数字语音处理课程实验报告

数字语音处理课程实验报告
数字语音处理课程实验报告

数字语音处理课程报告

语音信号的采集与分析

摘要

语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。

关键词:语音信号,采集与分析,时域,频域

0 引言

通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能.声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。

让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科技应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,电话、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。

语音信号采集与分析之所以能够那样长期地、深深地吸引广大科学工作者去不断地对其进行研究和探讨,除了它的实用性之外,另一个重要原因是,它始终与当时信息科学中最活跃的前沿学科保持密切的联系.并且一起发展。语音信号采集与分析是以语音语言学和数字

信号处理为基础而形成的一门涉及面很广的综合性学科,与心理、生理学、计算机科学、通信与信息科学以及模式识别和人工智能等学科都有着非常密切的关系。对语音信号采集与分析的研究一直是数字信号处理技术发展的重要推动力量。因为许多处理的新方法的提出,首先是在语音信号处理中获得成功,然后再推广到其他领域。

1 语音信号

1.1 语音信号的特点

通过对大量语音信号的观察和分析发现,语音信号主要有下面两个特点:

①在频域内,语音信号的频谱分量主要集中在300~3400Hz的范围内。利用这个特点,可以用一个防混频的带通滤波器将此范围内的语音信号频率分量取出,然后按8kHz的采样率对语音信号进行采样,就可以得到离散的语音信号。

②在时域内,语音信号具有“短时性”的特点,即在总体上,语音信号的特征是随着时间而变化的,但在一段较短的时间间隔内,语音信号保持平稳。在浊音段表现出周期信号的特征,在清音段表现出随机噪声的特征。

1.2语音信号的采集

在将语音信号进行数字化前,必须先进行防混叠预滤波,预滤波的目的有两个:①抑制输入信号各领域分量中频率超出fs/2的所有分量(fs为采样频率),以防止混叠干扰。②抑制50Hz的电源工频干扰。这样,预滤波器必须是一个带通滤波器,设其上、下截止频率分别是fH和fL,则对于绝人多数语音编译码器,fH=3400Hz、fL=60~100Hz、采样率为fs=8kHz;而对丁语音识别而言,当用于电话用户时,指标与语音编译码器相同。当使用要求较高或很高的场合时fH=4500Hz或8000Hz、fL=60Hz、fs=10kHz或20kHz。

为了将原始模拟语音信号变为数字信号,必须经过采样和量化两个步骤,从而得到时间和幅度上均为离散的数字语音信号。采样也称抽样,是信号在时间上的离散化,即按照一定时间间隔△t在模拟信号x(t)上逐点采取其瞬时值。采样时必须要注意满足奈奎斯特定理,即采样频率fs必须以高于受测信号的最高频率两倍以上的速度进行取样,才能正确地重建波,它是通过采样脉冲和模拟信号相乘来实现的。

在采样的过程中应注意采样间隔的选择和信号混淆:对模拟信号采样首先要确定采样间隔。如何合理选择△t涉及到许多需要考虑的技术因素。一般而言,采样频率越高,采样点数就越密,所得离散信号就越逼近于原信号。但过高的采样频率并不可取,对固定长度(T)的信号,采集到过大的数据量(N=T/△t),给计算机增加不必要的计算工作量和存储空间;如果数据量(N)低于限定,则采样时间过短,会导致一些数据信息被排斥在外。采样频率

过低,采样点间隔过远,则离散信号不足以反映原有信号波形特征,无法使信号复原,造成信号混淆。根据采样定理,当采样频率大于信号的两倍带宽时,采样过程不会丢失信息,利用理想滤波器可从采样信号中不失真地重构原始信号波形。量化是对幅值进行离散化,即将振动幅值用二进制量化电平来表示。量化电平按级数变化,实际的振动幅值是连续的物理量。具体振值用舍入法归到靠近的量化电平上。

语音信号经过预滤波和采样后,由A/D变换器变换为二址制数字码。这种防混叠滤波通常与模数转换器做在一个集成块内,因此目前来说,语音信号的数字化的质量还是有保证的。市面上购买到的普通声卡在这方面做的都很好,语音声波通过话筒输入到声卡后直接获得的是经过防混叠滤波、A/D变换、量化处理的离散的数字信号。

在实际工作中,我们可以利用windows自带的录音机录制语音文件,图2-3是基于PC 机的语音信号采集过程,声卡可以完成语音波形的A/D转换,获得W A VE文件,为后续的处理储备原材料。调节录音机保存界面的“更改”选项,可以存储各种格式的W A VE文件。

图1 基于PC机的语音信号采集过程

采集到语音信号之后,需要对语音信号进行分析,如语音信号的时域分析、频谱分析、语谱图分析以及加噪滤波等处理。

2 语音信号的分析

2.1语音信号分析技术

语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理[8]。而且,语音合成的音质好坏,语音识别率的高低,也都取决于对语音信号分桥的准确性和精确性。因此语音信号分析在语音信号处理应用中具有举足轻重的地位。

贯穿于语音分析全过程的是“短时分析技术”。因为,语音信号从整体来看其特性及表征其本质特征的参数均是随时间而变化的,所以它是一个非平稳态过程,不能用处理平稳信号的数字信号处理技术对其进行分析处理。但是,由于不同的语音是由人的口腔肌肉运动构成声道某种形状而产生的响应,而这种口腔肌肉运动相对于语音频率来说是非常缓慢的,所以从另一方面看,虽然语音倍号具有时变特性,但是在一个短时间范围内(一般认为在10~

