状态量:对应一个物体的质量和速度就有一个

动能的值.引导学生学会从实验现象中思考分析,最终总结归纳出结论.同时注意实验方法——控制变量法.

例 质量为2 kg 的石块做自由落体运动,求石块在第1 s 末、第2 s 末的动能是多少?

解析:先求出第1 s 末和第2 s 末的速度再求出动能值,明确变速运动的物体动能是时刻变化的.

v 1=gt 1=10×1 m/s=10 m/s,v 2=gt 2=10×2 m/s=20 m/s

E k1=21mv 12=100 J,E k2=2

1mv 22=400 J. 答案:100 J 400 J

或者先求出石块1 s 内和2 s 内的位移,再确定重力做功的对应值,重力做功的值就是石块动能的增加量,即石块的动能值(因为石块的初动能为0),从而进一步理解功是能量转化的量度.

二、动能定理

课件展示:通过大屏幕投影展示足球运动员踢球的场面,让学生观察,运动员用力将足球踢出,足球获得了动能;足球在草地上由于受到了阻力的作用,速度越来越小,动能越来越小. 问题:1.若外力对物体做功,该物体的动能总会增加吗?

2.如果物体对外做功,该物体的动能总会减少吗?做功与动能的改变之间究竟有什么关系呢?

推导:将刚才推导动能公式的例子改动一下:假设物体原来就具有速度v 1,且水平面存在摩擦力f ,在外力F 作用下,经过一段位移s ,速度达到v 2,如图,则此过程中,外力做功与动能间又存在什么关系呢?

外力F 做功:W 1=Fs

摩擦力f 做功:W 2=-fs

外力做的总功为:W 总=Fs-fs=ma·212221222

1212mv mv a v v -=-=E k2-E k1=ΔE k . 师生总结:外力对物体做的总功等于物体在这一运动过程中动能的增量.其中F 与物体运动同向,它做的功使物体动能增大;f 与物体运动反向,它做的功使物体动能减少.它们共同作用的结果,导致了物体动能的变化.学生根据课本提供的问题情景,运用牛顿第二定律和运动学公式独立推导出外力做功与物体动能变化的关系.

思维拓展

将上述问题再推广一步:若物体同时受几个方向任意的外力作用,情况又如何呢?引导学生推导出正确结论并板书:

力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化,这个结论叫动能定理.用W 总表示外力对物体做的总功,用E k1表示物体初态的动能,用E k2表示末态动能,则动能定理表示为:W 总=E k2-E k1=ΔE k .

分组讨论:根据动能定理的表达形式,提出下列问题,加强对动能定理表达式的理解:

1.当合力对物体做正功时,物体动能如何变化?

2.当合力对物体做负功时,物体动能如何变化?

学生总结分析:

1.当合力对物体做正功时,末动能大于初动能,动能增加.

2.当合力对物体做负功时,末动能小于初动能,动能减少.

知识拓展

1.外力对物体做的总功的理解

有的力促进物体运动,而有的力则阻碍物体运动.因此它们做的功就有正、负之分,总功指的是各外力做功的代数和;又因为W 总=W 1+W 2+……=F 1·s+F 2·s+……=F 合·s ,所以总功也可理解为合外力的功.

2.对动能定理标量性的认识

定理中各项均为标量,因此单纯速度方向改变不影响动能大小.如匀速圆周运动过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,并不因速度方向改变而改变.

3.对定理中“变化”一词的理解

由于外力做功可正、可负,因此物体在一运动过程中动能可增加,也可能减少.因而定理中“变化”一词,并不表示动能一定增大,它的确切含义为末态与初态的动能差,或称为“改变量”,数值可正,可负.

4.对状态与过程关系的理解

功是伴随一个物理过程而产生的,是过程量;而动能是状态量.动能定理表示了过程量等于状态量的改变量的关系.

5.对适用条件的理解:动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的,但对于外力是变力,物体做曲线运动的情况同样适用.

