第四章基因在大肠杆菌、酵母中的高效的表达

第四章基因在大肠杆菌、酵母中的高效的表达
第四章基因在大肠杆菌、酵母中的高效的表达

第四章基因在大肠杆菌、酵母中的高效的表达

前言

基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。

基因工程主要目标之一是生产常规方法难以生产的大量蛋白质产物—即实现基因的高效表达。

基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下外源基因片段,拼接到另一个基因表达体系中,使其能获得原生物活性又可高产的表达产物。

第一节基因的表达系统与表达策略

一、最佳的基因表达体系:

⑴目的基因的表达产量高;

⑵表达产物稳定;

⑶生物活性高;

⑷表达产物容易分离纯化。

二、宿主细胞的选择

(一)适合目的基因表达的宿主细胞的要求:

1、容易获得较高浓度的细胞;

2、能利用易得廉价原料;

3、不致病、不产生内毒素;

4、发热量低、需氧低、适当的发酵温度和细胞形态;

5、容易进行代谢调控;

6、容易进行DNA重组技术操作;

7、产物的产量、产率高,

8、产物容易提取纯化。

(二)宿主细胞分为两大类:

1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、链霉菌等;

2、真核细胞:常用有酵母、丝状真菌、哺乳动物细胞等。

大肠杆菌目前仍是基因工程研究中采用最多的原核表达体系。

优越性:

①对大肠杆菌的基础生物学、分子遗传学等背景知识和基因表达的调控机理已有了深刻了解。

②有各类菌株和载体系列。

③目前以实现多种基因的高效表达。表达基因产物形式多样:细胞内不溶性表达(包含体)、细胞内可溶性表达、细胞周质表达等。

④易培养,成本低。

缺点:

①大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。

②因分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性复性才恢复活性。

③蛋白质不能糖基化。产物蛋白质N端多余一个蛋氨酸残基。

④其内毒素很难除去。

酵母酵母菌是研究基因表达最有效的单细胞真核微生物。其基因组小,世代时间短,有单倍体双倍体两种形式,繁殖迅速,无毒性。能外分泌,产物可糖基化。已有不少真核基因成功表达。

三、根据表达蛋白用途选择基因的表达策略

1.生物化学和分子生物学研究

2.表达蛋白质用作抗原

3.结构研究

真核基因表达的特点

●一条成熟的mRNA只能翻译成一条多肽,不存在象原核生物那样的多基因操纵子模

式;

●基因转录调节区很大,而且往往远离启动子达几百个甚至上千个碱基,它们并不直

接影响RNA聚合酶与启动子区的结合,而是通过改变基因5’上游区DNA的构型来影响RNA聚合酶与启动子区的结合;

●mRNA合成后穿过核膜进入细胞质中后才进行翻译工作,而且通常都有复杂的成熟

和剪接过程;

●基因的启动子区和原核基因差异很大,而且有增强子序列存在。

原核体系中表达真核基因的困难

1.细菌的RNA聚合酶不识别真核基因的启动子;

2.真核基因转录的mRNA在原核细胞中不能结合到核糖体上;

3.真核基因一般含有内含子,而原核细胞没有象真核细胞那样的转录后加工系统,所

以mRNA中的内含子部分不能被切除,不能形成成熟的RNA,也就不能表达出有功能的真核蛋白;

4.表达的真核蛋白在原核细胞中很不稳定,容易被细菌蛋白酶降解破坏。

四、构建表达载体的策略

⑴将真核基因克隆到一个强大的原核启动子和SD序列的下游,使得真核基因处于原核调控体系中。

⑵采用真核基因的cDNA序列作为构建表达载体的目的基因,这样就解决了原核细胞没有RNA剪接功能的问题。

⑶构建载体时,将真核基因插在几个原核密码子的后面,翻译后就得到了原核多肽和真核多肽的融合蛋白,这样就可以避免被原核蛋白酶的识别和降解,最后可以将融合多肽切除。

第二节基因在大肠杆菌中的高效表达

一、大肠杆菌表达载体的成份

⑴启动子

要求是:①强启动子②是诱导性的,如热诱导和化学诱导。

⑵转录终止子

使转录终止,增强mRNA的稳定性,提高蛋白质产物的表达水平。

尤其是将两个终止子串联,转录终止功能更强。

⑶核糖体结合位点

在转录起始位点下游的一段DNA序列(SD,5’AGGAGG3’)