30ms 的短时间内),其特性基本保持不变即相对稳定,因面可以将其看作是一个准稳态过程,即语音信号具有短时平稳性。所以任何语音信号的分析和处理必须建立在“短时”的基础上.即进行“短时分析”,将语音信号分为一段一段来分析其特征参数,其中每一段称为一“帧”,帧长一般取为10~30ms 。这样,对于整体的语音信号来讲,分析出的是由每一帧特征参数组成的特征参数时间序列。

根据所分析出的参数的性质的不同,可将语音信号分析分为时域分析、频域分析、倒领域分析等;时域分析方法具有简单、计算量小、物理意义明确等优点,但由于语音信号最重要的感知特性反映在功率谱中,而相位变化只起着很小的作用,所以相对于时域分析来说频域分析更为重要。本文将简要介绍时域分析、频域分析以及语谱图分析。

2.2 语音信号的时域分析

语音信号的时域分析就是分析和提取语音信号的时域参数。进行语音分析时,最先接触到并且也是最直观的是它的时域波形。语音信号本身就是时域信号,因而时域分析是最早使用,也是应用最广泛的一种分析方法,这种方法直接利用语音信号的时域波形。时域分析通常用于最基本的参数分析及应用,如语音的分割、预处理、大分类等。这种分析方法的特点是:①表示语音信号比较直观、物理意义明确。②实现起来比较简单、运算且少。③可以得到语音的一些重要的参数。④只使用示波器等通用设备,使用较为简单等。

语音信号的时域参数有短时能量、短时过零率、短时白相关函数和短时平均幅度差函数等,这是语音信号的一组最基本的短时参数,在各种语音信号数字处理技术中都要应用[6]。在计算这些参数时使用的一般是方窗或汉明窗。

2.2.1 短时能量及短时平均幅度分析

设语音波形时域信号为x(l)、加密分帧处理后得到的第n 帧语音信号为 Xn(m ),则Xn(m)满足下式:

()()()(n x m w m x n

m m =+ 01m N ≤≤- (3-1) 10~(1(){m N m w m =-==, 0, 其他值 (3-2) 其中,n =0,1T ,2T ,…,并且N 为帧长,T 为帧移长度。

设第n 帧语音信号Xn(m)的短时能量用En 表示,则其计算公式如下:

120()N n n m E x m -==

∑ (3-3)

En 是一个度量语音信号幅度值变化的函数,但它有一个缺陷,即它对高电平非常敏感(因为

它计算时用的是信号的平方)。为此可采用另一个度量语音信号幅度值变化的函数.即短时平均幅度函数Mn ,它定义为: 1

0()N Mn n m x m -==∑ (3-4)

Mn 也是一帕语音信号能量大小的表征,它与En 的区别在于计算时小取样值和大取样值不会因取平方而造成较大差异,在某些应用领域呻会带来一些好处。

短时能量和短时平均幅度函数的主要用途有:①可以区分浊音段与清音段,因为浊音时En 值比清音时大的多。②可以用来区分声母与韵母的分界,无声与有卢的分界,连字(指字之间无间隙)的分界等。③作为一种超音段信息,用于语音识别中。

2.2.2短时过零率分析

短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。过零分析是语音时域分析中最简单的一种。对于连续语音信号,过零即意味着时域波形通过时间轴;而对于离散信号,如果相邻的取样值改变符号则称为过零。过零率就是样本改变符号的次数。定义语音信号Xn (m )的短时过零率Zn 为:

[][]1

1sgn ()sgn (1)2N n n n m Z x m x m -==--∑ (3-5) 式中,sgn[ ]是符号函数,即:

[]{1,(

0)1,(0)sgn x x x ≥-<= (3-6)

在实际中求过零率参数时,需要十分注意的一个问题是如果输入信号中包含有50Hz 的工频干扰或者A/D 变换器的工作点有偏移(这等效于输入信号有直流偏移),往往会使计算的过零率参数很不准确。为了解决前一个问题,A/D 变换器前的防混叠带通滤波器的低端截频应高于50Hz ,以有效地抑制电源干扰。对于后一个问题除了可以采用低直流漂移器件外,也可以在软件上加以解决,这就是算出每一帧的直流分量并予以滤除。

对语音信号进行分析,发现发浊音时,尽管声道有若干个共振峰,但由于声门波引起谱的高频跌落,所以其话音能量约集中在3kHz 以下。而发清音时,多数能量出现在较高频率上。高频就意味着高的平均过零率,低频意味着低的平均过零率,所以可以认为浊音时具有较低的过零率,而清音时具有较高的过零率。当然,这种高低仅是相对而言,并没方精确的数值关系。

利用短时平均过零率还可以从背景噪声中找出语音信号,可用于判断寂静无声段和有

声段的起点和终点位置。在孤立词的语音识别中,必须要在一连串连续的语音信号中进行适当分割,用以确定一个一个单词的语音信号,即找出每一个单词的开始和终止位置,这在语音处理中是一个基本问题。此时,在背景噪声较小时用平均能量识别较为有效,而在背景噪声较大时用平均过零率识别较为有效。但是研究表明,在以某些音为开始或结尾时.如当弱摩擦音 (如[f]、[h]等音素)、弱燃破音(如[p]、[t]、[k]等音素)为语音的开头或结尾;以鼻音(如

[n]、 [m]等音素)为语音的结尾时.只用其中一个参量来判别语音的起点和终点是有困难的,必须同时使用这两个参数。

2.3 语音信号的频域分析

语音信号的频域分析就是分析语音信号的频域持征。从广义上讲,语音信号的频域分析包括语音信号的频谱、功率谱、倒频谱、频谱包络分析等,而常用的频域分析方法有带通滤波器组法、傅里叶变换法、线件预测法等几种。本文介绍的是语音信号的傅里叶分析法。因为语音波是一个非平稳过程,因此适用于周期、瞬变或平稳随机信号的标准傅里叶变换不能用来直接表示语音信号,而应该用短时傅里叶变换对语音信号的频谱进行分析,相应的频谱称为“短时谱 ”