例2 一架喷气式飞机,质量m=5.0×103 kg ,起飞过程中从静止开始滑跑.当位移达到l=5.3×102 m 时,速度达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重力的0.02倍.求飞机受到的牵引力.

解法一:以飞机为研究对象,它做匀加速直线运动且受到重力、支持力、牵引力和阻力作用 F 合=F-kmg=ma ①

又v 2-02

=2al,所以a=l v 22

② 由①和②得:F-kmg=l

v m 22

F=kmg+l v m 22=0.02×5×103×10 N+5×103×22

10

3.5260??N=1.8×104 N. 解法二:以飞机为研究对象,它受到重力、支持力、牵引力和阻力作用,这四个力做的功分别为W G =0,W 支=0,W 牵=Fl ,W 阻=-kmgl.据动能定理得:Fl-kmgl=2

1mv 2,代入数据,解得F=1.8×104 N.

方法比较:解法一是用牛顿第二定律和匀变速直线运动的公式求解的,而解法二是用动能定理求解的,那么同学们比较一下,这两种解法有什么区别呢?

学生讨论比较后得到:解法一采用牛顿运动定律和匀变速直线运动的公式求解,要假定牵引力是恒力,而实际中牵引力不一定是恒力.解法二采用动能定理求解,因为动能定理适用于变力,用它可以处理牵引力是变力的情况.而且运用动能定理解题不涉及物体运动过程中的加速度和时间,因此用它来处理问题时比较方便.

课堂训练

质量为m 的物体静止在水平桌面上,它与桌面之间的动摩擦因数为μ,物体在水平力F

作用下开始运动,发生位移s 1时撤去力F ,问物体还能运动多远?

解析:研究对象:质量为m 的物体.

研究过程:从静止开始,先加速,后减速至零.

受力分析、过程草图如图所示,其中mg (重力)、F (水平外力)、N (弹力)、f (滑动摩擦力),设加速位移为s 1,减速位移为s 2

方法一:可将物体运动分成两个阶段进行求解

物体开始做匀加速运动位移为s 1,水平外力F 做正功,f 做负功,mg 、N 不做功;初始动

能E k0=0,末动能E k1=

212

1mv 根据动能定理:Fs 1-fs 1=2121mv -0 又滑动摩擦力f=μN,N=mg

则:Fs 1-μmgs 1=212

1mv -0 物体在s 2段做匀减速运动,f 做负功,mg 、N 不做功;初始动能E k1=

2121mv ,末动能E k2=0 根据动能定理:-fs 2=0-

2121mv ,又滑动摩擦力f=μN,N=mg 则:μmgs 2=0-212

1mv 即Fs 1-μmgs 1-μmgs 2=0-0

s 2=mg

s mg F μμ1)(-. 方法二:从静止开始加速,然后减速为零,对全过程进行求解.

设加速位移为s 1,减速位移为s 2;水平外力F 在s 1段做正功,滑动摩擦力f 在(s 1+s 2)段做负功,mg 、N 不做功;初始动能E k0=0,末动能E k =0

在竖直方向上:N-mg=0 滑动摩擦力f=μN

根据动能定理:Fs 1-μmg (s 1+s 2)=0-0

得s 2=mg

s mg F μμ1)(-. 方法总结:在用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程,此时可分段研究,也可整体研究;在整体研究时,要注意各分力做功所对应的位移. 动能定理解题的方法和步骤:

(1)确定研究对象;

(2)分析物体的受力情况,明确各个力是否做功,做正功还是做负功,进而明确合外力的功;

(3)明确物体在始末状态的动能;

(4)根据动能定理列方程求解.

课堂小结

本节课主要学习了:

1.物体由于运动而具有的能叫动能,动能可用E k 来表示,物体的动能等于物体的质量与物体速度的二次方的乘积的一半.

2.动能是标量,也是状态量.