(4)筛选标记基因

(5)密码子的选择

二、常见的大肠杆菌表达系统

①T7表达系统T7噬菌RNA聚合酶能选择性的激活T7噬菌体启动子的转录,其mRNA合成速率相当于大肠杆菌RNA聚合酶的5倍。

②Lac表达系统是β-半乳糖苷酶编码基因LacZ的转录的调控序列,该启动子可以被IPTG 诱导,所以在培养基中加入该安慰诱导物就可以诱导目的基因的表达。

③Tac表达系统是一种由Lac和Trp启动子杂合而成的启动子,其强度得到了很大的提高,也可被IPTG诱导表达。

④λPL表达系统是负责λDNA分子转录的启动子之一,是一种极强的启动子。

三、影响克隆基因表达效率的因素

一般而言,所用启动子的强度、DNA的转录起始序列、密码子的选择、mRNA的二级结构、转录的终止、基因的拷贝数等都会在一定程度上影响到转基因的表达。

1.启动子的结构对表达效率的影响

大多数大肠杆菌启动子都含有两种保守区,即-10区(位于转录其始位点上游5-10bp,故称为-10区,序列为5’--TATAAT)和-35区(位于转录起始位点上游25bp处,一般有10bp组成,5’-- TTGACA故称为-35区,)。当然,实际的启动子中很少具备与上述序列完全一致的区域,但是研究表明,启动子的这两个区域与上述保守序列的相似程度越高,该启动子的表达能力也就越强。另外,这两个保守区间的距离也是影响启动子强度的重要因素,即这个间距越是接近于17bp,启动子的活性就越强。

2.翻译起始序列对表达效率的影响

mRNA的有效翻译依赖于核糖体和其的稳定结合,大肠杆菌的mRNA序列中,核糖体的结合位点是起始密码子AUG和其上游的SD序列。所谓SD序列就是由Shine-Dalgarno 首先提出的一种位于位于起始密码子上游的一段保守序列,为细菌核糖体有效结合和翻译起始所必需。一般SD序列的长度约为3-9bp,位于起始密码子上游3-11碱基的位置,它与16S 核糖体RNA的3‘端互补,控制了翻译的起始。

3.启动子与克隆基因间的距离对基因表达的影响

研究表明启动子和目的基因间的距离对基因的表达效率影响很大,所以在构建新的表达载体时要考虑到这一因素的影响。另外,在克隆基因的末端要就近插入有效的终止子序列,否则会导致细胞能量的大量消耗,或是形成不应有的二级结构,最终影响的目的基因的表达效率。

四、蛋白质的融合表达

融合表达一般是将基因引入某表达载体编码的高表达蛋白(担体蛋白)序列的3’末端。表达出来的融合蛋白的N末端含有由担体序列编码的片段。

融合蛋白可以直接用作抗体,但通常是将N端的担体蛋白部分从C端的目的蛋白中裂解出来,有利于对目的蛋白进行生化研究及功能分析。方法主要有:化学裂解法和酶解法。

五、蛋白质的分泌型表达

将目的蛋白的基因置于原核蛋白信号肽序列的下游有可能实现分泌表达。

●实现蛋白质分泌表达有许多有利之处:

1.在穿膜过程中信号肽被信号肽酶切除。生产的蛋白质和天然蛋白质是一致的。

2.周质中蛋白酶活性低,分泌的蛋白稳定。

3.周质中细菌的蛋白很少,使得重组蛋白易纯化。

4.周质中提供了一个氧化环境,更有利于二硫键的正确形成。

因此,对于许多难以纯化的蛋白质可以通过分泌表达来实现生产。

六、蛋白质的包含体形式表达

●重组蛋白在大肠杆菌中高表达时,绝大多数是以包含体形式存在的。

●包含体就是表达的蛋白质在细胞内聚集成没有生物活性的固体颗粒。

●不可溶、无生物活性的包含体必需经过变性、复性才能获得天然结构及生物活性。

●重组蛋白在大肠杆菌中高表达时,绝大多数是以包含体形式存在的。

●包含体就是表达的蛋白质在细胞内聚集成没有生物活性的固体颗粒。

●不可溶、无生物活性的包含体必需经过变性、复性才能获得天然结构及生物活性。减少包含体形成的策略:

1.降低重组菌的生长温度。

2.添加可促进重组蛋白质可溶性表达的生长添加剂。如高浓度的多醇类、蔗糖或非代谢糖。

3.供给丰富的培养基,创造最佳培养条件,如供氧、pH值等。

不过,包含体的形成有时也是有利的,不仅可以获得高表达、高纯度的蛋白质,还可避免细胞水解酶对重组蛋白的破坏。

有效、理想的复性方法应具备一下几个特点:

1.活性蛋白质的回收率高。

2.正确复性的产物易于与错误折叠蛋白质分离。

3.折叠复性后应得到浓度较高的蛋白质产品。

4.折叠复性方法利用放大。

5.复性过程耗时较少。

第三节基因在酵母中的表达

一、大肠杆菌表达系统的缺陷

1.缺失真核生物的蛋白质翻译后修饰和加工,如剪切、糖基化、形成二硫键等。

2.表达的蛋白多以包含体形式存在,需要经过复杂的复性才能恢复构象和生物活性。

因此,可以使用真核生物酵母作为表达菌。如酿酒酵母、甲醇酵母等。

二、甲醇酵母表达系统

●甲醇酵母能利用甲醇为其唯一碳源。

●甲醇代谢的第一步是甲醇在乙醇氧化酶作用下氧化成甲醛,乙醇氧化酶对氧的亲和

力很弱,因此甲醇酵母代偿性的大量产生这种酶。

●调控乙醇氧化酶的启动子是强启动子,可用来调控异源蛋白的表达。

(一)甲醇酵母表达系统的优点

1.具有强启动子,可严格调控目的蛋白的表达。

2.可对表达的蛋白进行翻译后的加工和修饰,从而使表达出的蛋白具有生物活性。

3.营养要求低,生长快,培养基廉价,便于工业化生产。

4.可高密度发酵培养。

(二)影响目的基因在甲醇酵母中表达的因素

1.目的基因的特性

2.表达框的染色体整合位点与基因拷贝数

3.宿主的甲醇利用表型

4.分泌信号

5.产物稳定性

6.翻译后修饰

大肠杆菌基因型及遗传符号说明系列一DXY

大肠杆菌基因型及遗传符号说明系列一 点击次数:982 作者:佚名发表于:2009-09-27 00:00转载请注明来自丁香园 来源:丁香园 实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp (基因Ⅷ)。E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。 利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。具有不同基因型的菌株表现出不同的特性。 分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。 大肠杆菌基因型的表示方法(Demerec, et, al. 1966): 一、一般规则: 1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。例如:D NA Adenine Methylase→dam。 2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。例如:Recombination→recA、recB、recC。 3、突变位点应通过在突变基因符号后加不同数字表示。如supE44(sup基因座E的44位突变)。