2.3.1利用短时博里叶变换求语音的短时谱

对第n 帧语音信号Xn(m)进行傅里叶变换(离散时域傅里叶变换,DTFT),可得到短时傅里叶变换,其定义如下:

1

0()()N jw jwn n n m X e x m e --==∑ (3-7)

由定义可知,短时傅里叶变换实际就是窗选语音信号的标准傅里叶变换。这里,窗w(n-m)是一个“滑动的”窗口,它随n 的变化而沿着序列X(n)滑动。由于窗口是有限长度的,满足绝对可和条件,所以这个变换是存在的。当然窗口函数不同,博里叶变换的结果也将不同。

我们还可以将式(3—27)写成另一种形式。设语音信号序列和窗口序列的标准傅早叶变换均存在。当n 取固定值时,w(n-m)的傅里叶变换为:

()()jwn jwn jw m w n m e e W e ∞---=-∞-=?∑ (3-8)

根据卷积定理,有:

()()()jw jw jwn jw n X e X e e W e --??=???? (3-9)

因为上式右边两个卷积项均为关于角频率w 的以2π为周期的连续函数,所以也可将其写成以下的卷积积分形式:

()-1()()()2jw

j jn j w n X e W e e X e d θθθθ∏+∏????=?????∏? (3-10) 即,假设x(m)的DTFT 是()jw X e ,且()w m 的DTFT 是()jw W e ,那么()jw n X e 是()jw X e 和()jw W e 的的周期卷积。

根据信号的时宽带宽积为一常数这一基本性质,可知()jw W e 主瓣宽度与窗口宽度成反比,N 越大,()jw W e 的主瓣越窄。由式(3-30)可知,为了使()jw n X e 忠实再现()jw X e 的特性.()jw W e 相对于()jw X e 来说必须是—个冲激函数。所以为了使()()jw jw n X e X e →,需N →∞;但是N 值太大时,倍号的分帧又失去了意义。尤其是N 大于语音的音素长度时,()jw n X e 已不能反映该语音音素的频谱了。因此.应折衷选择窗的宽度N 。另外,窗的形状也对短时博氏频谱有影响,如矩形窗,虽然频率分辨率很高(即主辩狭窄尖锐),但由于第一旁瓣的衰减很小,有较大的上下冲,采用矩形窗时求得的()jw n X e 与()jw

X e 的偏差较大,这就是Gibbs 效应,所以不适合用于频谱成分很宽的语音分析中。而汉明窗在频率范围中的分辨率较高,而且旁辩的衰减大,具有频谱泄漏少的优点.所以在求短时频谱时一船采用具有较小上下冲的汉明窗[2]。

与离散傅里叶变换和连续博里叶变换的关系一样,如令角频率w=2πk /N ,则得离散的短时博里叶变换(DFT).它实际上是()jw n X e 在频域的取样,如下所示: 2210()()()(01)k

km N j j N N n n n m X e X k x m e

k N ∏∏--===≤≤-∑ (3-11)

在语音信号数字处理中,都是采用()n x m 的离散博里叶变换(DFT)()n X k 来替代()jw n X e 并且可以用高效的快速傅里叶变换(FFT)算法完成由()n x m 至()n X k 的转换。当然,这时窗长N 必须是2的倍数2L (L 是整数)。根据傅里叶变换的性质,实数序列的傅里叶变换的频谱具有对称性,因此,全部频谱信息包含在长度为N/2+1个()n X k 里。另外,为了使()n X k 具有较高的频率分辨率,所取的DFT 以及相应的FFT 点数1N 应该足够多,但有时()n x m 的长度N 要受到采样率和短时性的限制,例如,在通常采样率为8kHz 且帧长为20ms 时,N =160。而1N 一般取256、512或1024,为了将()n x m 的点数从N 扩大力1N ,可以采

用补0的办法,在扩大的部分添若干个0取样值,然后再对添0后的序列进行FFT 。例如、在10kHz 的范围内采样求频谱,并要求频率分辨率在30 Hz 以下。由10k z H /1N <30,得1N >333,所以1N =2L 要取比333大的值,这时可取1N =92=512点,不足的部分采用补0的办法解决,此时频率分辨率(即频率间隔)为10 Hz /512=19.53Hz ,采样后的该帧信号频率处在0~2‘x19.53Hz 之间,因此,原连续信号频率就处在0~1219.53L Hz -?之间(即max 5f kHz =),所以我们要在0~5kHz 频率范围内求其频谱。FFT 的计算可以在通用计算机上由相应的算法软件来完成,这种方式一般只能实现非实时运算。为了完成实时运算可以采用先进的数字信号处理芯片、阵列处理芯片或专用FFT 芯片。为了完成1024点的万FFT ,这些专用芯片所需的运算时间是几十毫秒至儿毫秒,甚至可以降至1ms 以下。

在语音信号数字处理中,功率谱具有重要意义,在一些语音应用系统中.往往都是利用语音信号的功率谱。根据功率谱定义,可以写出短时功率谱与短时傅里叶变换之间的关系:

2

()()()()jw jw jw jw n n n n S e X e X e X e *=?= (3-12)

或者: 2()()()()n n n n S k X k X k X k *=?= (3-13) 式中*表示复共轭运算。并且功率谱()jw

n S e 是短时自相关函数()n R k 的傅里叶变换。

121()()()N jw jw jwk n n n k N S e X e R k e --=-+==∑ (3-14)