3.动能定理是根据牛顿第二定律和运动学公式推导出来的.

4.动能定理中所说的外力,既可以是重力、弹力、摩擦力,也可以是任何其他的力,动能定理中的W 是指所有作用在物体上的外力的合力的功.

5.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的,但对于外力是变力,物体做曲线运动的情况同样适用.

布置作业

教材“问题与练习”第3、4、5题.

板书设计

7 动能和动能定理

???????????

???????????????????????????-=-=?????????=说明对结果进行必要的讨论列方程求解末状态的功能明确初并确定各个力所做的功受力分析程确定研究对象及运动过解题步骤或体能的变化合外力所做的功等于物动能定理焦单位是状态量动能是标量公式叫动能能物体由于运动而具有的动能理定能动和能动,)4(,)3(,)2()1(:.32121.2.1)(:.4,.321.2,.12122122mv mv W E E W J mv E k k k 活动与探究

课题:估测自行车受到的阻力

目的:自行车仍是我国主要的代步工具,根据动能定理估测自行车行驶过程中所受阻力,既加强对基础知识的理解,又可以使学生形成学以致用的思想.

方法:骑自行车时,如果停止用力蹬脚蹬,设此时自行车的速度为v 0,由于受到阻力f 作用,自行车前进一段距离l 后将会停下来,根据动能定理,有-fl=0202

1mv -

即阻力f=l mv 220 实验中需测出人停止用力后自行车前进的距离l ,自行车和人的总质量m ,以及初速度v 0. 初速度可以通过以下三种方法测得:

1.在停止用力前,尽可能使自行车做匀速直线运动,通过测量时间和距离,计算出平均速度,以它作为停止用力时的初速度.

2.测出自行车从停止用力到静止时前进的距离和时间,再根据匀减速运动的规律,求出初速度.

3.停止用力时从车上释放一个小石块,测出释放的高度和石块在水平方向通过的距离,即可求得初速度.

习题详解

1.解答:a.动能是原来的4倍.

b.动能是原来的2倍.

c.动能是原来的8倍.

d.动能不变.

2.解答:由动能定理W=E k2-E k1=2

1m(2122v v -)可知,在题目所述的两种情况下,(2122v v -)较大的,需要做的功较多.

速度由10 km/h 加速到20 km/h 的情况下:

(2122v v -)=(202-102)(km/s )2=300(km/s )2

速度由50 km/h 加快到60 km/h 情况下:

(2122v v -)=(602-502)(km/s )2=1 100(km/s )2

可见,后一种情况所做的功比较多.

3.解答:设平均阻力为f ,根据动能定理W=

21m(2122v v -),有 fscos180°=2

1m(2122v v -) f=23

222110

52102)(2--???=-v v s m (3002-1002) N=1.6×103 N 子弹在木板中运动5 cm 时,所受木板的阻力各处不同,题目所说的平均阻力是对这5 cm 说的.

4.解答:人在下滑过程中,重力和阻力做功,设人受到的阻力为f ,根据动能定理W=ΔE k ,

W G +W f =

22

1t mv -0 mgh-fs=221t mv 解方程得:v t =42m/s≈5.66 m/s.

5.解答:设人将足球踢出的过程中,人对球做的功为W ,根据动能定理可知从人踢球到球上升至最大高度的过程中:W G +W=

221t mv -0 即-mgh+W=

221t mv W=2

1×0.5×202 J+0.5×10×10 J=150 J. 设计点评

探究式教学是实现物理教学目标的重要方法之一,同时也是培养学生创新能力、发展学生非智力因素的重要途径.因此,本节教学设计从动能的概念入手就注重对学生的引导,使学生在探究中提出问题、设计方案、解决问题.在操作上,本节教学设计注重为学生创设一个和谐自由的教学氛围.在动能的影响因素及动能定理表达式的推导过程中,有师生间的讨论、分析,甚至是相互质疑.在探究过程中,重点引导学生从外力做功和物体的动能变化量两个方面

思考,选择受力情况较为简单,而动能变化量又较容易得到的具体运动形式,同时要考虑误差的大小.在解题过程中,让学生体会到了运用动能定理解决问题的优点和方法、步骤.本节课运用实验探究法,通过质量相同的物体高度的不同和高度相同质量不同的两种情况,得出动能和质量、速度的关系.