如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“ -”代替大写字母,如trp-31。 4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。 5、对于携带附加体的菌株的完整基因型描述应包括附加体的状态(游离或整合)。以F因子为例,F-:F因子缺失;F+:自主性F因子,不携带任何遗传可识别染色体片段;F':携带有遗传可识别细菌染色体片段的自主性F因子;Hfr:整合到染色体上的F因子(high frequency of recombination)。当这些质粒或噬菌体片段变异或缺失时,用()“或”/“等以区别。例如:/F' [traD3 6、proAB、lac I q、lacZ. M 15] 6、某个基因或某个领域缺失时,在其基因型前面加上“ ”表示。例如:lac-proAB基因缺失时它的基因型表示为(lac-proAB)。 7、由于某种基因的变异导致大肠杆菌可以明显观察到特征变化,有时也用其表现型代替基因型进行表示。例如:某些抗药性的获得或丧失,用如下方式表示:Streptomycin抗性→Str +或Str r,Ampicilli n敏感性→ Amp-。(第一个字母要大写,“+”或“r”表示有抗性,“-”表示无抗性或敏感)。 8、根据某些特异性蛋白的变异及其导致的结果变化进行表示。例如:TH2菌株上有一种基因型表示如下:hsdS20 (rB-、mB-),其中S20代表特异性识别蛋白发生变异,()中的rB-、mB-表示由于 S20的变异而导致B株来源的hsdR和hsdM的功能缺失。 9、蛋白质的名称与对应的基因或等位基因相同,但不用斜体,且首字母大写,如,UvrA、UvrB。 二、基因符号和意义(见表1)

外源蛋白在巴氏毕赤酵母中高效表达的策略

第22卷 第3期 吉首大学学报(自然科学版)Vol.22 No.3 2001年9月J ournal of J ishou University(Natural Science Edi ti on)Sept.2001 文章编号:1007-2985(2001)03-0040-05 外源蛋白在巴氏毕赤酵母中高效表达的策略 聂东宋,梁宋平,李 敏 (湖南师范大学生命科学院,湖南长沙 410081) 摘 要:高效表达外源蛋白,在理论和实践上特别是在生物制药中具有重要意义,巴氏毕赤酵母(Pichia pastoris)是表达外源蛋白最理想的真核表达系统之一.影响外源蛋白在P.pas toris中表达的因素很多,主要包括外源基因自身的特性、载体、宿主细胞几个方面,了解和灵活运用它们的联系,有助于获得外源基因在P.pastoris中的高效表达. 关键词:巴氏毕赤酵母;外源蛋白;高效表达 中图分类号:Q75 文献标识码:A 巴氏毕赤酵母(P.pastoris)是一种单细胞真核生物,基因工程菌近年来已被广泛用于商业化生产外源蛋白.与其它表达系统比较,该系统具有以下优点:(1)高表达.该表达系统利用醇氧化酶基因启动子很强,细胞生长速度快,所以该表达系统表达的外源蛋白产量很高,如破伤风毒素蛋白的产量高达12g/L[1],其它表达系统一般为毫克级.(2)高稳定.由于该表达系统的表达载体不是以自主复制的质粒形式存在,而是整合到酵母染色体上,所以构建的菌株十分稳定.(3)高分泌.P.pastoris中一些分泌信号和先导序列如a-因子的分子生物特性已研究得十分清楚,加之它身体的生物学特性,其分泌表达可达10g/L,这在已知的分泌表达系统中是十分罕见的.虽然已有许多蛋白在P.pastoris中实现了高效表达,但仍有一些蛋白表达量相对较低,如 -cryptogein表达量级为1~5mg/L[2],AFP在摇瓶中表达时最高水平不超过5mg/L[3],有些甚至不能表达,如HIV表面糖蛋白[4].此外,酵母表达系统的局限性还在于分泌表达产物的不均一性,如信号肽加工不完全,表达产物内部降解等现象[5] 其次,当利用该系统的载体将外源基因通过双交换整合到宿主体中AOX1基因位置时,AOX1基因被破坏,这样使细胞利用甲醇能力大大降低.从而大大延长了细胞培养发酵时间.这种外源蛋白表达的差异,一方面是由于外源基因本身的特性而引起的,另一方面,表达条件也对表达量起了极其重要的作用.笔者综述了影响甲醇酵母中外源基因高效表达的各种因素,并阐述了优化外源蛋白在P.pastoris中高效表达的策略. 1 外源基因本身的特性对表达的影响 1 1外源基因的A+T组成 外源基因本身的4种核苷酸的组成对基因的表达起重要作用.许多高A+T含量的基因通常会由于提前终止而不能有效转录,共有序列ATTATTTTATAAA就是一个转录提前终止信号 Caro1A Scorer[6]在表达人免疫缺损病毒(HI V)包膜糖蛋白gp120时,这个信号造成了gp120的转录提前终止.提前终止被认为是一种具有种族特异性的现象,如在P.pastoris中不能表达的HIVE NV蛋白在酿酒酵母中表达良好.[4]因此,可以通过调整高A+T含量区的核苷酸的组成来避免提前终止的发生,使其A+T含量在30%~50% 收稿日期:2001-08-05 基金项目:国家自然科学基金资助项目(39670392) 作者简介:聂东宋(1967-),男,湖南省衡阳县人,湖南师范大学硕士研究生,主要从事基因结构与功能研究.