2.4 语音信号的语谱图

语音的时域分析和频域分析是语音分析的两种重要方法。显然这两种单独分析的方法均有局限性:时域分析对语音信号的频率特性没有直观的了解;而频域分析出的特征中又没有语音信号随时间的变化关系:语音信号是时变信号,所以其频谱也是随时间变化的。但是由于语音信号随时间变化是很缓慢的,因而在一段短时间内(如10~30ms 之间,即所谓的一帧之内)可以认为其频谱是固定不变的,这种频谱又称为短时谱。短时谱只能反映语音信号的静态频率特性,不能反映语音信号的动态频率特性。因此,人们致力于研究语音的时频分析特性。

把和时序相关的傅里叶分析的显示图形称为语谱图(Sonogram ,或者Spectrogram)。语谱图是一种三维频谱,它是表示语音频谱随时间变化的图形,其纵轴为频率,横轴为时间,任一给定频率成分在给定时刻的强弱用相应点的灰度或色调的浓谈来表示。用语谱图分析语

音又称为语谱分析。语谱图中显示了大量的与语音的语句特性有关的信息,它综合了频谱图和时域波形的特点,明显地显示出语音频谱随时间的变化情况,或者说是一种动态的频谱;记录这种频谱的仪器就是语谱仪。

语谱仪实际上是一个带通滤波器组的输出随时间发生连续变化,连续重复进行语音信号频率分析的仪器。带通滤波器有两种带宽可供选择:窄带为45Hz,宽带为300Hz。窄带语谱图有良好的频率分辨率,有利于显示基音频率及其各次谐波,但它的时间分辨率较差,不利于观察共振峰(卢道谐振)的变化;而宽带语谱图正相反,具有良好的时间分辨率及较差的频率分辨率。宽带语谱图能给出语音的共振峰频率及清辅音的能量汇集区,在语谱图里共振峰呈现为黑色的条纹。

可以利用语谱仪测量语谱图的方法来确定语音参数,例如共振峰频率及基音频率。语语图的实际应用是用于确定出讲话人的本性。语谱图上因其不同的黑白程度,形成了个同的纹路,称之为“声纹”,它因人而异,即不同讲话者语谱图的声纹是不同的。因而可以利用声纹鉴别不问的讲话人。这与不向的人有不同的指纹,根据指纹可以区别不同的人是一个道理。虽然对采用语谱图的讲活人识别技术的可靠性过存在相当人的怀疑,但目前这一技术已在司法法庭得到某些认可及采用[11]。

总结

通过这次课程设计,使我对语音信号有了全面的认识,对数字信号处理的知识又有了深刻的理解,在之前数字信号与处理的学习以及完成课后的作业的过程中,已经使用过MATLAB,对其有了一些基础的了解和认识,通过这次练习是我进一步了解了信号的产生、采样及频谱分析的方法。以及其中产生信号和绘制信号的基本命令和一些基础编程语言。让我感受到只有在了解课本知识的前提下,才能更好的应用这个工具;并且熟练的应用MATLAB也可以很好的加深我对课程的理解,方便我的思维。这次设计使我了解了MATLAB 的使用方法,学会分析滤波器的优劣和性能,提高了分析和动手实践能力。同时我相信,进一步加强对MATLAB的学习与研究对我今后的学习将会起到很大的帮助。

参考文献

[1]胡航.语音信号处理【M】.哈尔滨:哈尔滨工业大学出版社,2002.

[2]丁玉美.高西全.数字信号处理【M】.西安电子科技大学出版社,2006.

[3]樊昌信.通信原理【M】北京:国防工业出版社,2005.

[4]张威.MA TLAB基础与编程入门【M】.西安电子科技大学出版社,2006.

[5]林福宗.多媒体技术基础【M】.北京:清华大学出版社,2000.

[6]周渊,王炳和,刘斌胜.基于MA TLAB的噪声信号采集和分析系统的设计【J】.噪声控

制.2004(7):52-54.

[7]何强,何英.MATLAB扩展编程【M】.北京:清华大学出版社,2002:293-296.

数字信号处理(北航)实验二报告

数字信号处理实验二 信号的分析与处理综合实验 38152111 张艾一、实验目的 综合运用数字信号处理的理论知识进行信号的采样,重构,频谱分析和滤波器的设计,通过理论推导得出相应结论,再利用Matlab作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 二、基本要求 1.掌握数字信号处理的基本概念、基本理论和基本方法; 2.学会MATLAB的使用,掌握MATLAB的程序设计方法; 3.掌握用MATLAB设计简单实验验证采样定理的方法; 4.掌握在Windows环境下语音信号采集的方法; 5.学会用MATLAB对信号进行频谱分析; 6.掌握MATLAB设计FIR和IIR数字滤波器的方法; 三、实验内容 1.利用简单正弦信号设计实验验证采样定理: (1)Matlab产生离散信号的方法,作图的方法,以及基本运算操作 (2)对连续正弦信号以不同的采样频率作采样 (3)对采样前后信号进行傅立叶变换,并画频谱图 (4)分析采样前后频谱的有变化,验证采样定理。