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

(word完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

高中物理《动能和动能定理(2)》优质课教案、教学设计

1.回顾知识引出新内容,使学生对其产生兴趣。 师:前几节课我们学习了功、重力势能、弹性势能。而且我们知道了力对物体做功的时候总是对应于某种能量的变化。那么重力做功的时候对应于何种能量的变化呢? 生:重力势能的变化。 师:弹簧弹力做功的时候对应于何种能量的变化呢? 生:弹簧的弹性势能的变化。 【通过提问题的方式能够引导学生回想前面的知识,并且对功和能之间的关系进行潜意识的思考。这对下面的推导演绎动能和动能定理有很大的帮助。】 师:对,重力做功对应于重力势能的变化,弹簧的弹力做功对应于弹簧弹性势能的变化。重力势能和弹性势能是我们前面所学的两种能量的存在形式。今天我们就来学习一个物体由于运动而具有的能——动能。 【由于初中已经对动能有了感性的认识,而感性的认识是形成物理概念的基础。将学过的东西再次学习是从感性认识升华到理性认识的过程。】 师:我们在研究重力势能的时候是从什么地方开始入手分析的呢? 生:是从重力做功开始研究的。 师:从重力势能的研究中,我们得到了什么启发来研究动能呢? 生:也从力做功研究动能。 师:行得通吗?能不能,只有我们大胆尝试后才能知道。下面我们就从力做功来开始研究动能。 2.构建知识平台,铺设探究之路。 师:首先我们设计如下的物理模型: 一质量为m 的物体在水平面上受到方向与运动方向相同的恒力F 的作用下发生了一段位移。速度也由原来的变为求力F 对物体做功的表达式。 【建立适当的物理模型是得出正确结论的保证。】 生: 师:我们根据牛顿第二定律可知F=ma 。那么位移又等于什么呢?我们一起来分析一下。大家看F 是恒力,有时在水平面上作直线运动。那么这是一个什么样的运动? 生:匀变速直线运动 师:对,是我们熟悉的匀变速直线运动。那么我们就可以根据来求出等于什么? 生: 师:好,我们知道了F 和,那么代入即可的到F 对物体做的功的表达式: 【引导学生利用运动学公式得出,使学生掌握用演绎推理的方法得出动能表达式的物理学研究方法。将新知识的学习与旧知识联系起来,在进一步完善学生知识结构的同时,发展学生的知识迁移能力。】 3.分析论证 师:观察这个式子中有两个这种形式的量。再看这个量在过程结束与开始时的差正好是力F 对物体做的功。在此过程中物体除了动能是否还有另一种能量的变化啊? 生:没有出现别的能量的变化。 师:那么是不是我们要探究的动能呢?似乎是,但不敢肯定。那么大家回想一下上节课我们得出的一个结论:当物体的初速度为零时合外力对物体做的功与物体的末速度的平方成正比。由此我们能否肯定就是动能的表达式啊? 生:能肯定。 【分析和论证是这节教学需要突出的探究要素。和学生一起讨论分析得出结论。在这一过程中,培养学生的分析论证能力。】

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

人教版高中物理必修二高一物理动能定理机械能守恒检测(计算题)