大肠杆菌的基因型 Takara公司

,-*+ .1/0 2TVOVSV INRTKJMQRPRLU JHTHPRL RQPNQK3X``]GFFaaaE`VYV_VEW\ZEW[cbegdfih u u @=47>< :9?\JA6_3w uqz -*~x Jv Ih EKB ^O A 2ms 4t u s ^t /c O 46msnt /c|46u E `lr >z c 1H /r H6E ~J.H w N G [J *i.p ,5/c r 9U {OH :3a Z OA_v I3/cU~{y *wshf 2~m D q {m D 3y N ^shf C/r H6_0E ~U \.H y kl ^J ~m D q {m D /c NP N:8J.H TG [C a 6T J }0{w l }0{v Je KS]r `M ^cG { v I d9^y .5`M JA6_3ynO 6fP I69:3a y i -@.5`MN C a w D a 6T JA6_3r A6_3C aS 60y *-,6y @w JP99@cG r ~xvl 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A =@ZX[ e K {/|zr v I /@BOL B 73EKB `h A y q U |6e3s Q v Ih EKB J T S`h ^O kM y u^2O R EKB Y [6mY J 7]e K r N /|zr v I J.H o 4\Jv I3`u T u HT EKB J `h 1K,5y +:2V EKB J {N 6y R EKB J d p O 8r ~xvm 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A >9ZX[ e K {/|zs v I /@BOL B 73EKQ_U lk lwQA P J A a ;v y R /|zr J EKB `h AO \b l>,k M r EKQ_U ?p h;EKB J +:l +;y k lwQA P ?pD ;EKB J >+y U EKB J `h l mY 7]^Ur `>kM r /|zs v I J.H G [N EKB `h l 7]e KX]y +Y 9ZX[ e K {/|zt v I /@j _A y xk lwQA P y BOL B 73Jk lJQA y +:A w BOL A y qB l /|zr 5/|zs o /@J A .o 0M kM y U EKB J `h wY [6mY J 7]^Ur kM r /|zt v I J.H G [EKB `h e KS]y +Y w T EKB J {N 6r 876;547>< wu{2EKB QTU[X[U ZU`WbYQ_U3 JQ]]\_X`X\[A ?