掌握画频谱图的方法,深刻理解采样频率,信号频率,采样点数,频率分辨率等概念2.真实语音信号的采样重构:录制一段自己的语音信号,并对录制的信号进行采样;画出采样前后语音信号的时域波形和频谱图;对降采样后的信号进行插值重构,滤波,恢复原信号。 (1)语音信号的采集 (2)降采样的实现(改变了信号的采样率) (3)以不同采样率采样后,语音信号的频谱分析 (4)采样前后声音的变化 (5)对降采样后的信号进行插值重构,滤波,恢复原信号 3.带噪声语音信号的频谱分析 (1)设计一频率已知的噪声信号,与实验2中原始语音信号相加,构造带噪声信号(2)画出原始语音信号和加噪声后信号,以及它们的频谱图 (3)利用频谱图分析噪声信号和原语音信号的不同特性 4.对带噪声语音信号滤波去噪:给定滤波器性能指标,采样窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采样的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化; 回放语音信号; (1)分析带噪声信号频谱,找出噪声所在的频率段 (2)利用matlab中已有的滤波器滤波 (3)根据语音信号特点,自己设计滤波器滤波 (4)比较各种滤波器性能(至少四种),选择一种合适的滤波器将噪声信号滤除 (5)回放语音信号,比较滤波前后声音的变化

语音识别系统实验报告材料

语音识别系统实验报告 专业班级:信息安全 学号: 姓名:

目录 一、设计任务及要求 (1) 二、语音识别的简单介绍 2.1语者识别的概念 (2) 2.2特征参数的提取 (3) 2.3用矢量量化聚类法生成码本 (3) 2.4VQ的说话人识别 (4) 三、算法程序分析 3.1函数关系 (4) 3.2代码说明 (5) 3.2.1函数mfcc (5) 3.2.2函数disteu (5) 3.2.3函数vqlbg (6)

3.2.4函数test (6) 3.2.5函数testDB (7) 3.2.6 函数train (8) 3.2.7函数melfb (8) 四、演示分析 (9) 五、心得体会 (11) 附:GUI程序代码 (12) 一、设计任务及要求 实现语音识别功能。 二、语音识别的简单介绍

基于VQ的说话人识别系统,矢量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。 语音识别系统结构框图如图1所示。 图1 语音识别系统结构框图 2.1语者识别的概念 语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用电话网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名:

实验一 基于MATLAB 的语音信号时域特征分析(2学时) 1) 短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2) ,legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 024 N=3200.5 1 1.5 2 2.5 3x 10 4 05 N=6400.5 1 1.5 2 2.5 3x 10 4 0510 N=12800.5 1 1.5 2 2.5 3x 10 4 01020 N=2560 0.5 1 1.5 2 2.5 3x 10 4 02040 N=512 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32;

for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2), legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 012 N=3200.5 1 1.5 2 2.5 3x 10 4 024 N=6400.5 1 1.5 2 2.5 3x 10 4 024 N=12800.5 1 1.5 2 2.5 3x 10 4 0510 N=2560 0.5 1 1.5 2 2.5 3x 10 4 01020 N=512 2) 短时平均过零率 a=wavread('mike.wav'); a=a(:,1); n=length(a); N=320; subplot(3,1,1),plot(a); h=linspace(1,1,N); En=conv(h,a.*a); %求卷积得其短时能量函数En subplot(3,1,2),plot(En); for i=1:n-1 if a(i)>=0 b(i)= 1;

数字信号处理实验报告

Name: Section: Laboratory Exercise 2 DISCRETE-TIME SYSTEMS: TIME-DOMAIN REPRESENTATION 2.1 SIMULATION OF DISCRETE-TIME SYSTEMS Project 2.1The Moving Average System A copy of Program P2_1 is given below: % Program P2_1 % Simulation of an M-point Moving Average Filter % Generate the input signal n = 0:100; s1 = cos(2*pi*0.05*n); % A low-frequency sinusoid s2 = cos(2*pi*0.47*n); % A high frequency sinusoid x = s1+s2; % Implementation of the moving average filter M = input('Desired length of the filter = '); num = ones(1,M); y = filter(num,1,x)/M; % Display the input and output signals clf; subplot(2,2,1); plot(n, s1); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Signal #1'); subplot(2,2,2); plot(n, s2); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Signal #2'); subplot(2,2,3); plot(n, x); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Input Signal'); subplot(2,2,4); plot(n, y); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Output Signal'); axis;

数字语音处理实验报告分析解析

数字语音处理实验报告 题目语音端点检测 作者 学院 专业 班级 学号 指导教师

目录 摘要: (2) 前言: (2) 1、实现原理 (3) 1.1基本公式: (3) 1.2 理论基础: (3) 1.3 基本思路: (4) 2、 matlab实现 (4) 2.1 程序流程图: (4) 2.2 程序分析 (5) 2.2.1 流程图的说明 (5) 2.2.2 起点和终点的判断 (5) 2.2.3 enframe函数的说明 (5) 2.2.4 过零率的计算 (7) 2.2.5能量的计算 (8) 2.3 运行结果 (9) 总结 (10) 参考文献 (11) 附录:完整源程序 (12)

摘要:短时能量分析和过零率分析作为语音信号时域分析中最基本的方法,应用相当广泛,特别是在语音信号端点检测方面。由于在语音信号端点检测方面这两种方法通常是独立使用的,在端点检测的时候很容易漏掉重要的信息。本文将这两种方法结合起来,利用MATLAB 工具对其进行了分析。实验结果表明,检测的效果好于分别使用其中一种方法的情况。 关键词:端点检测,短时能量过零率门限 前言:近年来,在语音信号处理领域,关于语音信号中端点检测及判定的研究越来越重要。作为语音识别的前提工作,有效的端点检测方法不仅可以减少数据的存储量和处理时间,而且可以排除无声段的噪声干扰,使语音识别更为准确。目前的语音信号端点检测算法比较多,有短时能量,短时过零率分析,自相关法等等,其中以短时能量和短时过零率用的最多。大多文献和教材都是把它们分别进行介绍,由于它们各有其优缺点,分别使用作为语音端点检测的手段难免会漏掉很多有用的信息,因此,笔者将这两种方法结合起来进行分析,在判断清浊音及静音方面可以起到互补的作用,从语音信号的短时能量和过零率分析的特点出发,加以门限值来分析将两种方法相结合应用的效果,最后通过Matlab 进行了仿真。