高中物理学习材料 金戈铁骑整理制作 高一物理动能定理机械能守恒检测(计算题) 1.“绿色奥运”是2008年北京奥运会的三大理念之一,奥委组决定在各比赛场馆适用新型节能环保电动车,届时奥运会500名志愿者将担任司机,负责接送比赛选手和运输器材。在检测某款电动车性能的某次试验中,质量为8×102kg 的电动车由静止开始沿平直公路行驶,达到的最大速度为15m/s,利用传感器测得此过程中不同的时刻电动车的牵引力F 与对应的速度v ,并描绘出F —1/v 图像(图中AB 、BO 均为直线)。假设电动车在行驶中所受的阻力恒定,求: (1)根据图线ABC ,判断该环保电动车做什么 运动并计算环保电动车的额定功率 (2)此过程中环保电动车做匀加速直线运动的 加速度大小 (3)环保电动车由静止开始运动,经过多长时间 速度达到2m/s? 2.如图所示,粗糙的斜面通过一段极小的圆弧与光滑的半圆 轨道在B 点相连,整个轨道在竖直平面内,且C 点的切线水平。 现有一个质量为m 且可视为质点的小滑块,从斜面上的A 点由 静止开始下滑,并从半圆轨道的最高点C 飞出。已知半圆轨道的 半径R=1m, A 点到水平底面的高度h=5m, 斜面的倾角θ=450,滑块 与斜面间的动摩擦因数μ=0.5, 空气阻力不计,求小滑块在斜面上的 落点离水平面的高度。(g=10m/s 2) 3.在光滑的水平面有一个静止的物体。现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J 。则在整个过程中,恒力甲、乙对物体做的功分别是多少? 4.从倾角为θ的斜面上,水平抛出一个小球,小球的初动能为E K0, F / N C B A 151 2000 400 V 1/s.m -1 O C O · y R A B H θ x C θ

高考物理动能与动能定理试题(有答案和解析)含解析

高考物理动能与动能定理试题(有答案和解析)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

动能和动能定理复习课教案

功、动能和动能定理复习课教案 授课班级k一5 授课老师杨再英 ★学情分析 随着对物理学习的深入,学生刚入学时对物理的新鲜感正被逐渐繁难的物理知识带来的压力所取代,许多学生学习劲头有所下降,出现了一个低谷。他们对于物理学的基本轮廓及研究过程和方法可以说是空的,特别是学生的思维能力还停留在以记忆为主的模式上,想让他们在短时间内入门较为困难,因此在教学中要充分调动学生学生的积极性,加强学习方法论引导,逐步培养学生自主学习的能力,特别是物理学中的基本概念老师更加应该注重方法加以引导理解。另外在物理的课堂教学中应加强作业及解题格式的规范,还应该在教学中漫漫渗透物理思维方法的培养。 ★复习要求 1、掌握动能的表达式。 2、掌握动能定理的表达式。 3、理解动能定理的确切含义,应用动能定理解决实际问题。 ★过程与方法 分析解决问题理论联系实际,学习运用动能定理分析解决问题的方法。 ★情感、态度与价值观 通过运用动能定理分析解决问题,感受成功的喜悦,培养学生对科学研究的兴趣。 ★教学重点 动能定理及其应用。 ★教学难点 对动能定理的理解和应用。 ★教学过程 (一)引入课题 教师活动:通过新课的探究,我们已经知道了力对物体所做的功与速度变化的关系,也知道物体的动能应该怎样表达,力对物体所做的功与物体的动能之间关系这 节课我们就来复习这些问题。 (二)进行复习课 教师活动:物体由于运动而具有的能叫动能,还知道动能表达式吗?