影响外源基因在巴斯德毕赤酵母中的表达

摘要要在一种宿主表达系统中成功表达外源蛋白并获得较高产量,必须要较为全面地了解影响其表达的诸多因素。影响外源基因在巴氏毕赤酵母中表达的因素主要包括:外源基因的特性、表达框的染色体整合位点和方式、宿主菌的甲醇利用表型、基因剂量、分泌信号、产物稳定性和翻译后修饰等。本文就这些因素进行分析,并提出一定的对策和建议。 酵母菌是单细胞真核生物,具有生长快、易于遗传操作、能对外源蛋白进行翻译后加工和修饰、不产生有毒产物等特点,被认为是表达外源蛋白的合适宿主。几种工业酵母尤其是巴氏毕赤酵母(pichia pastoris, Pp),因具有旺盛的生长力以及其它一些独特的性质,已发展成为较成熟的蛋白生产的表达系统。已有许多细菌、真菌和高等动植物的基因在Pp中成功表达(如破伤风毒素片段C,12g/L),但也有许多蛋白的表达量并不理想(如多瘤病毒大T抗原,0.5mg/L),甚至不能表达(如HIV表面糖蛋白)。另外,酵母表达系统的局限性还在于分泌产物的不均一性,包括聚合体的存在、信号肽加工不完全以及内部降解等现象。所有这些都提醒我们在Pp中表达外源蛋白时,应周密考虑影响其表达的各个因素。 1、外源基因特性 外源基因在Pp中表达时,其自身就是影响表达水平的重要因素。不同的培养基配方、发酵参数和饲养方案主要是通过提高细胞绝对总数而并非单个细胞产率来提高外源蛋白的产量。Fahnestock等发现随着外源的蛛牵拉丝蛋白基因拷贝数的增加,其生产效率会相对有所降低。另外,许多高A+T含量的基因常会由于提前终止而不能有效转录引;不合适的mRNA5'非翻译区的核苛酸序列和长度也可能会便基因的表达不尽如人意。提前终止被认为是一种具有种属特异性的现象,譬如在Pp中不能表达的HIV ENV蛋白在啤酒酵母中却表达良好。因此,可以通过调整高A+T含量区的核甘酸组成来避免提前终止的发生。而Sreekrishna 等通过调整人血清白蛋白(human serum albumin,HSA)的mRNA5'非翻译区与醇氧化酶(alcohol oxidase 1,AOX1)的5'非翻译区相同后,HSA的表达量可以提高50倍以上。但遗憾的是,限于目前对Pp的了解程度,仍然无法预见某种外源蛋白是否能在其中获得高产甚至仅仅能否表达。至仅仅能否表达。 2、表达框的染色体整合位点和方式 虽然相对于自主复制载体来讲,整合性载体的转化率较低,但由于Pp没有天然质粒,所以设计表达载体偏向于染色体整合,通过同源重组,载体整合到细胞染色体中间。整合性载体具有表达框稳定和可控制整合位点等优越性,并且能够发生多位点整合而获得多拷贝。AOXl和组氨酸脱氢酶(histidinol dehydrogenase , HIS4)基因位点都已被成功用于表达外源蛋白。Sreekrishna等注意到his基因座的lacZ表达框偶有缺失。这种缺失源于表达框中his4染色体突变拷贝与完好的his4基因的基因转换。因此,看起来aox1位点是较为理想的位点。 3、宿主菌的甲醇利用表型(Mut+和MutS) 用末端与aox1基因5'和3'端同源的线性DNA转化Pp HIS4菌株可导致Mx1结构基因的特异性剔除。aox1基因缺失的酵母在甲醇限制性培养基上生长缓慢(methanol utilization slow , MutS或Mut-),它们只能利用弱的aox2基因启动合成aox2基因启动合成AOX;而aox1基因完整的酵母则生长正常(Mut+)。原则上,如果是胞内表达,应尽量用Mut-细胞,这样得到的蛋白产物中醇氧化酶蛋白量较少而目的蛋白量相对较多(约占Pp总分泌蛋白量的30-90%,如人乙酰胆碱酯酶B变异链的含量占到90%,使下游纯化更易进行。当诱导AOX1时,转化子不能同时高水平产生酒精氧化酶和外源蛋白,与野生型Mut+比较,Mut