数字信号处理实验报告

语音信号的数字滤波 一、实验目的: 1、掌握使用FFT进行信号谱分析的方法 2、设计数字滤波器对指定的语音信号进行滤波处理 二、实验内容 设计数字滤波器滤除语音信号中的干扰(4 学时) 1、使用Matlab的fft函数对语音信号进行频谱分析,找出干扰信号的频谱; 2、设计数字滤波器滤除语音信号中的干扰分量,并进行播放对比。 三、实验原理 通过观察原语音信号的频谱,幅值特别大的地方即为噪声频谱分量,根据对称性,发现有四个频率的正弦波干扰,将它们分别滤掉即可。采用梳状滤波器,经过计算可知,梳状滤波器h[n]={1,A,1}的频响|H(w)|=|A+2cos(w)|,由需要滤掉的频率分量的频响w,即可得到A,进而得到滤波器的系统函数h[n]。而由于是在离散频域内进行滤波,所以令w=(2k*pi/N)即可。 对原信号和四次滤波后的信号分别进行FFT变换,可以得到它们的幅度相应。最后,将四次滤波后的声音信号输出。 四、matlab代码 clc;clear;close all; [audio_data,fs]=wavread('SunshineSquare.wav'); %读取未处理声音 sound(audio_data,fs); N = length(audio_data); K = 0:2/N:2*(N-1)/N; %K为频率采样点

%sound(audio_data,fs); %进行一次FFT变换 FFT_audio_data=fft(audio_data); mag_FFT_audio_data = abs(FFT_audio_data); %画图 figure(1) %原信号时域 subplot(2,1,1);plot(audio_data);grid; title('未滤波时原信号时域');xlabel('以1/fs为单位的时间');ylabel('采样值'); %FFT幅度相位 subplot(2,1,2);plot(K,mag_FFT_audio_data);grid; title('原信号幅度');xlabel('以pi为单位的频率');ylabel('幅度'); %构造h[n]={1,A,1}的梳状滤波器,计算A=2cosW,妻子W为要滤掉的频率%由原信号频谱可知要分四次滤波,滤掉频响中幅度大的频率分量 %第一次滤波 a = [1,0,0,0];%y[n]的系数 [temp,k]=max(FFT_audio_data); A1=-2*cos(2*pi*k/N); h1=[1,A1,1]; audio_data_h1 = filter(h1,a,audio_data); FFT_audio_data_h1=fft(audio_data_h1);

数字信号处理实验报告(同名22433)

《数字信号处理》 实验报告 课程名称:《数字信号处理》 学院:信息科学与工程学院 专业班级:通信1502班 学生姓名:侯子强 学号:0905140322 指导教师:李宏 2017年5月28日

实验一 离散时间信号和系统响应 一. 实验目的 1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解 2. 掌握时域离散系统的时域特性 3. 利用卷积方法观察分析系统的时域特性 4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析 二、实验原理 1. 采样是连续信号数字化处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: ?()()()a a x t x t p t = 式中()p t 为周期冲激脉冲,$()a x t 为()a x t 的理想采样。 ()a x t 的傅里叶变换为μ ()a X j Ω: 上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。也即采样信 号的频谱μ()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成 的。因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号 计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即 ()() n P t t nT δ∞ =-∞ = -∑μ1()()*() 21 ()n a a a s X j X j P j X j jn T π∞ =-∞ Ω=ΩΩ= Ω-Ω∑μ()()|j a T X j X e ωω=ΩΩ=

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

数字信号处理实验报告要求

数字信号处理实验课程设计 题目:数字滤波器的设计与实现 一、课程设计目的 (1) 掌握用脉冲响应不变法和双线性变换法设计无限脉冲响应数字滤波器(IIR DF )的原理和方法; (2) 掌握用窗函数法和频率采样设计有限脉冲响应数字滤波器(FIR DF )的原理和方法; (3) 学会根据信号的频谱确定滤波器指标参数; (4) 学会调用MATLAB 信号处理工具箱中的滤波器设计函数设计IIR DF 和FIR DF 。 二、课程设计原理 已知一个连续时间信号())π2cos()π2sin(21t f t f t x +=,Hz 1001=f ,Hz 3002=f ,x (t )为两个单频信号叠加后的混合信号,其时域波形和幅频特性图如图1所示。由图可知,混合信号时域混叠,无法在时域进行分离,但是频域是分离的,可以通过设计合适的IIR DF 和FIR DF 将两个单频信号分离,形成两个单一频率信号。 -2-1 1 2 t/s x (t )(a)混合信号时域波 形 050100150200250 30035040045050000.5 1 f/Hz 幅度(b)混合信号幅频特性 图1混合信号x (t )及其频谱图 三、课程设计内容 设计低通滤波器和高通滤波器将两个单频信号分离。滤波器的通带截止频率和阻带截止频率通过观察x (t )的幅频特性图自行确定,设采样频率为Hz 1000=s f ,要求滤波器的通带最大衰减和阻带最小衰减分别为dB 50,dB 1s p ==αα。调用MATLAB 中的滤波器设计函数编写

程序设计低通滤波器和高通滤波器(其中,低通滤波器用脉冲响应不变法和双线性变换法两种方法设计,高通滤波器用窗函数法和频率采样法两种方法设计),并绘制滤波器的幅频特性图、经滤波分离后的信号时域波形图和幅频特性图,观察分离效果。 四、课程设计报告要求 课程设计报告应包含以下几个方面的内容: 1.课程设计目的 2.课程设计要求 3.课程设计过程(包括设计步骤、完整的程序及仿真图) 4.结果分析 5.心得体会、问题或者建议 6.参考文献