学生活动:思考后回答22 1mv E k = 教师活动:动能是矢量还是标量?国际单位制中,动能的单位是什么? 教师活动: 提出问题: 1970年我国发射的第一颗人造地球卫星,质量为173kg ,运动速度为7200m/s ,它的动能是多大? 学生活动:回答问题,并计算卫星的动能。 点评:通过计算卫星的动能,增强学生的感性认识。同时让学生感受到动能这个概念在生活、科研中的实际应用。促进学生对物理学的学习兴趣。 2、动能定理 教师活动:直接给出动能定理的表达式: 有了动能的表达式后,前面我们推出的21222 121mv mv W -=,就可以写成 12k k E E W -= 其中2k E 表示一个过程的末动能2221mv ,1k E 表示一个过程的初动能212 1mv 。 上式表明,力在一个过程中对物体所作的功,等于物体在这个过程中动能的 变化。这个结论,叫做动能定理。 提出问题:(1)如果物体受到几个力的作用,动能定理中的W 表示什么意义? 结合生活实际,举例说明。(2)动能定理,我们实在物体受恒力作用且作直 线运动的情况下推出的。动能定理是否可以应用于变力作功或物体作曲线运 动的情况,该怎样理解? 教师活动:投影例题引导学生一起分析、解决。 学生活动:学生讲解自己的解答,并相互讨论;教师帮助学生总结用动能定理解题的要 点、步骤,体会应用动能定理解题的优越性。 1、动能定理不涉及运动过程中的加速度和时间,用它来处理问题要比牛顿 定律方便. 2、用动能定理解题,必须明确初末动能,要分析受力及外力做的总功. 3、要注意:当合力对物体做正功时,末动能大于初动能,动能增加;当合 力对物体做负功时,末动能小于初动能,动能减小。 点评:通过分析实例,培养学生进行情景分析,加深对规律的理解能力,加强物理与生活实践的联系。 ★课堂总结、点评 教师活动:让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本 上总结,然后请同学评价黑板上的小结内容。 学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结 和自己的小结,看谁的更好,好在什么地方。 点评:总结课堂内容,培养学生概括总结能力。

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

高中物理必修二动能和动能定理

高中物理必修二动能和动能定理 【知识整合】 1、动能:物体由于_____________而具有的能量叫动能。 ⑴动能的大小:_________________ ⑵动能是标量。 ⑶动能是状态量,也是相对量。 2、动能定理: ⑴动能定理的内容和表达式:____________________________________________ ⑵物理意义:动能定理指出了______________________和_____________________的关系,即外力做的总功,对应着物体动能的变化,变化的大小由________________来度量。 我们所说的外力,既可以是重力、弹力、摩擦力,又可以是电场力、磁场力或其他力。物体动能的变化是指_____________________________________________。 ⑶动能定理的适用条件:动能定理既适用于直线运动,也适用于________________。 既适用于恒力做功,也适用于______________________。力可以是各种性质的力,既可以同时做用,也可以____________________,只要求出在作用过程中各力做功的多少和正负即可,这些正是动能定理解题的优越性所在。 【重难点阐释】 1、应用动能定理解题的基本步骤: ⑴选取研究对象,明确它的运动过程。 ⑵分析研究对象的受力情况和各力做功的情况:受哪些力?每个力是否做功?做正功还是负功?做多少功?然后求各力做功的代数和。 ⑶明确物体在过程的始末状态的动能E k1和E k2 ⑷列出动能定理的方程W合=E k2-E k1及其它必要的解题方程,进行求解。 2、动能定理的理解和应用要点: (1)动能定理的计算式为W合=E k2-E k1,v和s是想对于同一参考系的。 (2)动能定理的研究对象是单一物体,或者可以看做单一物体的物体系。 (3)动能定理不仅可以求恒力做功,也可以求变力做功。在某些问题中由于力F的大小发生变化或方向发生变化,中学阶段不能直接利用功的公式W=FS来求功,,此时我们利用动能定理来求变力做功。 (4)动能定理不仅可以解决直线运动问题,也可以解决曲线运动问题,而牛顿运动定律和运动学公式在中学阶段一般来说只能解决直线运动问题(圆周和平抛有自己独立的方法)。(5)在利用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(如加速和减速的过程),此时可以分段考虑,也可整体考虑。如能对整个过程列动能定理表达式,则可能使问题简化。在把各个力代入公式:W1﹢W2﹢……﹢Wn=E k2-E k1时,要把它们的数值连同符号代入,解题时要分清各过程各力做功的情况。 【典型例题】 另一端施加大小为F1的拉力作用,在水平面上 做半径为R1的匀速圆周运动今将力的大小改变