大肠杆菌的基因型

[Z]_\^a` 7T B9.W +o mirzwv p Bn A`=C:VG 470p YunJ o JU dq B b 4288Yn A j mirzwv n A`V i w b G 0K*N 15q M t .]+kD Hd 9|Fhj_`SB D H q O |*N B D HG \F n A B aE \;dn AX`L ,0B q F 4|>4n A`*G i B -c N.j 0E 9.W +n A`B OW j .J F y -V N q XF V B @|n A M Tn {m KU q 5LZ9.W +:.-<_+@B {h q OW C _+@B j P v b 9.W +B |x +c DOMSTXZUM+qu B G OW {hBn A ^0v b 9.W +Bn A+o ?MSTXZUM dj *G ~m n A+B +Y |x 3~m B j .j O |~m n A+j .B +YM n A \1B 4|d T ,V *G `OB DE t R j 9.W +n A+B |[PN G Mv q W s 1r [~n A ,u m F cE ,u B C r?/BD 9Y _Af *0O Y ~k _A.|[j 1M s =C::LMSPSM BMXOZQIWM n oms j 2r{@n A ~m q ?S Bwa {mV q E F cE waB C r?/B HO Y _A~k er R 9Y9*_A.|[J }j 1M s EMKTRJPSIXPTS n vpnd i vpne i vpnf j 3r @Yn A m @Y 7J KUV q M F n A+HA]o U 2p d ]+k *ND H q >O |U 2m ]+kD H {@m KUV q E kc dl m k /l C h\g xvmgac i uvtde i rmn i V i rmnlyj_b hj 5r FH @W n A B {@?S 9.W +-<>w _+@j P {h q G V 8E F |x +;l n A+y -|[j 1M s @|,5.BlAm PU q E Mv P Z |[s FXVMUXTRZKPS ,.n kxv ;m kxv W q :RUPKPQQPS =X .n dsu H lARsnh U 2j

大肠杆菌基因型列表111

A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if ab sent. E. coli B strains are naturally lon- and dcm-. F- = Does not carry the F plasmid F+ = Carries the F plasmid. The cell is able to mate with F- through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F- through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. rB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. mB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine + methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!) dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished deoR = regulatory gene that allows constitutive expression of deoxyribose synthesis genes; permits uptake of large plasmids. See Hanahan D, US Patent 4,851,348. ***This has been called into question, as the DH10B genome sequence revealed that it is deoR+. See Durfee08, PMID 18245285. dnaJ = one of the chaparonins inactivated; stabilizes some mutant proteins dut1 = dUTPase activity abolished, leading to increased dUTP concentrations, allowing uracil instead of thymine incorporation in DNA. Stable U incorporation requires ung gene mutation as well. endA1 = For cleaner preparations of DNA and better results in downstream applications due to the elimination of non-specific digestion by Endonuclease I (e14) = excisable prophage like element containing mcrA gene; present in K-12 but missing in many other strains galE = mutations are associated with high competence, increased resistance to phage P1 infection, and 2-deoxygalactose resistance. galE mutations block the production of UDP-galactose, resulting in truncation of LPS glycans to the minimal, "inner core". The exceptional competence of DH10B/TOP10 is thought to be a result of a reduced interference from LPS in the binding and/or

常用大肠杆菌及其基因型

Commonly used strains https://www.360docs.net/doc/48584376.html,/wiki/E._coli_genotypes 1.AG1 endA1 recA1 gyrA96 thi-1 relA1 glnV44 hsdR17(r K - m K +) 2.AB1157 thr-1, araC14, leuB6(Am), Δ(gpt-proA)62, lacY1, tsx-33, qsr'-0, glnV44(AS), galK2(Oc), LAM-, Rac-0, hisG4(Oc), rfbC1, mgl-51, rpoS396(Am), rpsL31(strR), kdgK51, xylA5, mtl-1, argE3(Oc), thi-1?Bachmann BJ: Derivation and genotypes of some mutant derivatives of Escherichia coli K-12. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (Edited by: F C Neidhardt J L Ingraham KB Low B Magasanik M Schaechter H E Umbarger). Washington, D.C., American Society for Microbiology 1987, 2:1190-1219. See CGSC#1157 3.BL21 E. coli B F- dcm ompT hsdS(r B - m B -) gal [malB+] K-12 (λS) ?The "malB region" was transduced in from the K-12 strain W3110 to make the strain Mal+λS. See Studier et al. (2009) J. Mol. Biol. 394(4), 653 for a discussion of the extent of the transfer. ?Stratagene E. coli Genotype Strains 4.BL21(AI) F– ompT gal dcm lon hsdS B (r B - m B -) araB::T7RNAP-tetA ?an E. coli B strain carrying the T7 RNA polymerase gene in the araB locus of the araBAD operon q. ?Transformed plasmids containing T7 promoter driven expression are repressed until L-arabinose induction of T7 RNA polymerase.