《语音信号处理》实验报告材料

实用 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

语音识别机器人实验报告

开放实验项目报告 项目名称:语音识别机器人 专业 学生姓名 班级学号 指导教师 指导单位 2012/2013学年第一学期 一.设计背景

在科学日新月异的今天,电子设备的便捷化,人性化,智能化已成为不可逆转的潮流,而语音控制智能,更是其中研究发展的热点。凌阳SPCE061以其便捷的操作,可靠的性能,成为了各位电子爱好者的首选。本实验采用凌阳61板和运动小车(迷你型)模组设计的语音控制小车。凌阳板嵌入小车模型顶部。语音处理技术不仅包括语音的录制和播放,还涉及语音的压缩编码和解码、语音的识别等各种处理技术。本设计的语音控制小车,借助于SPCE061A在语音处理方面的特色,不仅具有前进、后退、左转、右转、停止等基本程序控制功能,而且还具备语音控制功能。 二.总流程图

三.主要模块 1、凌阳SPCE061是继μ’nSP?系列产品SPCE500A等之后凌阳科技推出的又一款16 位结构的微控制器。与SPCE500A不同的是,在存储器资源方面考虑到用户的较少资源的需求以及便于程序调试等功能,SPCE061A里只内嵌32K字的闪存(FLASH )。较高的处理速度使μ’nSP?能够非常容易地、快速地处理复杂的数字信号。因此,与SPCE500A相比,以μ’nSP?为核心的SPCE061A 微控制器是适用于数字语音识别应用领域产品的一种最经济的选择。 其性能如下: A、16 位μ’nSP?微处理器; B、工作电压(CPU) VDD 为2.4~3.6V (I/O) VDDH 为2.4~5.5V C、CPU 时钟:0.32MHz~49.152MHz ; D、内置2K 字SRAM; E、内置32K FLASH; F、可编程音频处理; G、晶体振荡器; H、系统处于备用状态下(时钟处于停止状态),耗电仅为2μA@3.6V ; I、2 个16 位可编程定时器/计数器(可自动预置初始计数值); J、2 个10 位DAC(数-模转换)输出通道; K、32 位通用可编程输入/输出端口; L、14 个中断源可来自定时器A / B ,时基,2 个外部时钟源输入,键唤醒;

数字信号处理实习报告

中国地质大学(武汉) 数字信号处理上机实习 学生姓名: 班级:071132 学号:2013100 指导老师:王晓莉

题目一 离散卷积计算 一、实验题目 设线性时不变(LTI )系统的冲激响应为h(n),输入序列为x(n) 1、h(n)=(0.8)n ,0≤n ≤4; x(n)=u(n)-u(n-4) 2、h(n)=(0.8)n u(n), x(n)=u(n)-u(n-4) 3、h(n)=(0.8)n u(n), x(n)=u(n) 求以上三种情况下系统的输出y(n),显示输入和输出波形。 二、实验目的 1.理解和掌握离散卷积计算; 2.学习如何用Mtalab 实现离散卷积计算。 三、算法设计 离散卷积定义为: ∑-∞ =-= n )()()(y k k n h k x n 1、n (0.8)=h(n),40≤≤n ,4)-u(n -u(n)=x(n), ∑∞ -∞ =-= *=m m n h m x n h n x n y )()()()()( (a) 当0

(b) 当30≤≤n 时,∑==n m n y 0 )((0.8)n ; (c) 当204≤≤n 时,∑ -== n 3)(n m n y (0.8)n ; (d) 当2321≤≤n 时,∑ -==20 3 )(n m n y (0.8)n ; (e) 当23>n 时,0)(=n y ; 3、)()8.0()(n u n h n =,)()(n u n x =,∑∞ -∞ =-= *=m m n h m x n h n x n y )()()()()( (a) 当0n 时,0)(=n y ; 四、程序分析 所用到的函数: (1)y=conv (x.,h ):卷积运算函数,计算)(*)()(n h n x n y =; (2)n1=0:4:n1取0~4; (3)subplot(m,n,p):subplot()函数是将多个图画到一个平面上的工具。其中,m 表示是图排成m 行,n 表示图排成n 列,也就是整个figure 中有n 个图是排成一行的,一共m 行,如果m=2就是表示2行图。p 表示图所在的位置,p=1表示从左到右从上到下的第一个位置。 (4)title(‘content ’):title()函数的功能是为当前坐标系添加标题“content ”。 五、程序设计 n=0:4; h=0.8.^n;

语音信号处理实验报告11

实验一 语音信号的时域分析 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握语音信号短时能量和短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 语音是一时变的、非平稳的随机过程,但由于一段时间内(10-30ms)人的声带和声道形状的相对稳定性,可认为其特征是不变的,因而语音的短时谱具有相对稳定性。在语音分析中可以利用短时谱的这种平稳性,将语音信号分帧。 10~30ms 相对平稳,分析帧长一般为20ms 。 语音信号的分帧是通过可移动的有限长度窗口进行加权的方法来实现的。几种典型的窗函数有:矩形窗、汉明窗、哈宁窗、布莱克曼窗。 语音信号的能量分析是基于语音信号能量随时间有相当大的变化,特别是清音段的能量一般比浊音段的小得多。定义短时平均能量 [][]∑∑+-=∞-∞=-=-= n N n m m n m n w m x m n w m x E 122)()()()( 下图说明了短时能量序列的计算方法,其中窗口采用的是直角窗。 过零就是信号通过零值。对于连续语音信号,可以考察其时域波形通过时间轴的情况。而对于离散时间信号,如果相邻的取样值改变符号则称为过零。由此可以计算过零数,过零数就是样本改变符号的次数。单位时间内的过零数称为平