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

人教版高中物理必修二动能和动能定理优质教案

动能和动能定理 一、要求与目标: 1、 理解动能的的概念,会用动能的定义进行计算。 2、 理解动能定理,知道动能定理的适用条件,会用动能定理进行计算。 3、 理解动能定理的推导过程。 4、 会用动能定理解决力学问题,知道用动能定理解题的步骤。 二、重点与难点: 1、动能的概念;动能定理及其应用。 2、对动能定理的理解。 三教学过程: (一)①请同学们欣赏几个课件,这些课件有什么共同特点呢? 学生的回答是:这些物体均在运动, ②哪这些物体具有能吗? 归纳:我们把这些运动物体具有的能叫物体的“动能” ③哪么物体的动能与哪些因素有关呢? 例题1、如图有一质量为m 的物体放在粗糙的水平面上,物体在运动过程中受到的摩擦力为f ,当物体受到恒力F (F >f )作用从速度V 0增加到V 时,物体运动合力做功为多大? 解:物体运动中的加速度为: m f F a -= 由运动学公式得到as V V 22 02+= 代入得到:m s f F V V )(22 02-=- 整理得到:s f F mV mV )(21212 02-=- 我们将:2 2 1mV =E k ,叫物体的动能。s f F )(-=W 合,叫合外力做功。 (二)、认识动能:E K =2 2 1mV 动能不仅与物体的质量有关,还与物体的速度平方有关; 它是一个标量,仅有大小而没有方向。如一个物体以4m/s 速度从A 点运动过后又以4m/s 的速度返回A 点,两次过A 点时物体的动能大小相等。 动能的单位是:“J ” 有:1kg.m 2/s 2=1J 例题1、改变汽车的质量和速度,都能使汽车的动能发生改变,在下列情况下,汽车的动能各是原来的几倍。 A 、质量不变,速度增大为原来的2倍; B 、速度不变,质量增大为原来的2倍; C 、质量减半,速度增大到原来的4倍; D 、速度减半,质量增大到原来的4倍。 (三)动能定理: 1、 在物理上我们将 s f F mV mV )(2 1 21202-=- 叫动能定理,它反映的是物体合外力做

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

高中物理动能定理的综合应用试题经典及解析

高中物理动能定理的综合应用试题经典及解析 一、高中物理精讲专题测试动能定理的综合应用 1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求: (1)汽车所能达到的最大速度; (2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】 (1)汽车匀加速结束时的速度 11120m /s v a t == 由P=Fv 可知,匀加速结束时汽车的牵引力 1 1F P v = =1×104N 由牛顿第二定律得 11F f ma -= 解得 f =5000N 汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力 F=f =5000N 由P Fv =可知,汽车的最大速度: v=P P F f ==40m/s (2)汽车匀加速运动的位移 x 1= 1 140m 2 v t = 对汽车,由动能定理得 21121 02 F x Pt fs mv =--+ 解得 s =480m 2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B

点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求: (1)物块与传送带间的动摩擦因数; (2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 3 5 (2) -3.75 J 【解析】 解:(1)由图象可知,物块在前0.5 s 的加速度为:21 11 a =8?m/s v t = 后0.5 s 的加速度为:222 22 2?/v v a m s t -= = 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得: 1mgsin mgcos ma θμθ+= 物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得: 2mgsin mgcos ma θμθ-= 联立解得:3μ= (2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:11 12 v t x = 则摩擦力对物块做功:11· W mgcos x μθ= 在后0.5 s ,物块对地位移为:12 122 v v x t += 则摩擦力对物块做功22· W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J 3.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)

相关文档
最新文档