第四章基因在大肠杆菌、酵母中的高效的表达

第四章基因在大肠杆菌、酵母中的高效的表达 前言 基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。 基因工程主要目标之一是生产常规方法难以生产的大量蛋白质产物—即实现基因的高效表达。 基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下外源基因片段,拼接到另一个基因表达体系中,使其能获得原生物活性又可高产的表达产物。 第一节基因的表达系统与表达策略 一、最佳的基因表达体系: ⑴目的基因的表达产量高; ⑵表达产物稳定; ⑶生物活性高; ⑷表达产物容易分离纯化。 二、宿主细胞的选择 (一)适合目的基因表达的宿主细胞的要求: 1、容易获得较高浓度的细胞; 2、能利用易得廉价原料; 3、不致病、不产生内毒素; 4、发热量低、需氧低、适当的发酵温度和细胞形态; 5、容易进行代谢调控; 6、容易进行DNA重组技术操作; 7、产物的产量、产率高, 8、产物容易提取纯化。 (二)宿主细胞分为两大类: 1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、链霉菌等; 2、真核细胞:常用有酵母、丝状真菌、哺乳动物细胞等。 大肠杆菌目前仍是基因工程研究中采用最多的原核表达体系。 优越性: ①对大肠杆菌的基础生物学、分子遗传学等背景知识和基因表达的调控机理已有了深刻了解。 ②有各类菌株和载体系列。 ③目前以实现多种基因的高效表达。表达基因产物形式多样:细胞内不溶性表达(包含体)、细胞内可溶性表达、细胞周质表达等。 ④易培养,成本低。 缺点: ①大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。 ②因分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性复性才恢复活性。

E.coli genotypes 大肠杆菌基因型手册

From OpenWetWare 1 Nomenclature & Abbreviations 2 Methylation Issues in E. coli 3 Commonly used strains 3.1 AG1 3.2 AB1157 3.3 BL21(AI) 3.4 BL21(DE3) 3.5 BL21 (DE3) pLysS 3.6 BNN93 3.7 BW26434, CGSC Strain # 7658 3.8 C600 3.9 C600 hflA150 (Y1073, BNN102) 3.10 CSH50 3.11 D1210 3.12 DB3.1 3.13 DH1 3.14 DH5α 3.15 DH10B (Invitrogen) 3.16 DH12S (Invitrogen) 3.17 DM1 (Invitrogen) 3.18 ER2566 (NEB) 3.19 ER2267 (NEB) 3.20 HB101 3.21 HMS174(DE3) 3.22 IJ1126 3.23 IJ1127 3.24 JM83 3.25 JM101 3.26 JM103 3.27 JM105 3.28 JM106 3.29 JM107 3.30 JM108 3.31 JM109 3.32 JM109(DE3) 3.33 JM110 3.34 JM2.300 3.35 LE392 3.36 Mach1 3.37 MC1061 3.38 MC4100 3.39 MG1655 3.40 OmniMAX2

3.41 Rosetta(DE3)pLysS 3.42 Rosetta-gami(DE3)pLysS 3.43 RR13.44 STBL2 (Invitrogen)3.45 STBL43.46 SURE (Stratagene)3.47 SURE2 (Stratagene)3.48 TOP10 (Invitrogen)3.49 Top10F' (Invitrogen)3.50 W31103.51 XL1-Blue (Stratagene)3.52 XL2-Blue (Stratagene)3.53 XL2-Blue MRF' (Stratagene)3.54 XL1-Red (Stratagene)3.55 XL10-Gold (Stratagene)3.56 XL10-Gold KanR (Stratagene)4 Other genotype information sources 5 References A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if absent. E. coli B strains are naturally lon- and dcm-. F - = Does not carry the F plasmid F + = Carries the F plasmid. The cell is able to mate with F - through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F - through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. r B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. m B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine +methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!)dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished 通常dam/dcm都是默认的,无需标注,只有dam -、dcm -才有必要标出来,那是被迫使用某些酶切位点时才用来扩增质粒的特殊菌株。

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

相关文档
最新文档