均过零数。 语音信号x (n )的短时平均过零数定义为 ()[]()[]()()[]()[]() n w n x n x m n w m x m x Z m n *--=---= ∑∞ -∞=1sgn sgn 1sgn sgn 式中,[]?sgn 是符号函数,即 ()[]()()()()???<-≥=01 01sgn n x n x n x 短时平均过零数可应用于语音信号分析中。发浊音时,尽管声道有若干个共振峰,但由于声门波引起了谱的高频跌落,所以其语音能量约集中干3kHz 以下。而发清音时.多数能量出现在较高频率上。既然高频率意味着高的平均过零数,低频率意味着低的平均过零数,那么可以认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数。然而这种高低仅是相对而言,没有精确的数值关系。 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的

数字语音信号处理实验报告

语音信号处理实验报告 专业班级电子信息1203 学生姓名钟英爽 指导教师覃爱娜 完成日期2015年4月28日 电子信息工程系 信息科学与工程学院

实验一语音波形文件的分析和读取 一、实验学时:2 学时 二、实验的任务、性质与目的: 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验 (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 三、实验原理和步骤: WAV 文件格式简介 WAV 文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV 文件的头四个字节就是“RIFF”。WAV 文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV 文件标识段和声音数据格式说明段两部分。常见的WAV 声音文件有两种,分别对应于单声道(11.025KHz 采样率、8Bit 的采样值)和双声道(44.1KHz 采样率、16Bit 的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8 位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16 位的整数(int),高八位和低八位分别代表左右两个声道。WAV 文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV 文件中,道0 代表左声道,声道1 代表右声道;在多声道WAV 文件中,样本是交替出现的。WAV 文件的格式 表1 wav文件格式说明表

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

语音信号处理实验报告实验一

通信工程学院12级1班罗恒2012101032 实验一语音信号的低通滤波和短时分析综合实验 一、实验要求 1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号; 2、辨别原始语音信号与滤波器输出信号有何区别,说明原因; 3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因; 4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响; 5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。 二、实验目的 1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。 2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。 三、实验设备 1.PC机; 2.MATLAB软件环境; 四、实验内容 1.上机前用Matlab语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5. 改变滤波带宽,辨别与原始信号的区别。 6.依据曲线对该语音段进行所需要的分析,并且作出结论。 7.改变窗的宽度(帧长),重复上面的分析内容。 五、实验原理及方法 利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws 的转换,对ap和as指标不作变化。边界频率的转换关系为∩=2/T tan(w/2)。接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR滤波器的系统函数H(z)。

数字信号处理上机报告-一

数字信号处理上机报告-一

数字信号处理第一次上机实验报告 实验一: 设给定模拟信号()1000t a x t e -=,的单位是ms 。 (1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。 (2) 用两个不同的采样频率对给定的进行采样。 ○1 。 ○2 。 比较两种采样率下的信号频谱,并解释。 实验一MATLAB 程序: (1) N=10; Fs=5; Ts=1/Fs; n=[-N:Ts:N]; xn=exp(-abs(n)); w=-4*pi:0.01:4*pi; X=xn*exp(-j*(n'*w)); subplot(211) plot(n,xn); title('x_a(t)时域波形'); xlabel('t/ms');ylabel('x_a(t)'); t ()a x t ()()15000s a f x t x n =以样本秒采样得到。()()11j x n X e ω画出及其频谱()()11000s a f x t x n =以样本秒采样得到。()() 11j x n X e ω画出及其频谱

axis([-10, 10, 0, 1]); subplot(212); plot(w/pi,abs(X)); title('x_a(t)频谱图'); xlabel('\omega/\pi');ylabel('X_a(e ^(j\omega))'); ind = find(X >=0.03*max(X))*0.01; eband = (max(ind) -min(ind)); fprintf('等效带宽为 %fKHZ\n',eband); 运行结果:

《语音信号处理》实验报告

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

数字信号处理实验报告(全)

实验一、离散时间系统及离散卷积 1、单位脉冲响应 源程序: function pr1() %定义函数pr1 a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1; x=impseq(0,-40,140); %调用impseq函数 n=-40:140; %定义n从-40 到140 h=filter(b,a,x); %调用函数给纵座标赋值 figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激 title('冲激响应'); %定义标题为:'冲激响应' xlabel('n'); %绘图横座标为n ylabel('h(n)'); %绘图纵座标为h(n) figure(2) %绘图figure 2 [z,p,g]=tf2zp(b,a); %绘出零极点图 zplane(z,p) function [x,n]=impseq(n0,n1,n2)%声明impseq函数 n=[n1:n2]; x=[(n-n0)==0]; 结果: Figure 1: Figure 2:

2、离散系统的幅频、相频的分析 源程序: function pr2() b=[0.0181,0.0543,0.0543,0.0181]; a=[1.000,-1.76,1.1829,-0.2781]; m=0:length(b)-1; %m从0 到3 l=0:length(a)-1; %l从0 到3 K=5000; k=1:K; w=pi*k/K; %角频率w H=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义 magH=abs(H); %magH为幅度 angH=angle(H); %angH为相位 figure(1) subplot(2,1,1); %在同一窗口的上半部分绘图 plot(w/pi,magH); %绘制w(pi)-magH的图形 grid; axis([0,1,0,1]); %限制横纵座标从0到1 xlabel('w(pi)'); %x座标为 w(pi) ylabel('|H|'); %y座标为 angle(H) title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图 plot(w/pi,angH); %绘制w(pi)-angH的图形 grid; %为座标添加名称

相关文档
最新文档